Practice exam 1 problems

1

Write the Taylor series of $f(x) = x^{-2}$ about a = 1 as the first 3 terms plus a remainder term.

$\mathbf{2}$

Use Taylor's theorem to find a cubic polynomial p(x) that approximates accurately $f(x) = x^{5/3}$ when x is close to 1.

3

(a) Find the term of order 3 (i = 3) in the Taylor series of $\ln(x)$ about a = 4.

(b) Write Python code to sum the first 5 terms of this Taylor series for x = 4.2

$\mathbf{4}$

Write the Taylor series of $f(x) = \cos(x)$ about $a = \pi$ as the first 3 terms plus a remainder term.

$\mathbf{5}$

It's given that f(a) = b, f'(a) = c, f''(a) = d, f'''(a) = e; all higher order derivatives of f(x) are zero at x = a; and the function f and all its derivatives exist and are continuous between x = a and x = k. (a) If a = 2, b = 1, c = -2, d = 4, e = 3, k = 5, what is $h \equiv f(k)$?

(b) Write a Python function to solve for f(k) in general. The first line should be

def ffind (a, b, c, d, e, k):

6

(a) Use 5 iterations of Newton's method to find a root of the function $f(x) = x^5 - 2x + 1$ starting with $x_0 = 0$. (b) Estimate the fractional error of your result.

For R = 27, apply two iterations of Newton's method with a starting value $x_0 = 5$ to the equation $x^2 - R = 0$ to estimate \sqrt{R} .

8

For R = 30, apply two iterations of Newton's method with a starting value $x_0 = 3$ to the equation $x^3 - R = 0$ to estimate $\sqrt[3]{R}$.

9

Write a Python script that plots $\log_{10}(x)$ for x between 1 and 100 and labels the x and y axes.

10

Suppose a is some real number that rounds to 100006 and b is another real number that rounds to 99993. Estimate the fractional error in computing a - b if the subtraction is done on a computer with machine epsilon of $\epsilon = 10^{-8}$.

11

To 3 significant digits, find the absolute and relative errors of approximating 100 lbf by 442 N (conversion factor: 4.4482216152605 N per lbf). Give correct units.

12

To 3 significant digits, find the absolute and relative errors of approximating 1000 lbm by 453 kg (conversion factor: 0.45359237 kg per lb). Make sure to give correct units.

13

To 3 significant digits, find the absolute and relative errors of approximating $\cos(0.4)$ by the sum of the first 3 nonzero terms of the Maclaurin series of cosine.

$\mathbf{14}$

To 5 significant digits, find the absolute and relative errors of approximating the number $\gamma = 0.5772156649...$ by 0.577

15

To 4 significant digits, find the absolute and relative errors of approximating the number $\alpha = 0.0072973525664...$ by $\frac{1}{137}$.

16

- (a) What is decimal 8.5 in base 2?
- (b) What is binary 11100 in base 10?

17

- (a) What is decimal 0.625 in base 2?
- (b) What is binary 10111 in base 10?

$\mathbf{18}$

If
$$\mathbf{A} = \mathbf{L}\mathbf{U}, \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \mathbf{U} = \begin{pmatrix} 3 & 1 & 4 & 5 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 44 \\ 154 \\ 256 \\ 74 \end{pmatrix},$$
find \mathbf{x} such that $\mathbf{A}\mathbf{x} = \mathbf{b}$.

$\mathbf{19}$

(a) Find the LU decomposition of the matrix
$$\mathbf{N} = \begin{pmatrix} 2 & -2 & 0 \\ x - 2 & 2 & 0 \\ 0 & -1 & 3 \end{pmatrix}$$
.
(b) For what value of x does \mathbf{N} have no inverse? Explain

(b) For what value of x does **N** have no inverse? Explain.

$\mathbf{20}$

Given $\mathbf{A} = \begin{pmatrix} 3 & -2 & 1 \\ 0 & 3 & 0 \\ -2 & 1 & 0 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \mathbf{A}\mathbf{x} = \mathbf{b},$ (a) Find L, Ù, P for the LU decomposition of A with row pivoting.

(b) Find \mathbf{x} .

(a) Use Gauss elimination with row pivoting to find ${\bf L}$ and ${\bf U}$ factors for the

matrix $\mathbf{M} = \begin{pmatrix} 0 & 3 & 4 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ (b) How is the product **LU** related to **M**? Explain.

 $\mathbf{22}$

Suppose the Cholesky factor for a symmetric matrix \mathbf{A} is $\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

(a) What is A? (b) Solve $\mathbf{A}\mathbf{x} = \begin{pmatrix} 4\\ 3\\ 7 \end{pmatrix}$ for \mathbf{x} , using forward and back substitution.

$\mathbf{23}$

Let A be a symmetric positive definite matrix whose Cholesky factor is

$$\mathbf{L} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ -1 & 2 & 1 & 2 \end{pmatrix}$$

(a) Solve the system $\mathbf{A}\mathbf{x} = \mathbf{b} = \begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}^T$. Show and explain all steps. (b) Find \mathbf{A} .

$\mathbf{24}$

In each case, determine whether **v** is an eigenvector of **A**. Explain briefly how you know. If it is an eigenvector, state the eigenvalue.

(a)
$$\mathbf{A} = \begin{pmatrix} -7 & 5 & -2 \\ -14 & 6 & 4 \\ -11 & 5 & 2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
.
(b) $\mathbf{A} = \begin{pmatrix} 11 & 3 & -12 \\ -6 & -4 & 6 \\ 9 & 3 & -10 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.
(c) $\mathbf{A} = \begin{pmatrix} -1 & 2 & 4 \\ -8 & 1 & -4 \\ 4 & -2 & -1 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

$\mathbf{21}$

(a) What's the largest (in absolute value) eigenvalue of $\mathbf{B} = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 4 \end{pmatrix}$? (b) Use 2 iterations of the power method, starting with $\mathbf{v}_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, to estimate the associated eigenvector.

 $\mathbf{26}$

Use 2 iterations of the power method with initial guess $\mathbf{v}_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ to estimate the largest eigenvalue of $\mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & 4 \end{pmatrix}$.

$\mathbf{27}$

(a) What are the eigenvalues of $\mathbf{A} = \begin{pmatrix} 6 & 1 \\ 1 & 5 \end{pmatrix}$?

(b) What are the eigenvectors of **A**? Scale them so that the first component of each is 1.

(c) If this A is the coefficient matrix $M^{-1}K$ for a system of linear oscillators, what are the periods of the system's modes of oscillation?

(d) Suppose you're given a 10×10 matrix **B** that has only positive real eigenvalues. Write Python code to find and display the eigenvector associated with the smallest eigenvalue of **B**.

$\mathbf{28}$

Find the solution $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$ to the initial-value problem $\begin{array}{c} x_1'(t) = 8x_1(t) + x_2(t) \\ x_2'(t) = x_1(t) + 8x_2(t) \\ x_2(0) = 2 \end{array}$,

29

Find the general solution $x_1(t), x_2(t)$ to the system of second-order differential equations

$$0 = x_1'' + 2x_1 + x_2$$

$$0 = x_2'' + x_1 + 3x_2.$$

For a two-story shear building with $k_1 = 400, k_2 = 300, m_1 = 4, m_2 = 3$, (a) Write the mass matrix **M** and stiffness matrix **K**, (b) Write Python code for finding all the oscillation frequencies.

$\mathbf{31}$

Solving a shear building problem, you obtain the following result in Python for (lambda, v) = scipy.linalg.eig(A): v = -2.2801e-01 5.7735e-01 6.5654e-01 -4.2853e-01 -4.2853e-01 5.7735e-01 -2.2801e-01 6.5654e-01 -5.7735e-01 4.7345e-17 -5.7735e-01 -5.7735e-01 -6.5654e-01 -5.7735e-01 4.2853e-01 2.2801e-01 lambda = 1.2061, 10.000, 23.473, 35.320

(a) What is the period of the fundamental mode of oscillation?

(b) What is special about the eigenvector associated with this mode?

30