
Practice exam 2 problems with solutions

1

Approximate the first two derivatives of y(x) at the given points using second
order accurate finite differences (centered if possible).

x −1 0 1 2
y 2 2 3 4
y′

y′′

Solution: Using the formulas in the lecture notes and homework, the
values are

x −1 0 1 2
y 2 2 3 4
y′ −0.5 0.5 1 1
y′′ 2 1 0 −1

2

Given the following data, approximate the first four derivatives of f(x) at x = 1
using centered finite differences.

x −1 0 1 2 3
f(x) 1 2 4 3 2

Solution: Using the formulas given in the lecture notes (with ∆x = 1):
f ′(1) ≈ (f(2)− f(0))/2 = 0.5
f ′′(1) ≈ (f(2)− 2 · f(1) + f(0))/12 = −3
f ′′′(1) ≈ (−f(−1) + 2 · f(0)− 2 · f(2) + f(3))/(2 · 13) = −0.5
f ′′′′(1) ≈ (f(−1)− 4 · f(0) + 6 · f(1)− 4 · f(2) + f(3))/14 = 7

3

(a) Find D2
0 for Richardson extrapolation to estimate the derivative of f(x) at

x = 1.1, with initial step size h0 = 0.4. Use the function values given below,

1

and show at least 7 significant figures.
(b) What is the estimated fractional error in this obtained f ′(x)?

x 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
f(x) 61255 67322 74199 81907 90488 100000 110513 122106 134870 148902 164311

Solution:
112640 110393.3 110388.0
110955 110388.3
110530

The fractional error can be estimated as
|D1

1−D2
0 |

|D2
0 |

= 3.0× 10−6.

4

(a) Find D2
0 for Richardson extrapolation to estimate the derivative of f(x) at

x = 1, with initial step size ∆0 = 0.4. Use the function values given below.
(b) What is the estimated relative error in this estimated f ′(x)?

x 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
f(x) 70711 73602 77906 83651 90953 100000 111053 124456 140646 160169 183712

Solution: We have
D0

0 = (f(1.4)− f(0.6))/0.8 = 108209
D0

1 = (f(1.2)− f(0.8))/0.4 = 102012
D0

2 = (f(1.1)− f(0.9))/0.2 = 100500
D1

0 = (4D0
1 −D0

0)/3 = 99947
D1

1 = (4D0
2 −D0

1)/3 = 99996
D2

0 = (16D1
1 −D1

0)/15 = 99999

The relative error can be estimated as |D
2
0−D1

1

D2
0

| = 3× 10−5.

5

Consider the composite trapezoid rule approximation T78 of
∫ 1

0
x95dx.

(a) Does T78 overestimate or underestimate the exact value? Explain how
you know.

(b) Find a bound for the absolute error in T78 using the result that Error(TN) ≤
M(b−a)3

12N2 , where M is the least upper bound for all absolute values of the second
derivatives over [a, b] of the function being integrated.

Solution: The second derivative is 95 · 94 · x93, with a maximum absolute
value in the interval of 95 · 94. So the error bound is

95 · 94 · (1− 0)3

12 · 782
= 0.12

2

(the actual error is considerably less, however).
Because the second derivative is always positive, the composite trapezoid

rule will in this case overestimate the integral.

6

(a) Estimate the integral
∫ 2

0
x10dx using the simple Simpson’s rule.

(b) Find the minimum number N of equal-width subdivisions needed to guar-
antee that the absolute error in the composite Simpson rule estimate for this

integral is under 10−7 using the error bound K4(b−a)5

2880N4 .

Solution: (a) (2− 0)(f(0) + 4f(1) + f(2))/6 = 3422
3 .

(b) The 4th derivative for this function is 5040x6, which gets as large as 322560

when x = 2. The error bound gives for N a minimum of
(

322560(2−0)5

(2880)(10−7)

)1/4

=

435.10, so we need N of at least 436.

7

Estimate I =
∫ 4

2
y(x)dx given the values below (a) using the simple Simpson

rule,
(b) using the composite Simpson rule with n = 2 equal-length intervals.
(c) Based on (a) and (b), estimate what n would be needed for the absolute
error in estimating I using the composite Simpson rule to be under 10−3.

x 2 2.5 3 3.5 4
y(x) 100 67 50 40 33

Solution: (a) S1 = (4− 2)× (y(2) + 4y(3) + y(4))/6 = 111
(b) S2 = (4− 2)× (y(2) + 4y(2.5) + 2y(3) + 4y(3.5) + y(4))/12 = 1101

6
(c) The difference between S1 and S2, which we can use as a rough estimate of
the error of S1, is

5
6 , or 833× 10−3. To get the absolute error down by a factor

of 833, to 10−3, we expect to have to increase n by a factor of 8331/4 = 5.4,
since the Simpson rule error is typically proportional to n−4. So n = 6 might
be enough.

8

Estimate the integral of e(x
2) between a = 0 and b = 1 using Simpson’s rule

with
(a) one subinterval,
(b) two subintervals.
(c) Estimate your fractional error based on the difference between the two re-
sults.

3

Solution: The integrand function values needed are

x 0 0.25 0.5 0.75 1
f(x) 1 1.0645 1.2840 1.7551 2.7183

(a) Using the values at 0, 0.5, 1: S1 = 1.4757
(b) Using all the above values: S2 = 1.4637

(c) The fractional difference between S1 and S2,
|S1−S2|

|S2| (S2 being the more

accurate estimate), which we can use as an estimate of the error in S1, is 8.2×
10−3. Given that the error in the composite Simpson’s rule scales as n−4 for
smooth functions and large enough n, we could extrapolate to estimate that the
fractional error in S2 might be only 1/16 of that, or 5×10−4, which in this case
actually turns out to be only a moderate underestimate (the actual fractional
error in S2 is 7.2× 10−4).

9

An irregular lot is 100 ft long, and its width as measured at various points is as
follows:

position (ft) 0 25 50 75 100
width (ft) 10 15 20 23 25.

Estimate the lot’s area as accurately as possible using the composite Simpson
rule.

Solution: With the given data, we can apply Simpson’s rule to the two
halves of the lot (0 to 50 ft and 50 to 100 ft). The result is S2 = 1892 ft2.

10

Starting from standstill at t = 0, the acceleration of an elevator is measured as

t(s) 0 5 10 15 20 23 30
a(m/s2) 0 2.2 3.6 5.2 6.0 −4.0 −8.1

(a) Estimate the velocity at t = 20 using the composite trapezoid rule.
(b) Write a Python script to estimate the velocity at t = 20 by fitting an
interpolating polynomial to the data and integrating it.

Solution: (a) The velocity is equal to the integral of the acceleration from
t = 0 to t = 20. Using the composite trapezoid rule, this can be estimated as
(5/2) ∗ (0 + 2 ∗ 2.2 + 2 ∗ 3.6 + 2 ∗ 5.2 + 6.0) = 70 m/s.
(b)
from numpy import concatenate, linspace, array

from numpy import polyfit, polyval, polyint

4

t = concatenate((linspace(0, 20, 5), [23, 30]))

a = array([0, 2.2, 3.6, 5.2, 6.0, -4.0, -8.1])

p = polyfit(t, a, len(t)-1)

ip = polyint(p)

v = polyval(ip, 20)

(The result is 66.8 m/s.)

11

Write Python code to estimate the probability of falling between x = 1 and
x = 2 for the probability density function p(x) = e−(e−x+x).

Solution: The solution is equal to the definite integral
∫ 2

1
p(x) dx, which

can be found numerically in Python:
from numpy import exp

from scipy.integrate import quad

p = lambda x: exp(-(exp(-x) + x))

I = quad (p, 1, 2)

I = I[0] (The result is 0.181)

12

Calculate the Romberg integration estimator R2
0 of∫ 1

0

x3

x+ 1
dx.

Solution: For f(x) = x3

x+1 , a = 0, b = 1, we have

R0
0 = (f(0) + f(1))/2 = 1

4
R0

1 = (f(0) + 2 ∗ f(0.5) + f(1))/4 = 1
6

R0
2 = (f(0) + 2 ∗ f(0.25) + 2 ∗ f(0.5) + 2 ∗ f(0.75) + f(1))/8 = 0.14673

R1
0 = (4R0

1 −R0
0)/3 = 901/5400 = 0.138

R1
1 = (4R0

2 −R0
1)/3 = 0.14008

R2
0 = (16R1

1 −R1
0)/15 = 0.14016

In this case the true value is 5
6 − log(2) ≈ 0.14019.

13

(a) Use Romberg integration with jmax = 2 to estimate

I =

∫ 2

0

x

x+ 3
dx.

5

(b) Estimate the relative error based on the difference between your two most
accurate estimates.

Solution:
0.4 0.46667 0.46751
0.45 0.46746
0.46310
Estimated relative error:

|R1
1−R2

0|
|R2

0|
= |0.46746−0.46751|

|0.46751| = 1.1× 10−4.

14

(a) Fill in the first 3 levels of Romberg integration to estimate the integral of√
x for x between 0 and 3.

(b) Estimate the absolute error based on the difference between the two most
accurate estimates above.
(c) Find the actual absolute error of the most accurate estimate above compared
to the analytic integral.

Solution: (a) The values are
2.598076 3.315515 3.417804
3.136155 3.411411
3.342597

(b) |3.411411− 3.417804| = 0.00639
(c) |3.417804 − 2

√
3| = 0.0463 (in this case the error is underestimated at this

stage)

15

(a) Use Romberg integration with jmax = 3 to estimate I =
∫ 1

0
(ex − 4x)dx.

(b) Find the solution analytically, and based on this calculate the fractional
error of part a.

Solution: (a) For estimating I =
∫ 1

0
(ex−4x)dx, the needed function values

for the trapezoid rule estimates up to jmax = 3 are those at 2jmax +1 = 9 equally
spaced points:

x 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
f 1 0.633148 0.284025 −0.045009 −0.351279 −0.631754 −0.883000 −1.101125 −1.281718

Based on these, the trapezoid rule estimates are

N 1 2 4 8
T −0.14086 −0.24607 −0.27278 −0.27948

Using these for the j = 0 column in the table of Romberg integral estimates,
we get

6

i
j

0 1 2 3

0 −0.14086 −0.28114 −0.28172 −0.28172
1 −0.24607 −0.28168 −0.28172
2 −0.27278 −0.28172
3 −0.27948

The best estimate from this is T 3
0 or −0.28172.

(b) The analytic integral is ex−2x2]10 = e−3, which is only about 3 × 10−10

lower than the Romberg value.

16

Use Romberg integration with jmax = 2 to estimate I =
∫ 2

0
x2

x2+3dx.

Solution:
0.57143 0.52381 0.51502
0.53571 0.51557
0.52060

17

Use the (explicit) Euler method to solve for y(x = 1) if y(x = 0) = 2 and
y′ = y

x2+2 .
(a) With step size h = 1.
(b) With step size h = 0.5.
(c) Explain how you can estimate the fractional error in your solution using

the above results.

Solution: (a) y1 = 2 + 1× 2
02+2 = 3.

(b) y1 = 2 + 0.5× 2
02+2 = 5

2 .

y2 = 5
2 + 0.5×

5
2

0.52+2 = 55
18

(c) Since the first answer y(a) is less accurate because of its larger step size,
its error can be estimated by comparison with the more accurate answer y(b),

as
|y(a)−y(b)|

|y(b)|
. This gives an estimated fractional error of 1.8% for y(a), which we

can conservatively also assume for the more accurate y(b). (In this particular
case, the actual fractional errors are 2.9% for y(a) and 1.1% for y(b).)

18

Estimate y(5) for the initial-value problem

dy

dt
=

√
y − t+ 1, y(1) = 3

7

using Euler’s method (RK1) with step size h = 1.

Solution: Using the iteration yi+1 = yi+h(
√
yi−ti+1), we get 4.7321, 5.9074, 6.3379,5.8554

19

(a) Use Euler’s method with step size h = 1/4 to estimate y(1) given dy
dt =

−2y, y(0) = 3.
(b) Find the absolute error of this estimate compared to the analytic solution
y(t) = 3e−2t.
(c) Write Python code to solve for and display y(1) using ode45.

Solution: (a) With dy
dt = −2y, the Euler method iteration is

yi+1 = yi + hy′(ti, yi) = (1− 2h)yi.
With h = 1/4, this gives the estimated values

t y
0 3

1/4 1.5
1/2 0.75
3/4 0.375
1 0.1875.

(b) E = |3e−2 − 0.1875| = 0.21851.
(c) f = @(t, y) -2*y;Ω [ts, ys] = ode45(f, [0 1], 3);Ω ys(end)

20

(a) Use Euler’s method with a step size h of 1/3 to estimate y(t = 1) if y(t =
0) = 0, dy/dt = y + 2

√
t.

(b) Estimate y(t = 1) for the same problem with the RK4 method and h = 1.
(c) Write Python code that uses scipy.integrate.solve ivp to estimate y(t =
1) and displays the estimated value.

Solution: (a) The estimates of y after each step are 0, 0.38490, 1.05753.
(b) K1 = 0,K2 = 1.4142,K3 = 2.1213,K4 = 4.1213, y1 = 1.86540
(c)
from numpy import sqrt

from scipy.integrate import solve ivp

f = lambda t, y: y + 2 * sqrt(t)

ts = [0, 1]

y0 = [0]

sol = solve ivp(f, ts, y0)

sol.y[0,-1]

(The result is 2.060)

8

21

Let y(t) be the solution to y′ = 4te−y satisfying y(0) = 3. Use Euler’s Method
with time step h = 0.1 to approximate y(0.1), y(0.2), . . . , y(0.5).

Solution: The estimated values of y at the first 5 timesteps are 3, 3.002, 3.006, 3.012, 3.020

22

(a) Use Euler’s method with a step size h of 1/3 to estimate y(t = 1) if y(t =
0) = 0, dy/dt = y + 4t2.
(b) Estimate y(t = 1) for the same problem with the RK4 method and h = 1.

Solution: (a) The estimates of y after each step are 0, 4/27, 64/81.
(b) K1 = 0,K2 = 1,K3 = 1.5,K4 = 5.5, y1 = 1.75

23

Estimate y(3) for the initial-value problem

y′ =
√
y

2 , y(1) = 1
using Heun’s method (RK2) with step size h = 1.

Solution: The result is 1.5562 after 1 step (K1 = 0.5,K2 = 0.61237) and
2.2372 after 2 steps (K1 = 0.62374,K2 = 0.73823).

24

Estimate y(3) for the initial-value problem y′′ =
√
y

2 , y(1) = 1, y′(1) = 0 using
Heun’s method (RK2) with step size h = 1.

Solution: The result for [y y′] is [1.25 0.5] after 1 step (K1 = [0 0.5],K2 =
[0.5 0.5]) and [2.02951 1.11023] after 2 steps (K1 = [0.5 0.55902],K2 = [1.05902 0.66144]).

25

(a) Use 1 step of the RK4 method to solve for y(x = 6) if y(x = 0) = 2 and
y′ = x

√
y.

(b) Write Python code for solving this problem and displaying the result.

Solution: (a) The stages are K1 = 0,K2 = 25.456,K3 = 69.079,K4 =
303.51, giving y1 = 84.10

9

(b) from numpy import sqrt

from scipy.integrate import solve ivp

f = lambda x, y: x * sqrt(y)

xs = [0, 6]

y0 = [2]

sol = solve ivp(f, xs, y0)

sol.y[0,-1]

(The result is 108.49)

26

Estimate y(t = 2) if y(t = 0) = 0, dy/dt = −2y + 3
√
t

with the RK4 method and h = 1.

Solution: First step K1,K2,K3,K4, yi+1: 0, 2.1213, 0, 3, 1.2071.
Second step: 0.58579, 0.67423, 0.58579, 0.65685, 1.8342.

27

(a) Use the implicit Euler method with step size h = 1/6 to estimate y(1) given
dy
dt = −2y, y(0) = 3.
(b) Find the absolute error of the estimated y(1) compared to the analytic
solution y(t) = 3e−2t.
(c) Write Python code to solve for and display y(1).

Solution: (a) To use the implicit Euler method, we need to solve (explic-
itly) for yi+1 given yi. This is straightforward in this case:

yi+1 = yi + h · f(ti+1, yi+1) = yi − 2hyi+1 → yi+1 =
yi

1 + 2h
.

So at each step the estimated y is multiplied by a constant factor of 1
1+2h = 3

4 ,

giving after 6 steps 2187
4096 or 0.53394

(b) Since the true value is 3e−2 = 0.40601, Ea = |0.53394− 0.40601| = 0.128
(c)
from numpy import sqrt

from scipy.integrate import solve ivp

f = lambda t, y: -2*y

ts = [0, 1]; y0 = [3]

sol = solve ivp(f, ts, y0)

sol.y[0,-1]

(The result is 0.406)

10

28

Estimate y(3) for the initial-value problem

y′′ =
√
y

2 , y(1) = 5, y′(1) = 0
using Heun’s method (RK2) with step size h = 1.

Solution: Writing as a first-order system z =

(
y
y′

)
, z′ =

(
z2√
z1
2

)
, z(1) =(

5
0

)
,

the result is

(
5.5590
1.1180

)
after 1 step (K1 =

(
0

1.11803

)
,K2 =

(
1.11803
1.11803

)
)

and

(
7.2665
2.3535

)
after 2 steps (K1 =

(
1.11803
1.1789

)
,K2 =

(
2.2969
1.2920

)
), so

y(3) ≈ 7.2665.

29

For the mass-spring system with driving force as given below, use 2 equal-length
steps of Euler’s method to estimate x(t) at t = 1. The initial conditions at t = 0
are x = 1, x′ = 0.

x′′ + x = 3 cos(t)

Solution: After writing the differential equation in standard form (x′′ =
3 cos(t)−x) and converting to a first-order system (y1 ≡ x, y2 ≡ x′) y′1 = y2, y

′
2 =

3 cos(t) − y1 with y1(0) = 1, y2(0) = 0, the Euler method gives y1 = 1, y2 = 1
after one step of length h = 0.5, and y1 = 1.5, y2 = 1.8164 after two steps.

30

(a) Write a Python function, similar to the RK2 one we did in lab, to implement
Euler’s method for solving a system of first-order differential equations with
given initial values. The first line should be
def rk1(f,tspan,y0,n):

(b) Write a Python script that uses this rk1 and a step size h =0.01 to display
y(2) if y′′ = sin(1/y) and y(1) = 10, y′(1) = 3.

Solution: (a)
def rk1(f,tspan,y0,n):

from numpy import linspace, empty

a = tspan[0]

b = tspan[1]

h = (b-a)/n

T = linspace(a, b, n+1)

11

Y = empty([n+1, len(y0)])

Y[0, :] = y0

for i in range(n):

K1 = h * f(T[i], Y[i, :])

Y[i+1, :] = Y[i, :] + K1

return T, Y

(b)
from numpy import sin, array

dzdt = lambda t, z: array([z[1], sin(1 / z[0])])

tspan = [1, 2]

y0 = [10, 3]

h = 0.01

n = round((tspan[1] - tspan[0]) / h)

T, Z = rk1(dzdt, tspan, y0, n)

Z[-1, 0]

(The result is 13.045)

31

Write a Python script that solves numerically the initial-value problem
y′′ + y′ + y2 = 1, y(0) = 2, y′(0) = −2
and plot y(t) for 0 ≤ t ≤ 10.

Solution: Need to convert to a first-order ODE system (z1 = y, z2 = y′),
after which an IVP solver like solve ivp can be called:
from scipy.integrate import solve ivp

from matplotlib.pyplot import plot

f = lambda t, z: [z[1], -z[1] - z[0]**2 + 1]

zi = [2, -2]

ts = [0, 10]

sol = solve ivp (f, ts, zi)

plot (sol.t, sol.y[0, :])

(y(x = 10) ≈ 1.008)

32

Write a Python script that (a) numerically estimates Θ(2) if Θ′′ = −9Θ and
Θ(0) = 1,Θ′(0) = 0 and (b) finds the absolute error of this estimate relative to
the analytic solution Θ(t) = cos(3t).

Solution: With z1 = Θ, z2 = Θ′,
from scipy.integrate import solve ivp

from math import cos

f = lambda t, z: [z[1], -9*z[0]]

12

zi = [1, 0]

ts = [0, 2]

sol = solve ivp (f, ts, zi)

err = abs (sol.y[0, -1] - cos(3*ts[-1]))

33

(a) Set up a system of linear equations (in matrix form) using finite difference
with n = 4 to solve the equation y′′ + y′ = x + 2 subject to the boundary
conditions y(x = 0) = 0 and y(x = 3) = 1.
(b) Solve this system using Gaussian elimination or LU decomposition, and
sketch y(x).

Solution: A finite-difference approximation to the ODE would be

(h−2 − (2h)−1)yi−1 − 2h−2yi + (h−2 + (2h)−1)yi+1 = xi + 2.

Applying this here with h = 3
4 for i = 1, 2, 3, xi = 0.75, 1.5, 2.25, we get

−32/9 22/9 0 2.75
10/9 −32/9 22/9 3.5
0 10/9 −32/9 4.25− (22/9)(1),

which can be solved to get the estimates y(0.75) = −2.67, y(1.5) = −2.76, y(2.25) =
−1.37. Draw a smooth curve connecting these with the boundary conditions to
sketch y(x).

34

Set up a linear system in matrix form to solve the boundary-value problem
y′′ + 5y′ = 10, y(0) = 1, y(4) = 3 for values of the function y(x), using second-
order-accurate centered finite-difference approximations for the derivatives, with
n=5. You do not need to solve the linear system.

Solution: At each interior grid point, the differential equation can be
approximated with the finite differences as yi−1−2yi+yi+1

h2 + 5−yi−1+yi+1

2h = 10,
with h = 0.8 here. Including also the boundary conditions for y0 and y5 as the
first and last equations, the linear system is

1 0 0 0 0 0
− 25

16 − 25
8

75
16 0 0 0

0 − 25
16 − 25

8
75
16 0 0

0 0 − 25
16 − 25

8
75
16 0

0 0 0 − 25
16 − 25

8
75
16

0 0 0 0 0 1




y0
y1
y2
y3
y4
y5

 =


1
10
10
10
10
3


13

35

Set up a system of algebraic equations (in matrix form) using finite difference
with n = 5 for y′′ − y′ + y = 2 subject to the boundary conditions y(0) = 0 and
y′(3) = 2. Use second-order-accurate (centered where possible) finite difference
approximations. You only need to write down the system, not to solve it.

Solution: Replacing the derivatives with second-order-accurate centered
finite difference approximations, we have for the interior grid points(

1

h2
+

1

2h

)
yi−1 +

(
1− 2

h2

)
yi +

(
1

h2
− 1

2h

)
yi+1 = 2

and for the first-derivative boundary condition

1

2h
yn−2 −

2

h
yn−1 +

3

2h
yn = 2.

Here h = 3/5, so the linear system is
1 0 0 0 0 0

65/18 −41/9 35/18 0 0 0
0 65/18 −41/9 35/18 0 0
0 0 65/18 −41/9 35/18 0
0 0 0 65/18 −41/9 35/18
0 0 0 5/6 −10/3 5/2




y0
y1
y2
y3
y4
y5

 =


0
2
2
2
2
2


The unknowns yi are the values of y(x) at the grid points, which are equally
spaced xi from x = 0 to x = 3.

36

Set up a system of algebraic equations (in matrix form) using finite difference
with n = 5 to solve y′′ + y′ − y = 4 subject to the boundary conditions y(x =
0) = 0 and y′(x = 3) = 2. Use second-order-accurate (centered where possible)
finite difference approximations. For full credit, solve this system and sketch
y(x).

Solution: Replacing the derivatives with second-order-accurate finite dif-
ference approximations, we have for the interior grid points(

1

h2
− 1

2h

)
yi−1 +

(
−1− 2

h2

)
yi +

(
1

h2
+

1

2h

)
yi+1 = 4

and for the first-derivative boundary condition

1

2h
yn−2 −

2

h
yn−1 +

3

2h
yn = 2.

14

Here h = 3/5, so the linear system is
1 0 0 0 0 0

35/18 −59/9 65/18 0 0 0
0 35/18 −59/9 65/18 0 0
0 0 35/18 −59/9 65/18 0
0 0 0 35/18 −59/9 65/18
0 0 0 5/6 −10/3 5/2




y0
y1
y2
y3
y4
y5

 =


0
4
4
4
4
2


The unknowns yi are the values of y(x) at the grid points, which are equally
spaced xi from x = 0 to x = 3. The solution to the linear system is

y =


0

−1.921
−2.380
−2.178
−1.565
−0.561

 ,

which points can be connected to sketch y(x).

37

Set up a system of algebraic equations (in matrix form) using finite difference
with n = 5 to solve y′′ + y′ + y = 2 subject to the boundary conditions y(x =
0) = 0 and y′(x = 1) = 2. For full credit, solve this system and sketch y(x).

Solution: Replacing the derivatives with second-order-accurate finite dif-
ference approximations, we have for the interior grid points(

1

h2
− 1

2h

)
yi−1 +

(
1− 2

h2

)
yi +

(
1

h2
+

1

2h

)
yi+1 = 2

Here h = 1/5, so the linear system is
1 0 0 0 0 0

22.5 −49 27.5 0 0 0
0 22.5 −49 27.5 0 0
0 0 22.5 −49 27.5 0
0 0 0 22.5 −49 27.5
0 0 0 2.5 −10 7.5




y0
y1
y2
y3
y4
y5

 =


0
2
2
2
2
2


The unknowns yi are the values of y(x) at the grid points, which are equally
spaced xi from x = 0 to x = 1. The solution to the linear system is

y =


0

1.433
2.627
3.580
4.303
4.810

 ,

15

which points can be connected to sketch y(x).

38

(a) Set up a system of linear algebraic equations (in matrix form) using finite
difference with n = 5 to solve y′′+y = x+4 subject to the boundary conditions
y(x = 0) = 0 and y(x = 5) = 2. Explain what the unknowns in this system
represent.
(b) Write Python code to solve the same problem numerically and to plot y(x).

Solution: (a) Replacing the second derivative with a second-order-accurate
finite difference approximation, we have for the interior grid points

1

h2
yi−1 +

(
1− 2

h2

)
yi +

1

h2
yi+1 = xi + 4

Here h = 1, so the linear system is
1 0 0 0 0 0
1 −1 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 −1 1
0 0 0 0 0 1




y0
y1
y2
y3
y4
y5

 =


0
5
6
7
8
2


The unknowns yi are the values of y(x) at the grid points xi.

(b)
from scipy.integrate import solve bvp

from matplotlib.pyplot import plot

dzdx = lambda x, z: [z[1], x + 4 - z[0]]

bc = lambda za, zb: [za[0], zb[0] - 2]

xi = [0, 5]

zi = [[1, 0.4], [1, 0.4]]

sol = solve bvp(dzdx, bc, xi, zi)

plot (sol.x, sol.y[0, :])

(For example, y(x = 2.5) ≈ 13.366)

39

(a) Set up a system of linear equations (in matrix form) using finite difference
with n = 4 to solve the equation y′′ − y = x + 3 subject to the boundary
conditions y(x = 0) = 0 and y(x = 2) = 0.
(b) Solve this system (for example, using Gaussian elimination) and sketch y(x).
(c) Write Python code to solve the boundary-value problem numerically and plot
y(x).

16

Solution: A finite-difference approximation to the ODE would be

h−2yi−1 − (1 + 2h−2)yi + h−2yi+1 = xi + 3.

Applying this here with h = 1
2 for i = 1, 2, 3, xi = 0.5, 1, 1.5, we get

−9 4 0 3.5
4 −9 4 4
0 4 −9 4.5,

which can be solved to get the estimates y(0.5) = −1.01, y(1) = −1.39, y(1.5) =
−1.12. Draw a smooth curve connecting these with the boundary conditions to
sketch y(x).
(c) Converting to a first-order system with z1 ≡ y, z2 ≡ y′, z′1 = z2, z

′
2 = z1+x+3

and boundary conditions z1(0) = z1(2) = 0,
from scipy.integrate import solve bvp

from matplotlib.pyplot import plot

from numpy import zeros

dzdx = lambda x, z: [z[1], x + 3 + z[0]]

bc = lambda za, zb: [za[0], zb[0]]

xi = [0, 2]

zi = zeros((2, 2))

sol = solve bvp(dzdx, bc, xi, zi)

plot (sol.x, sol.y[0, :])

(For example, y(x = 1) ≈ −1.408)

40

(a) Set up a system of linear equations (in matrix form) using finite difference
with n = 6 to solve the equation y′′ + 3y′ = y + 4 subject to the boundary
conditions y(x = 0) = 0 and y(x = 1) = 0.
(b) Solve this system (for example, using Gaussian elimination) and sketch the
solution y(x).

Solution: (a) A discretized approximation for y′′ + 3y′ = y + 4, assuming
a grid with equal spacings h, is

yi+1 − 2yi + yi−1

h2
+ 3

yi+1 − yi−1

2h
= yi + 4,

or
(h−2 − 1.5h−1)yi−1 + (−2h−2 − 1)yi + (h−2 + 1.5h−1)yi+1 = 4.
With h = 1/6, the coefficients are 27,−73, 45 respectively. Also putting in

the boundary conditions, the linear system in augmented matrix form becomes

17

−73 45 0 0 0 4
27 −73 45 0 0 4
0 27 −73 45 0 4
0 0 27 −73 45 4
0 0 0 27 −73 4,

where the unknowns y1, y2, . . . y5 are the approximate function values at
1/6, 1/3, . . . , 5/6.

(b) Since this is a tridiagonal system, it can be solved relatively quickly by
Gaussian elimination (without pivoting). The steps are

−73 45 0 0 0 4
27 −73 45 0 0 4
0 27 −73 45 0 4
0 0 27 −73 45 4
0 0 0 27 −73 4,

→

−73 45 0 0 0 4
0 −56.356 45 0 0 5.479
0 27 −73 45 0 4
0 0 27 −73 45 4
0 0 0 27 −73 4,

→

−73 45 0 0 0 4
0 −56.356 45 0 0 5.479
0 0 −51.441 45 0 6.625
0 0 27 −73 45 4
0 0 0 27 −73 4,

→

−73 45 0 0 0 4
0 −56.356 45 0 0 5.479
0 0 −51.441 45 0 6.625
0 0 0 −49.381 45 7.477
0 0 0 0 −48.395 8.088,

After which back substitution gives y5 = −0.1671, y4 = −0.3037, y3 =
−0.3945, y2 = −0.4122, y1 = −0.3089. Together with the boundary conditions
y0 = 0, y6 = 0, these values can be used to sketch y(x) as a downward-pointing
parabola-like (but asymmetric) curve with a minimum (y less than −0.41) near
x = 0.4.

18

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

