
Lab notes: CE 31500, Computational Methods in

Civil Engineering

Nir Krakauer

September 13, 2023

1 Introduction to Python

� Commands to conveniently carry out engineering computations, beyond
what standard Python offers, are found in libraries (with sublibraries)
included in add-on packages. In this course, we’ll concentrate on Math,
which provides basic numerical functions, NumPy, which provides an ar-
ray type and array operations, SciPy, which provides a wider variety of
numerical tools, and Matplotlib, which provides commands to make fig-
ures.

� a library needs to be imported before functions from it can be used in a
program, with a few options:

import math to use math.sqrt(3)

import math as m to use m.sqrt(3)

from math import sqrt (or from math import *) to use sqrt(3)

� a = 1

Assignment (=); Enter to run command

Variable names: Must start with a letter or (underscore); can also
include numbers,

Capitalization matters: after a = 1, A is still undefined

� Arithmetic operations: +, -, *, /, ** (raising to a power)

� Numpy arrays that are vectors:

x = numpy.array([1, 2, 3, 4]); z = numpy.array((1, 2, 3, 4,

5)); (1-D arrays)

y = numpy.array([[5], [6], [7], [8]]) (a 2-D array, in fact a
column (4× 1) vector – y.shape will give an array’s dimensions)

� Transpose: y2 = numpy.transpose(y) (a row vector)

1

� Component-wise arithmetic:

Scalar-array: x + 3, 2*x, z ** 2

Array-array: x * y2, y2 ** x; x + y (broadcasting)

� Elements of arrays:

Select a single element: x[0] (first value in x), z[2], , y[-1] (last
element), y[-2] (second to last)

Select multiple elements: x[[1, 2]] or x[[1:3]]

� Functions that operate on arrays:

sum, numpy.mean, numpy.median, numpy.std, min, max, numpy.sort
. . .

� Generating (row) vectors of equally spaced numbers

Unit increment: a = numpy.arange(0, 11) or a = numpy.linspace(0,

10, 11)

Non-unit increment: b = numpy.arange(0, 10.5, 0.5) or b = numpy.linspace(0,

10, 21)

� Other built-in functions: numpy.sqrt, numpy.exp, numpy.log (base e),
numpy.log10, numpy.sin (argument in radians! – or numpy.sin(numpy.deg2rad(b))
for b in degrees), numpy.cos, numpy.tan, numpy.asin, numpy.round, . . .

� help(function name)

� Define your own one-line function (‘lambda function’):

f = lambda x: x - numpy.cos(x)

c = 1; f(c)

Functions can be applied to an array: f(z)

� Plots using Matplotlib

u = numpy.linspace(1, 40, 40); v = numpy.log(u); matplotlib.pyplot.plot(u,

v)

Adjust markers and line: matplotlib.pyplot.plot(u, v, ’*’), matplotlib.pyplot.plot(u,
v, ’:*’)

Labels: matplotlib.pyplot.xlabel(’u’); matplotlib.pyplot.ylabel(’log

of v’); matplotlib.pyplot.title(’Example’)

examples of character strings (between two single quotes)

Change plot limits: matplotlib.pyplot.xlim(0., 10.); matplotlib.pyplot.ylim(1.,

3.)

Export plots: matplotlib.pyplot.savefig(’plot name.png’) (or
.pdf, etc.)

2

� Multiple curves in same plot:

matplotlib.pyplot.plot(u, v, label="one"); matplotlib.pyplot.plot(u+1,

v ** 2, label="two"); matplotlib.pyplot.legend()

� Other plot types:

matplotlib.pyplot.bar(u, v)

matplotlib.pyplot.hist(v)

� Function files

First-line syntax:

def function name(input1, input2):

The body of a Python function needs to be indented relative to the
first line.

Functions have their own internal workspace (variable names); only
interact with the main workspace via inputs and outputs

A function normally ends with a return statement specifying what
it outputs

� Explanatory comments (include them!) follow #

Each function or script should have a header comment that explains
what it does

Multiline block comments are preceded and followed by 3 single quotes
(apostrophes)

� Script files: also .py, but don’t start with the word def

Series of Python commands carried out in order when the script is
run

Same effect as typing the commands in sequence (no separate workspace
created)

3

