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Abstract
This paper presents a Bayesian clustering approach that allows quantification of the effect of climate variability on seasonal

precipitation data in Kebir Rhumel Basin (KRB). We applied this approach to simultaneously identify clusters of stations

with similar characteristics and the climate variability associated with each cluster and for the individual stations within

each cluster. Both full pooling Bayesian clustering (FPBC) and partial pooling Bayesian clustering (PPBC) models with

nonstationary generalized extreme value (GEV) distribution are applied to each season. In these models, a climate index

variable, namely the El Niño Southern Oscillation (ENSO), is included as a time-varying covariate with an appropriate

basis function to potentially explain the temporal variation of one or more of the parameters of the distribution. Results

reveal that the partial pooling Bayesian clustering model provided the best fit for the seasonal precipitation data. The

significant effect of ENSO differs from one season to another. During spring and autumn, ENSO significantly affects

precipitation across large parts of KRB. Furthermore, the southern part and northern part of KRB are positively and

negatively influenced by ENSO during winter and summer, respectively. Moreover, almost all stations during spring and

autumn are negatively and positively influenced by ENSO, respectively. Finally, we demonstrated that the proposed model

helps to reduce the uncertainty in the parameter estimation and provides more robust results.
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1 Introduction

Climate change and variability is one of the most serious

challenges facing the global ecosystem in the 21st Century.

Global warming and climate fluctuation have comprehen-

sively affected the water cycle components, especially

precipitation (Berghuijs et al. 2017; Konapala et al. 2020;

Belkhiri and Kim 2021; IPCC, 2021). The El Niño

Southern Oscillation (ENSO) is the single most influential

climate phenomenon affecting the variability of precipita-

tion (Ropelewski and Halpert 1987; Hoerling et al. 1997;

Dai et al. 1997; Ward et al. 2014). Although ENSO is

defined based on Pacific surface pressure or sea surface

temperature, it affects climate in various ways globally,

particularly across the tropics and subtropics. Many studies

have shown the complex effects of ENSO on the precipi-

tation in many countries throughout Africa (Ropelewski

and Halpert 1987; Kiladis and Diaz 1989; Nicholson and

Kim 1997; Mason and Goddard 2001; Lüdecke et al 2021).

Fewer studies investigated the effect of ENSO on precip-

itation in Algeria. For example, Meddi et al. (2010) ana-

lyzed the temporal variability of annual precipitation in the

Macta and Tafna catchments of northwestern Algeria and

showed a negative ENSO correlation with precipitation.

Turki et al. (2016) studied the long-term variability of

rainfall in the Soummam watershed and noted significant

effect of ENSO on rainfall variability in northeastern

Algeria. Zeroual et al. (2016) analyzed the climate indices’

influence on temperature and annual as well as seasonal

rainfall in the coastal region of northern Algeria from 1972

to 2013, the researchers found a positive correlation
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between rainfall and the ENSO (El Niño-Southern Oscil-

lation) index. However, the effect of climate indices such

as ENSO on the full probability distribution of precipita-

tion in Algeria has not yet been comprehensively assessed.

Therefore, there is room for new approaches to evaluate the

response of precipitation to ENSO.

The comprehensive effects of climate variability/change

on precipitation have been studied by using several non-

stationary models. For instance, Micevski et al. (2006)

examined the effect of Inter-decadal Pacific Oscillation

(IPO) for mainly coastal, eastern Australian flood data and

found that the IPO modulates the flood risk within parts of

eastern Australia. Ouarda and El-Adlouni (2011) discussed

nonstationary frequency analysis models in hydrology with

a focus on the Bayesian approach and demonstrated that

the Bayesian approach can be applied to more general and

more complex models where parameters are expressed as

nonlinear functions of covariates. Madsen et al. (2014)

presented a review of trend analysis of extreme precipita-

tion and floods and described that non-stationarity in

extreme precipitation and flood characteristics due to cli-

matic changes is high on the research agenda in Europe.

Chen et al. (2014) developed a Hierarchical Bayesian

approach for regional rainfall and streamflow forecast

using appropriate climate indicators and described that this

approach allows appropriate grouping of information in the

region and explicit modeling of the covariance of the

model errors and the regression coefficients to better rep-

resent the uncertainty in the model parameters and the final

streamflow and rainfall forecasts. Sun et al. (2014)

demonstrated that a Bayesian regional framework provides

the opportunity to assess the value of regional information

in better identifying the effect of climate variability on

hydrometeorological extremes. Despite the results of these

valuable studies, the reduction of the uncertainties and the

identification of the effect of climate variability in these

models across a relatively large area by regional pooling of

information on model parameters raises questions. Some

studies addressed this question but considered a relatively

small homogeneous area over which information can be

pooled (Aryal et al. 2009; Renard et al. 2008; Renard et al.

2013; Chen et al. 2014; Sun et al. 2014; Sun et al. 2015a).

Moreover, some authors have applied Bayesian clustering

models based on Dirichlet process or Expectation–Maxi-

mization (EM) algorithm (Xiong and Yeung 2004; Johnson

et al. 2013; Nieto-Barajas and Contreras-Cristán, 2014) but

these mixture models have been limited to a Gaussian

mixture model. Sun and Lall (2015) and Sun et al. (2015b)

developed a new Bayesian clustering approach for

exploring homogeneity of response in large area datasets,

through a multicomponent mixture model (or clusters).

This approach allows the reduction of uncertainties through

full pooling or partial pooling across automatically chosen

subsets of the data. In this study, we applied a similar

Bayesian clustering approach with non-stationary GEV

distribution for seasonal precipitation using ENSO index as

covariate.

The current paper is structured as follows. Section 2

introduces the study area and data. Section 3 presents the

Bayesian clustering approach. Section 4 describes the

results and discussions, followed by Sect. 5 in which we

concluded the main findings.

2 Study area and data

The Kebir Rhumel Basin (KRB) is located in northern

Algeria and includes seven sub-basins, which covers an

area of approximately 8815 km2 (Table 1 and Fig. 1). The

KRB is drained by two major rivers, Oued Rhumel in the

southern part and Oued Endja in the western part. Beni-

Haroun and Boussiaba are considered as the major dams in

the basin, with a capacity of 960 hm3 and 120 hm3,

respectively (Marouf et al. 2019). According to Mebarki

(2005), of KRB climate is humid in northern part and semi-

arid in the southern part.

The precipitation datasets for the period 1970–2013

used in this study were obtained from the National Agency

for Hydraulic Resources and Office National Office

Meteorology. In the current study, the mean value of

monthly precipitation is derived for the four seasons winter

(DJF), spring (MAM), summer (JJA) and autumn (SON).

For each season, a station was selected only if it had at least

90% of the total precipitation data available during the

period 1970–2013. Overall, 24 stations are utilized for the

analysis. Figure 1 displays the spatial distribution of the

selected stations in KRB.

In order to analyze the effect of climate variability on

the seasonal precipitation, the El Niño Southern Oscillation

(ENSO) was considered. Many indices have been devel-

oped to characterize aspects of ENSO evolution (Trenberth

1997; Trenberth and Stepaniak 2001). The seasonal mean

of Southern Oscillation Index (SOI) is used as the measure

of ENSO, and was obtained from the National Oceanic and

Atmospheric Administration Climate Prediction Center

(https://www.cpc.ncep.noaa.gov/data/indices/soi/).

3 Methodology

3.1 Nonstationary model structure

For the nonstationary modeling of the seasonal precipita-

tion, it is very important to choose an appropriate distri-

bution. In recent decades, many studies have successfully

used the generalized extreme value (GEV) distribution to
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model the nonstationarity in precipitation events by

including time-varying parameters (Du et al. 2014; Cheng

and Aghakouchak 2014; Gao et al. 2016; Agilan and

Umamahesh, 2017a, b; Su and Chen 2019). Steirou et al.

(2019) identified links between seasonal flood probabilities

and large-scale atmospheric indices for entire Europe by

adopting a Bayesian framework with climate-informed

(non-stationary) GEV distribution and compare it with the

classical (stationary) GEV distribution with parameters

invariant in time. They demonstrated that the climate-in-

formed models were preferred over the classical GEV

distribution for a high percentage of stations for most

seasons and the seasonally averaged indices provided in

most cases better fits compared with monthly values.

Ossandón et al. (2022) developed a Bayesian Hierarchical

Model (BHM) to project seasonal streamflow extremes for

several lead times based on a Gaussian elliptical copula and

Generalized Extreme Value (GEV) margins with nonsta-

tionary parameters and demonstrated that the framework

proposed could be useful for the early implementation of

flood risk adaptation and preparedness strategies. Thus, a

nonstationary generalized extreme value (GEV) distribu-

tion is considered to model the seasonal precipitation over

the KRB at each station. Here, we assumed that the GEV

location parameter was linked to the temporal climate

covariate (ENSO index) using a linear regression model. In

the preliminary analysis, we considered the effect of the

climate index on both the location and scale parameter, but

this did not provide very different results than those for a

covariate on the location parameter only (not shown). The

shape parameter is kept constant as its estimation includes

large uncertainties, even under the assumption of station-

arity (Coles et al. 2001; Papalexiou and Koutsoyiannis

2013; Silva et al. 2017; Steirou et al. 2017).

Table 1 The surface area and

number of stations for each Sub-

Basins in KRB

Name Code Surface area (km2) Number of stations

Oued Dehamecha 1001 1061 1

Oued Kebir-Endja 1002 1098 3

Oued Rhumel Amont 1003 1320 4

Oued Rhumel Seguin 1004 1220 4

Oued Boumerzoug 1005 1162 4

Oued Rhumel Smendou 1006 1865 2

Oued Kebir Maritime 1007 1089 6

Fig. 1 Locations of the study

area and the selected stations
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In this application, the three proposed model structures

of no pooling, full pooling and partial pooling can be

written as follows:

(a) No pooling model

Y s; tð Þ�GEV l0 sð Þ þ l1 sð Þ � ENSO tð Þ; r sð Þ; nðsÞð Þ
ð1Þ

(b) Full pooling model

Y s; tð Þ�GEV l0 þ l1 sð Þ � ENSO tð Þ; r sð Þ; nð Þ ð2Þ

(c) Partial pooling model

Level1 : Y s; tð Þ�GEV
�
l0 þ l1 sð Þ � ENSO tð Þ;

r sð Þ; nÞLevel2 : l1 sð Þ�N ll; rl
� � ð3Þ

Y(s,t) is the observation of the variable at station s and time

t. ENSO(t) is climate covariate at the time t. l0(s)/l0, l1(s),
r(s) and n(s)/n are model parameters, where the l0(s)/l0 is
the intercept of the location parameter, and the l1(s) is the
slope of the location parameter at station s. r(s) and n(s)/n
are the scale and shape parameters, respectively. l0(s),
l1(s), r(s) and n(s) are considered as a site-specific (local)

parameter while l0 and n are a regional parameters. N(.,.)

denotes a normal distribution. ll and rl are the hyper-

parameters in the second level model (Eq. 3).

In the current research, we use the same linear regres-

sion function on the location parameter in the proposed

models to describe the ENSO temporal climate covariate,

while these models differ in the settings of l0, l1 and n,
which are either site-specific (no pooling), regional (full

pooling), or have a second level (partial pooling). In the no

pooling model (Eq. 1), the three GEV parameters are

estimated locally (i.e., were site-specific). This model was

used as a baseline. In the full pooling model (Eq. 2), all

model parameters are allowed to be estimated indepen-

dently for each station except that the intercept of the

location parameter (l0) and the shape parameter (n) are

regional and estimated by using all data. We considered

these two parameters for clustering in order to standardize

the seasonal precipitation data, and considering that the

shape parameter requires more data to obtain a precise

estimation due to large uncertainty (Coles, 2001, p.106). In

the partial pooling model (Eq. 3), we allowed for pooling

of information across stations for estimating the regression

slope of the location parameter to reduce the associated

uncertainty, but also for variability in this parameter

between stations. In this model, the slope parameter is

presumed to drawn from common hyper-distribution,

therefore the l1(s) is in turn described by a set of hyper-

parameters ll and rl (i.e., second level model (Eq. 3)).

Here, the hyper-distribution describes the second level of

the hierarchical Bayesian model. The intercept l0 and the

shape parameter n are still regional in this model.

3.2 Hierarchical Bayesian clustering model

The hierarchical Bayesian clustering model with a non-

stationary GEV distribution is applied to model the sea-

sonal precipitation. Sun and Lall (2015) and Sun et al.

(2015b) demonstrated that this model can be applied

directly to a heterogeneous area. In this mixture model, we

assume that the stations can be classified into K clusters,

and a hierarchical Bayesian model (Hk) for each cluster

(k) is developed. Here, each station has a probability pk to
belong to a cluster k, which needs to be estimated.

The mixture distribution across all clusters can be given

as follows:

Y sð Þ�
XK

k¼1

pkf Hk
sð Þ ð4Þ

where f Hk
ðsÞ is the likelihood function of the hierarchical

Bayesian model (Hk) at station s. p = {p1, …, pk} denotes
the mixing probabilities (i.e., mixing coefficients or

weights). In order to be valid probabilities, the probability

pk must satisfy:

0� pk � 1 k ¼ 1; . . .;Kð Þ; and
XK

k¼1

pk ¼ 1 ð5Þ

Therefore, the likelihood of the hierarchical Bayesian

clustering model can be computed as follows:

L ¼
YS

s¼1

XK

k¼1

pkf Hk
sð Þ ð6Þ

where L is the likelihood function and S in the total number

of stations. A schematic of hierarchical Bayesian clustering

model is presented in Fig. 2.

In this study, full pooling Bayesian clustering (FPBC)

and partial pooling Bayesian clustering (PPBC) models are

considered for each cluster k. A summary of the two pro-

posed models used in this research is shown in Table 2.

Based on the partial pooling model described in Eq. (3),

we constructed this model for each cluster by setting the

intercept of the location parameter (l0) and the shape

parameter (n) to be fully pooled (regional) and the slope of

the location parameter to be partially pooled. The hierar-

chical Bayesian model (Hk) for each cluster k can be

written as follows:
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Level1 : Y
�
s; t

�
�GEV

�
l0;k þ l1 sð Þ � ENSO tð Þ;

r sð Þ; nkÞLevel2 : l1 sð Þ�N llk ; rlk

� � ð7Þ

where l0;k, nk, llk and rlk are parameters that are associ-

ated with cluster k.

The likelihood function of Hk at station s can be cal-

culated as follows:

f Hk
sð Þ ¼

YT

t¼1

f GEV Yðs; tÞjl0;k; l1 sð Þ; r sð Þ; nk;ENSOðtÞ
� �

Xf N l1 sð Þjllk ; rlk
� �

ð8Þ

Fig. 2 Schematic diagram of hierarchical Bayesian clustering model

Table 2 Nonstationary GEV

distribution models to fit the

seasonal precipitation

Models Parameters for

clustering

Full pooling Bayesian clustering model

(FPBC)Y s; tð Þ�GEV l0;k þ l1 sð Þ � ENSO tð Þ;r sð Þ; nk
� � l0;k; nk

Partial pooling Bayesian clustering model (PPBC) Level1 :

Y s; tð Þ�GEV l0;k þ l1 sð Þ � ENSO tð Þ;r sð Þ; nk
� �

Level2 : l1 sð Þ�N llk ;rlk

� �
l0;k; nk;llk ;rlk
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The full likelihood function of the hierarchical Bayesian

clustering model is obtained when integrating Eq. (8) into

Eq. (4).

In this application, we used a Dirichlet distribution with

identical parameters (a vector of 2 with length k) as a prior

for pk. For the other parameters, we used flat priors (normal

or uniform distribution with large variance). For the initial

values, we used the values that were obtained by fitting a

nonstationary GEV distribution using maximum likelihood

as the starting point for the intercept of the location

parameter, scale and shape of each station. For the hyper-

parameters, the mean of slope parameter l1(s) is set to zero

initially.

3.3 Implementation and model fitting

For each Bayesian clustering model, the posterior proba-

bility distribution of the model parameters is estimated

using a No-U-Turn Hamiltonian Monte Carlo method

(Hoffman and Gelman 2014). One chain of length 30,000

was run, with the first 15,000 iterations discarded as

warmup. The convergence is evaluated by the potential

scale reduction factor (Gelman and Rubin 1992), which

should be smaller than 1.2 for each parameter. All the

calculations are conducted using R and RStan (Stan

Development Team 2022).

3.4 Selecting the optimal number of clusters

The selection of the optimal number of clusters is an

important issue in mixture modeling. In a common trade-

off in model selection problems, the mixture model with

too many clusters may overfit the data, while a mixture

with too few clusters may not be flexible enough to

approximate the underlying model. Thus, it is important to

adopt some statistical criteria to infer an optimal number of

clusters (Deng and Han 2018). There are some statistical

criteria, such as Akaike Information Criterion (AIC)

(Akaike 1974), Bayesian Information Criterion (BIC)

(Schwarz 1978), and Deviance Information Criterion (DIC)

(Spiegelhalter et al. 2002), can be used to select the models

among different clusters. In the Bayesian framework, AIC

and BIC can be applied to the integrated likelihood over

the model parameters. However, AIC and BIC are not

theoretically justified for mixture models and may not be

the best way to determining the optimal number of clusters

(Biernacki and Govaert 1997; McLachlan and Peel 2004).

Alternately, the DIC is a model selection criterion that

automatically considers parameter uncertainty by utilizing

the posterior distribution. However, the definition and

application of DIC to mixture models are not straightfor-

ward, and different definitions and adaptations have been

proposed (Delorio and Roberst, 2002). To overcome the

limitation of BIC, Biernacki et al. (2000) proposed an

Integrated Completed Likelihood (ICL) criterion, which

showed that it performs well both for selecting a mixture

model and an optimal number of clusters. Also, ICL differs

from other criteria in that the integrated likelihood of the

complete data (observed data) are used to evaluate mixture

models. The ICL criterion is defined by:

ICL K; bh
� �

¼ �2logf Y ; bZ jK; bh
� �

þ tKlog Sð Þ ð9Þ

where Y is the observed data. logf Y; bZ jK; bh
� �

is the log

likelihood. bZ is a m*K binary matrix, which refers to the

estimated membership of each station, and bZs;k ¼ 1 if and

only if station s belongs to the cluster k. bh is the collection

of estimated parameters, tK is the number of parameters,

and S is the number of stations. Among the different

mixture models, the one with the lowest ICL value is

preferred. In this study, we computed the ICL to select the

optimal number of clusters for each Bayesian clustering

model.

4 Results

4.1 Preliminary investigations

For the preliminary analysis, the no pooling model with a

nonstationary GEV distribution was constructed using

linear function of the ENSO-index time-covariate to fit the

seasonal precipitation across the Kebir Rhumel Basin. The

slope parameter (l1) characterizes the effect of the climate

index (ENSO) on the location parameter. If the effect of the

climate index is significant, the posterior distribution of l1
not have zero near its center.

The posterior probability distribution of the slope of

location parameter (l1) estimated from the no-pooling

model for all stations and four seasons as boxplots is

illustrated in Fig. 3. The red and blue colors of the box

represent the significant and non-significant effect of the

climate index, respectively. As illustrated in Fig. 3, we can

see that the most stations have a positive value of the

median posterior distribution of the slope parameter during

the winter and autumn seasons, However, most stations of

them have a negative value of the median posterior dis-

tribution of l1 during spring and summer seasons, sug-

gesting that in this basin, ENSO may have contrasting

effects on precipitation in different seasons. In addition, the

results show that 58% (14 out of 24) and 33% (8 out of 24)

of the total stations have a significant effect of the climate

index during the spring and autumn, respectively. By

contrast, the significant effect of climate index during the
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rest of the seasons is only detected in two stations. Next,

we applied the full pooling Bayesian clustering and partial

pooling Bayesian clustering models in order to understand

more about the influence of the climate index on the sea-

sonal precipitation and its spatial variability within the

basin.

4.2 Bayesian clustering models

In the current study, we applied the full pooling Bayesian

clustering (FPBC) and partial pooling Bayesian clustering

(PPBC) models using a nonstationary GEV distribution to

fit the seasonal precipitation data by varying the number of

clusters from 2 to 4.

4.2.1 Model selection

Model selection for the full pooling Bayesian clustering

and partial pooling Bayesian clustering models includes the

selection of the optimal number of clusters. Choosing the

number of clusters (K) is a very important issue when using

mixture models. In this study, the ICL is considered, and

Fig. 3 Boxplot of the posterior distribution of the slope parameter l1(s) from the no pooling model for all station. Red boxes represent the

stations with significant effect, while the blue boxes are for the stations with non-significant effect of the climate index
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the best model is selected based on the lowest ICL value.

Figure 4 shows the boxplots of the ICL values of FPBC

and PPBC models. In all four seasons, the ICL values

decrease from K = 2 to K = 4 for both mixture models,

indicating that adding the number of clusters improves the

fit of the mixture models. Thus, the optimal number of

clusters is equal to 4. In other words, the mixture models

with K = 4 provide better fit than a mixture models with

K = 3 and 2. As shown in Fig. 4, the partial pooling

Bayesian clustering model with K equal to 4 has the lowest

values of ICL among all K values and thus provide the best

fit for the seasonal precipitation data in the Kebir Rhumel

Basin.

4.2.2 Assignment of stations to clusters

In order to determine the membership of each station in an

appropriate cluster, we calculate the posterior probability

(Ppost) of each station (s) belonging to cluster k as follows:

Ppost s 2 clusterkð Þ ¼
pkf Hk

sð Þ
PK

k¼1 pkf Hk
sð Þ

ð10Þ

A station is a member of the cluster k where its posterior

probability is highest.

Figure 5 displays the membership of station s belonging

to cluster k for the partial pooling Bayesian clustering

model with the number of clusters equal to 4. The summary

statistics of the posterior distribution of the model param-

eters for each cluster in PPBC model is presented in

Table 3. From the results, we can see clearly that the PPBC

Fig. 4 Boxplots of the Integrated Completed Likelihood (ICL) of FPBC and PPBC models for each season
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model identify four clusters during the four seasons. It can

be seen in Table 3 that, about of 42%, 33% and 58% of the

total stations belong to the first cluster in the season of

winter, summer and autumn, respectively. Whereas, in the

season of spring about of 50% of the total stations belong

to the second cluster.

The estimated seasonal precipitation by the PPBC model

with non-stationary GEV distribution for each cluster

during the four seasons is displayed in Fig. 6. For the

purpose of comparison, the empirical cumulative function

of observed and fitted PPBC model with non-stationary

GEV distribution to the seasonal precipitation is illustrated

in Fig. 7 for each season. The figures show how the esti-

mated theoretical distributions are adapted to the empirical

distributions in each season.

As see in Figs. 6 and 7, we can observe that the values of

the seasonal precipitation are changed from one season to

another and from the first cluster to last one. Also, the

cumulative distribution function (CDF) plot showed that

PPBC with non-stationary GEV distribution is practically

following the observed seasonal precipitation in all sta-

tions. Therefore, the results confirm that the PPBC model

with k = 4 is the best model for seasonal precipitation

which clearly explained the significant variation of the

precipitation between the seasons and clusters. The winter

season consisted of the stations with the highest values of

the seasonal precipitation while summer season had the

smallest values. Moreover, the seasonal precipitation val-

ues are increased from the first cluster to the last cluster

during all seasons.

In all four seasons, the values of the mean posterior

distribution of the intercept l0 and scale r parameters are

increased from the first to the last cluster, indicating that

the last cluster has the larger mean compared with the other

clusters. In addition, we can clearly observe that the mean

values of the posterior distribution of l0 and r are

increased form the south to the north of the Kebir Rhumel

Basin in the seasons of winter, spring and autumn. More-

over, the vertical sorting of the clusters is related to the

elevation and distance from the Mediterranean Sea. During

the winter and spring, the stations belong to the last cluster

are covered the sub-basin of Oued Kebir Maritime and

situated near to the Mediterranean Sea. Thus, this indicated

that the high values of the precipitation are observed in the

sub-basin of Oued Kebir Maritime (1007). The mean

posterior distribution of the shape parameter (n) in the most

stations is negative during the seasons of winter, spring and

autumn and positive during the summer season.

Fig. 5 Spatial distribution of the

identified clusters by the PPBC

model with K = 4 for each

season. The up-pointing and

down-pointing triangles denote

the significant positive and

negative effect of ENSO,

respectively. Colored dots and

triangles denote the identified

clusters by the clustering model
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4.2.3 Identify the effect of the climate variability

In the current study, the effect of the El Niño Southern

Oscillation (ENSO) index on the seasonal precipitation is

characterized by slope of the location parameter (l1). For
each season, the posterior distribution of the slope

parameter l1 estimated by the partial pooling Bayesian

clustering model for each station is displayed in Fig. 8. The

colors of the boxes represent the identified clusters by

clustering model with K equals to 4. The median posterior

distribution of l1 for each cluster is presented in Table 3.

From the results, we can see that most stations during the

winter and autumn seasons have a positive value of the

median posterior of the slope l1, while most stations in

spring and summer seasons have a negative value of l1.
This again indicates that ENSO (SOI) has a positive

influence on the seasonal precipitation during winter and

autumn seasons whereas a negative influence during spring

and summer seasons.

In addition, to better understand the significant effect of

ENSO on the seasonal precipitation, we examine the pos-

terior distribution of the slope l1 of the location parameter

for each season. For a significant effect of ENSO, the zero

value is not included in the 90% posterior interval of the

slope parameter l1. A significant positive (negative) effect

is considered if the probability of the posterior distribution

pdf of l is larger (smaller) than zero at the 10% (90%)

significance level. Table 4 presents the percentage of sta-

tions with a significant positive and negative effect of

ENSO by PPBC model. Figure 5 shows the spatial distri-

bution of the significant effect of ENSO for each season.

From the results, we can observe that a significant effect of

ENSO is found in precipitation at 17% (4 stations), 75%

(18 stations), 12% (3 stations) and 75% (18 stations) of the

total stations during winter, spring, summer and autumn

seasons, respectively, indicating that the highest numbers

of significant effect of ENSO are found in spring and

autumn. Also, the significant positive and negative effects

of ENSO on the seasonal precipitation differ from one

season to another. In winter and summer, a significant

effect of ENSO is only detected in the stations of the first

cluster. Thus, a significant positive influence of ENSO

during winter is observed in the southern part of the Kebir

Rhumel Basin, but a significant negative influence during

summer is detected in the northern part of the Kebir

Rhumel Basin (sub-basin 1007). In spring and autumn, the

stations of the first three and two clusters are negatively

and positively influenced by ENSO, respectively. In addi-

tion, all stations of the sub-basins except those of Oued

Kebir Maritime sub-basin are negatively and positively

influenced by ENSO during spring and autumn, respec-

tively. These results were roughly consistent with the

findings in previous studies in Africa (Ropelewski and

Table 3 Summary of the clustering results for PPBC model with

K = 4

Clusters %NBS l0 l1 ~r n

Winter

C1 41.67 27.00 0.91 14.73 - 0.160

C2 12.50 41.44 - 0.11 21.76 - 0.052

C3 20.83 57.47 2.63 27.94 0.016

C4 25.00 112.41 3.00 56.64 0.053

Spring

C1 8.33 22.77 - 4.76 13.73 - 0.119

C2 50.00 33.10 - 6.91 15.91 - 0.109

C3 16.67 44.91 - 6.61 18.33 - 0.059

C4 25.00 64.79 - 2.15 30.45 - 0.046

Summer

C1 33.33 6.20 - 0.59 4.21 0.096

C2 16.67 6.56 - 0.19 5.19 0.120

C3 20.83 6.81 0.00 5.78 0.143

C4 29.17 8.44 - 0.50 6.96 0.200

Autumn

C1 58.33 23.57 2.40 12.91 - 0.030

C2 29.17 37.86 2.95 22.73 - 0.011

C3 8.33 60.89 3.88 29.99 0.020

C4 4.17 92.98 - 0.99 41.91 0.026

%NBS: Percentage of the number of stations

l1 : The mean of the median posterior ofl1.
~r : The mean of the median posterior ofr

Fig. 6 Boxplots of the clusters obtained by PPBC model with k = 4

for each season
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Fig. 7 Empirical distribution function for the seasonal precipitation of observed data (dots) and PPBC models for each cluster (dashed lines). The

stations for each cluster are randomly selected
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Halpert 1987; Kiladis and Diaz 1989; Nicholson and Kim

1997; Mason and Goddard 2001; Lüdecke et al 2021) and

Algeria (Meddi et al. 2010; Turki et al. 2016; Zeroual et al.

2016) in terms of the seasonal distribution of ENSO

impacts on precipitation amount.

5 Summary and conclusions

This study aimed to analyze the effect of ENSO on the

seasonal precipitation across the Kebir Rhumel Basin using

Bayesian clustering approach. For each season, full pooling

Fig. 8 Boxplot of the posterior distribution of the slope parameter l1(s) for each station by PPBC model with K = 4. Different colors present the

identified clusters form the clustering models
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Bayesian clustering and partial pooling Bayesian clustering

models with a nonstationary GEV distribution are applied.

In these models, we assumed that the location parameter

was linked to the temporal climate covariate using linear

regression function. The intercept and the slope of the

location parameter and the shape parameter were used for

clustering. An advantage of the approach is that it allows

the clustering and the model parameter estimation to pro-

ceed at the same time and reduce the uncertainty in the

parameter estimation by transferring the information across

stations with similar characteristics.

The main findings of this study are summarized as fol-

lows: (i) It was found that adding the number of clusters

improves the fit of both Bayesian clustering models. (ii)

For all four seasons, the partial pooling Bayesian clustering

model with K = 4 provided the best fit for the seasonal

precipitation data. (iii) ENSO significantly effects precip-

itation across large parts of the Kebir Rhumel Basin during

spring and autumn seasons. (iv) In winter and autumn, 17%

and 75% of the stations were found to be positively

influenced by ENSO, respectively. On the contrary, 75%

and 12% of the stations examined were negatively affected

by ENSO during spring and summer, respectively, indi-

cating that the ENSO effect changed from one season to

another. (v) The significant positive and negative influ-

ences of ENSO are observed in southern part and northern

part of the Kebir Rhumel Basin during winter and summer,

respectively. All stations except those found in Oued Kebir

Maritime sub-basin are negatively and positively influ-

enced by ENSO during spring and autumn, respectively.

An extension of the Bayesian clustering approach to

consider several appropriate covariates at the same time is

possible. In this study, we assumed a symmetric effect of

the positive and negative phases of climate index, leading

to a linear relationship between the ENSO measure SOI

and the distribution location parameter. However, an

asymmetric relation may better identify the influence of the

climate variability on seasonal precipitation. As well,

clustering models could also explicitly include spatial

dependence across the stations. Sun et al. (2015b)

demonstrated that considering spatial dependence in Hier-

archical Bayesian clustering model can avoid under-esti-

mating uncertainties. In future work, we expect to develop

a strategy that can effectively model stations precipitation

trends with adding various climate indices as a covariates

using both symmetric and asymmetric analysis and con-

sidering the spatial dependence in a cluster.
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Ossandón Á, Brunner MI, Rajagopalan B, Kleiber W (2022) A space–

time Bayesian hierarchical modeling framework for projection

of seasonal maximum streamflow. Hydrol Earth Syst Sci

26(1):149–166

Ouarda TBMJ, El-Adlouni S (2011) Bayesian nonstationary fre-

quency analysis of hydrological variables. J Am Water Resour

Assoc 47(3):496–505

Papalexiou SM, Koutsoyiannis D (2013) Battle of extreme value

distributions: a global survey on extreme daily rainfall: survey

on extreme daily rainfall. Water Resour Res 49(1):187–201.

https://doi.org/10.1029/2012WR012557

Renard B, Sun X, Lang M (2013) Bayesian methods for non-

stationary extreme value analysis. In: AghaKouchak A, Easter-

ling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a

changing climate: detection, analysis and uncertainty. Springer

Netherlands, Dordrecht, pp 39–95. https://doi.org/10.1007/978-

94-007-4479-0_3

Renard B, Lang M, Bois P, Dupeyrat A, Mestre O, Niel H, Sauquet E,

Prudhomme C, Parey S, Paquet E, Neppel L (2008) Regional

methods for trend detection: assessing field significance and

regional consistency. Water Resourc Res. 44(8)

Ropelewski CF, Halpert MS (1987) Global and regional scale

precipitation patterns associated with the El Niño/Southern

Oscillation. Mon Weather Rev 115(8):1606–1626

Schwarz G (1978) Estimating the dimension of a model. Ann Stat

6(2):461–464

Silva AT, Portela MM, Naghettini M, Fernandes W (2017) A

Bayesian peaks-over-threshold analysis of floods in the Itajaı́-açu
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