Practice exam 2 problems with solutions

1

Approximate the first two derivatives of y(z) at the given points using second
order accurate finite differences (centered if possible).

x| =1 0 1 2
y | 2 2 3 4
!/

ol

Solution: Using the formulas in the lecture notes and homework, the
values are

| -1 0 1 2
y| 2 2 3 4
y | —05 05 1 1
W' 2 1 0 -1

2

Given the following data, approximate the first four derivatives of f(x) at © =1
using centered finite differences.

-1 0 1 2 3
flzy| 1 2 4 3 2

Solution: Using the formulas given in the lecture notes (with Az = 1):
7(1) ~ (F(2) - £(0))/2 = 0.5
f'(1) = (£(2) =2+ f(1) + £(0))/1? = =3
M)~ (=f(=1)+2- £(0) =2 f(2) + £(3))/(2-1°) = =05
)~ (f(=1) =4 f(0)+6- f(1) —4- f(2) + f(3)) /11 =7

3

(a) Find D3 for Richardson extrapolation to estimate the derivative of f(x) at
x = 1.1, with initial step size hg = 0.4. Use the function values given below,



and show at least 7 significant figures.
(b) What is the estimated fractional error in this obtained f’(x)?

x 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5
f(z) | 61255 67322 74199 81907 90488 100000 110513 122106 134870 148902 164311

Solution:
112640 110393.3 110388.0

110955 110388.3
110530

1 2
The fractional error can be estimated as ‘D‘lgf‘)o‘ =3.0x10°6.
0

4

(a) Find D3 for Richardson extrapolation to estimate the derivative of f(x) at
x = 1, with initial step size Ay = 0.4. Use the function values given below.
(b) What is the estimated relative error in this estimated f’'(x)?

T 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5
f(z) | 70711 73602 77906 83651 90953 100000 111053 124456 140646 160169 183712

Solution: We have
DY = (f(1.4) — £(0.6))/0.8 = 108209

DY = (£(1.2) — £(0.8))/0.4 = 102012
DS = (f(1.1) — £(0.9))/0.2 = 100500
Dl = (4DY — DY)/3 = 99947
D} = (4D — DY) /3 = 99996

D% = (16D} — D})/15 = 99999

. . D3—Di -
The relative error can be estimated as | —5--+| = 3 x 1075.
0

5

Consider the composite trapezoid rule approximation Tyg of fol 2P dz.

(a) Does Trg overestimate or underestimate the exact value? Explain how
you know.

(b) Find a bound for the absolute error in T7g using the result that Error(Ty) <
Ml(g&g)g, where M is the least upper bound for all absolute values of the second
derivatives over [a, b] of the function being integrated.

Solution: The second derivative is 95 - 94 - 293, with a maximum absolute
value in the interval of 95 - 94. So the error bound is

95-94- (1 —0)3

o7sz 012



(the actual error is considerably less, however).
Because the second derivative is always positive, the composite trapezoid
rule will in this case overestimate the integral.

6

(a) Estimate the integral f02 2'%dx using the simple Simpson’s rule.
(b) Find the minimum number N of equal-width subdivisions needed to guar-
antee that the absolute error in the composite Simpson rule estimate for this

5
integral is under 10~7 using the error bound Kﬁgﬁﬂ-

Solution: (a) (2 —0)(f(0) 4+ 4f(1) + f(2))/6 = 3422.

(b) The 4th derivative for this function is 504025, which gets as large as 322560

1/4
when z = 2. The error bound gives for N a minimum of (W)

435.10, so we need N of at least 436.

7

Estimate I = f; y(x)dz given the values below (a) using the simple Simpson
rule,

(b) using the composite Simpson rule with n = 2 equal-length intervals.

(c) Based on (a) and (b), estimate what n would be needed for the absolute
error in estimating I using the composite Simpson rule to be under 1073,

v | 2 25 3 35 4
y(z) | 100 67 50 40 33

Solution: (a) S1 = (4—2) x (y(2) +4y(3) + y(4))/6 = 111
(b) So = (4—2) x (y(2) + 4y(2.5) + 2y(3) + 4y(3.5) + y(4))/12 = 110%
(c) The difference between S; and S, which we can use as a rough estimate of
the error of Sy, is %7 or 833 x 1073, To get the absolute error down by a factor
of 833, to 1073, we expect to have to increase n by a factor of 8331/4 = 5.4,
since the Simpson rule error is typically proportional to n~%. So n = 6 might
be enough.

8

Estimate the integral of 6(12) between a = 0 and b = 1 using Simpson’s rule
with

(a) one subinterval,

(b) two subintervals.

(c¢) Estimate your fractional error based on the difference between the two re-
sults.



Solution: The integrand function values needed are

z |0 025 0.5 0.75 1
f(z) |1 1.0645 1.2840 1.7551 2.7183

(a) Using the values at 0, 0.5, 1: .S; = 1.4757
(b) Using all the above values: Sy = 1.4637

(c) The fractional difference between S; and So, [S1 5|

Sa
accurate estimate), which we can use as an estimate |of ‘the error in 51, is 8.2 X
1073, Given that the error in the composite Simpson’s rule scales as n~* for
smooth functions and large enough n, we could extrapolate to estimate that the
fractional error in S might be only 1/16 of that, or 5 x 10~%, which in this case
actually turns out to be only a moderate underestimate (the actual fractional
error in S is 7.2 x 107%).

(S2 being the more

9

An irregular lot is 100 ft long, and its width as measured at various points is as
follows:

position (ft) | 0 25 50 75 100
width (ft) |10 15 20 23 25.

Estimate the lot’s area as accurately as possible using the composite Simpson
rule.

Solution: With the given data, we can apply Simpson’s rule to the two
halves of the lot (0 to 50 ft and 50 to 100 ft). The result is So = 1892 ft2.

10

Starting from standstill at ¢ = 0, the acceleration of an elevator is measured as

ts) |0 5 10 15 20 23 30
a(m/s?) |0 2.2 36 52 60 —4.0 -8.1

(a) Estimate the velocity at t = 20 using the composite trapezoid rule.
(b) Write a Python script to estimate the velocity at ¢ = 20 by fitting an
interpolating polynomial to the data and integrating it.

Solution: (a) The velocity is equal to the integral of the acceleration from
t = 0 to t = 20. Using the composite trapezoid rule, this can be estimated as
(5/2) * (0+2%22+2%3.64+2%52+6.0) =70 m/s.
(b)
from numpy import concatenate, linspace, array
from numpy import polyfit, polyval, polyint



t = concatenate((linspace(0, 20, 5), [23, 30]1))
a = array([0, 2.2, 3.6, 5.2, 6.0, -4.0, -8.1])
p = polyfit(t, a, len(t)-1)
ip = polyint(p)

= polyval(ip, 20)
(The result is 66.8 m/s.)

11

Write Python code to estimate the probability of falling between = 1 and
& = 2 for the probability density function p(z) = e~(¢ "),

Solution: The solution is equal to the definite integral fl x) dx, which
can be found numerically in Python:
from numpy import exp
from scipy.integrate import quad
p = lambda x: exp(-(exp(-x) + x))

I=quad (p, 1, 2)
I =I[0] (The result is 0.181)
12

Calculate the Romberg integration estimator R3 of
1 3
x
/ dx
o T +1

a=0,b=1, we have

3

Solution: For f(z) = %,

B = (70) + F(10)/2 = §
— (F(0)+ 2 f(0.5) + F(1))/4 = L
= (f(0) + 2% £(0.25) + 2% £(0.5) + 2 = f(0.75) + f(1))/8 = 0.14673
= (4R — RO)/3 = 901/5400 = 0.138
= (4R3 — RY)/3 = 0.14008
R2 (16RI — R})/15 = 0.14016
In this case the true value is 3 —log(2) ~ 0.14019.

13

(a) Use Romberg integration with jnax = 2 to estimate

2
1:/ T _dz.
0 $+3




(b) Estimate the relative error based on the difference between your two most
accurate estimates.

Solution:
0.4 0.46667 0.46751
0.45 0.46746
0.46310 L
Estimated relative error: |R|1};3?0‘ = |0‘46‘7éig7()5‘11‘6751| =1.1x10"%

14

(a) Fill in the first 3 levels of Romberg integration to estimate the integral of
vz for z between 0 and 3.

(b) Estimate the absolute error based on the difference between the two most
accurate estimates above.

(¢) Find the actual absolute error of the most accurate estimate above compared
to the analytic integral.

Solution: (a) The values are
2.598076 3.315515 3.417804
3.136155 3.411411
3.342597
(b) [3.411411 — 3.417804] = 0.00639
(c) |3.417804 — 2v/3| = 0.0463 (in this case the error is underestimated at this
stage)

15

(a) Use Romberg integration with jmax = 3 to estimate I = fol(e” — 4x)dx.
(b) Find the solution analytically, and based on this calculate the fractional
error of part a.

Solution: (a) For estimating I = fol (e® —4x)dx, the needed function values
for the trapezoid rule estimates up to jmax = 3 are those at 2/max 41 = 9 equally
spaced points:

0 1/8 1/4 3/8 1/2 5/8 3/4
1 0.633148 0.284025 —0.045009 —0.351279 —0.631754 —0.883000

xT

f

Based on these, the trapezoid rule estimates are
N 1 2 4 8
T | —0.14086 —0.24607 —0.27278 —0.27948

Using these for the j = 0 column in the table of Romberg integral estimates,
we get

7/8
—1.101125

1
—1.281718



J 0 1 2 3

—0.14086 —0.28114 —0.28172 —0.28172
—0.24607 —0.28168 —0.28172
—0.27278 —0.28172
3 —0.27948
The best estimate from this is 7§ or —0.28172.
(b) The analytic integral is e* —2x2]} = e—3, which is only about 3 x 10~1°
lower than the Romberg value.

N = O

16

Use Romberg integration with j.x = 2 to estimate I = f02 wi—i?’dx.

Solution:
0.57143 0.52381 0.51502
0.53571 0.51557
0.52060

17

Use the (explicit) Euler method to solve for y(z = 1) if y(r = 0) = 2 and

I _y
Y = 2

(a) With step size h = 1.

(b) With step size h = 0.5.

(c) Explain how you can estimate the fractional error in your solution using
the above results.

Solution: (a)y; =241 x ﬁ —3.

_5 5 _ 55
Y2 = 5 +0.5 X 5535 = 43
(c) Since the first answer y ) is less accurate because of its larger step size,

its error can be estimated by comparison with the more accurate answer y),
Y@ =yl
[y
can conservatively also assume for the more accurate ygy. (In this particular

case, the actual fractional errors are 2.9% for y(,) and 1.1% for y).)

as . This gives an estimated fractional error of 1.8% for y(,), which we

18

Estimate y(5) for the initial-value problem

d
D= Vit y(1) =3



using Euler’s method (RK1) with step size h = 1.

Solution: Using the iteration y; 1 = y;+h(\/yi—ti+1), we get 4.7321,5.9074, 6.3379, 5.8554

19

s . . N . . dy
(a) Use Euler’s method with step size h = 1/4 to estimate y(1) given ¥ =
—2y,y(0) = 3.
(b) Find the absolute error of this estimate compared to the analytic solution
y(t) = 3e 2.

(c) Write Python code to solve for and display y(1) using ode45.

Solution: (a) With % = —2y, the Euler method iteration is
Yir1 = ¥i + hy'(ti,y:) = (1 — 2h)y;.
With h = 1/4, this gives the estimated values

i Yy

0 3
1/4 1.5
1/2  0.75
3/4 0375

1 0.1875.

(b) E = [3e~2 — 0.1875| = 0.21851.
(¢) £ =0@(t, y) -2%y;Q [ts, ys] = oded45(f, [0 1], 3);Q ys(end)

20

(a) Use Euler’s method with a step size h of 1/3 to estimate y(t = 1) if y(t =
0) = 0,dy/dt =y + 2V/1.

(b) Estimate y(t = 1) for the same problem with the RK4 method and h = 1.
(c) Write Python code that uses scipy.integrate.solve_ivp to estimate y(t =
1) and displays the estimated value.

Solution: (a) The estimates of y after each step are 0, 0.38490, 1.05753.
(b) K1 =0,Ky = 1.4142, K3 = 2.1213, K4, = 4.1213,y; = 1.86540
(c)
from numpy import sqrt
from scipy.integrate import solve_ivp
f = lambda t, y: y + 2 * sqrt(t)

ts = [0, 1]

yo = [0]

sol = solve_ivp(f, ts, yO0)
sol.y[0,-1]

(The result is 2.060)



21

Let y(t) be the solution to 3’ = 4te™ ¥ satisfying y(0) = 3. Use Euler’s Method
with time step h = 0.1 to approximate y(0.1),4(0.2),...,4(0.5).

Solution: The estimated values of y at the first 5 timesteps are 3, 3.002, 3.006, 3.012, 3.020

22

(a) Use Euler’s method with a step size h of 1/3 to estimate y(t = 1) if y(t =
0) = 0,dy/dt =y + 4t°.
(b) Estimate y(t = 1) for the same problem with the RK4 method and h = 1.

Solution: (a) The estimates of y after each step are 0, 4/27, 64/81.
(b) Kl == O,KQ == 1,K3 == 1.5,K4 == 5.5,y1 =1.75

23

Estimate y(3) for the initial-value problem

y =YL y(1) =1

using Heun’s method (RK2) with step size h = 1.

Solution: The result is 1.5562 after 1 step (K7 = 0.5, Ky = 0.61237) and
2.2372 after 2 steps (K; = 0.62374, Ky = 0.73823).

24

Estimate y(3) for the initial-value problem y” = gw(l) = 1,9y'(1) = 0 using
Heun’s method (RK2) with step size h = 1.

Solution: The result for [yy'] is [1.25 0.5] after 1 step (K7 = [00.5], Ky =
0.50.5]) and [2.02951 1.11023] after 2 steps (K1 = [0.50.55902], Ko = [1.05902 0.66144)).

25

(a) Use 1 step of the RK4 method to solve for y(x = 6) if y(z = 0) = 2 and
Y =x/y.
(b) Write Python code for solving this problem and displaying the result.

Solution: (a) The stages are K7 = 0, Ky = 25.456, K3 = 69.079, Ky =
303.51, giving y; = 84.10



(b) from numpy import sqrt
from scipy.integrate import solve_ivp
f = lambda x, y: x * sqrt(y)

xs = [0, 6]

yo = [2]

sol = solve_ivp(f, xs, yO0)
sol.y[0,-1]

(The result is 108.49)

26

Estimate y(t = 2) if y(t = 0) = 0,dy/dt = —2y + 3v/t
with the RK4 method and h = 1.

Solution: First step K1, Ko, K3, K4,y;+1: 0, 2.1213, 0, 3, 1.2071.
Second step: 0.58579, 0.67423, 0.58579, 0.65685, 1.8342.

27

(a) Use the implicit Euler method with step size h = 1/6 to estimate y(1) given
(b) Find the absolute error of the estimated y(1) compared to the analytic
solution y(t) = 3e~2t.

(c¢) Write Python code to solve for and display y(1).

Solution: (a) To use the implicit Euler method, we need to solve (explic-
itly) for y;11 given y;. This is straightforward in this case:

Yi
iv1 =Yi T h f(tiv1, yiv1) = yi — 2hy; il = o7 -
Yir1 =Yi +h f(tiv1,vi41) =y Yit1 = Yit1 11 9h
. . o 1s 1 _ 3
So at each step the estimated y is multiplied by a constant factor of 55 = 1,
giving after 6 steps % or 0.53394
(b) Since the true value is 3e~2 = 0.40601, E, = |0.53394 — 0.40601| = 0.128
(c)

from numpy import sqrt

from scipy.integrate import solve_ivp
f = lambda t, y: -2%y

ts = [0, 1]; yO = [3]

sol = solve_ivp(f, ts, yO0)
sol.y[0,-1]

(The result is 0.406)

10



28

Estimate y(3) for the initial-value problem

y" =L y(1) =5,y/(1) =0
using Heun’s method (RK2) with step size h = 1.

Solution: Writing as a first-order system z = ( y/ ) 7z = ( Nen ) ,z(l) =

(i) y

(55590 0 1.11803
the result is ( 11180 ) after 1 step (K7 = ( 1.11803 ) Ky = < 1.11803 >
7.9665 1.11803 2969
and (2.3535 ) after 2 steps (K; = < 1.1789 ) = < 1.2920 )

y(3) ~ 7.2665.

29

For the mass-spring system with driving force as given below, use 2 equal-length
steps of Euler’s method to estimate x(t) at ¢ = 1. The initial conditions at ¢t = 0
are x = 1,2’ = 0.
2" +x = 3cos(t)

Solution: After writing the differential equation in standard form (z” =
3 cos(t)—z) and converting to a first-order system (y; = x,y2 = ') y] = y2,v5 =
3cos(t) — y1 with y1(0) = 1,52(0) = 0, the Euler method gives y1 = 1,35 = 1
after one step of length h = 0.5, and y; = 1.5,y, = 1.8164 after two steps.

30

(a) Write a Python function, similar to the RK2 one we did in lab, to implement
Euler’s method for solving a system of first-order differential equations with
given initial values. The first line should be

def rki1(f,tspan,y0,n):

(b) Write a Python script that uses this rk1 and a step size h =0.01 to display
y(2) if y”" = sin(1/y) and y(1) = 10,3'(1) = 3.

Solution: (a)
def rki(f,tspan,y0,n):
from numpy import linspace, empty

a = tspan[0]
b = tspan[1]
h = (b-a)/n
T = linspace(a, b, n+l)

11



Y = empty([n+1, len(y0)1)
Y[0, :1] = y0
for i in range(n):
K1 = h * £(T[i], Y[i, :1)
Y[i+1, :1 = Y[i, :] + K1
return T, Y

(b)
from numpy import sin, array
dzdt = lambda t, z: array([z[1], sin(1 / z[01)])
tspan = [1, 2]

yo = [10, 3]

h =0.01

n = round((tspan[1] - tspan[0]) / h)
T, Z = rk1(dzdt, tspan, yO0, n)

zZ[-1, 0]

(The result is 13.045)

31

Write a Python script that solves numerically the initial-value problem
y' +y +y? =1,y(0) =2,y/(0) = -2
and plot y(t) for 0 <t < 10.

Solution: Need to convert to a first-order ODE system (21 = y, 20 = ¢'),
after which an IVP solver like solve_ivp can be called:
from scipy.integrate import solve_ivp
from matplotlib.pyplot import plot
f = lambda t, z: [z[1], -z[1] - z[0]**2 + 1]
zi = [2, -2]
ts = [0, 10]
sol = solve_ivp (f, ts, zi)
plot (sol.t, sol.y[0, :1)
(y(x = 10) = 1.008)

32

Write a Python script that (a) numerically estimates ©(2) if ©” = —90 and
©(0) = 1,0’(0) = 0 and (b) finds the absolute error of this estimate relative to
the analytic solution O(t) = cos(3t).

Solution: With z; = 0,2, = @/,
from scipy.integrate import solve_ivp
from math import cos
f = lambda t, z: [z[1], -9%z[0]]

12



zi = [1, 0]

ts = [0, 2]

sol = solve_ivp (£, ts, zi)

err = abs (sol.y[0, -1] - cos(3*ts[-1]))

33

(a) Set up a system of linear equations (in matrix form) using finite difference
with n = 4 to solve the equation y” + vy = z + 2 subject to the boundary
conditions y(z =0) =0 and y(z = 3) = 1.

(b) Solve this system using Gaussian elimination or LU decomposition, and
sketch y(x).

Solution: A finite-difference approximation to the ODE would be
(h72 — (Qh)il)yi_l — 2h72y¢ + (h72 + (Qh)il)yi_i_l =x; + 2.
Applying this here with h = % fori=1,2,3, z; = 0.75,1.5,2.25, we get

—32/9  22/9 0 2.75
10/9 —32/9 22/9 3.5
0 10/9  —32/9 | 4.25 — (22/9)(1),

which can be solved to get the estimates y(0.75) = —2.67, y(1.5) = —2.76, y(2.25) =
—1.37. Draw a smooth curve connecting these with the boundary conditions to
sketch y(x).

34

Set up a linear system in matrix form to solve the boundary-value problem
y" + 5y’ =10, y(0) = 1, y(4) = 3 for values of the function y(x), using second-
order-accurate centered finite-difference approximations for the derivatives, with
n=>5. You do not need to solve the linear system.

Solution: At each interior grid point, the differential equation can be
approximated with the finite differences as y“‘_%ﬁy”l + 5_yi*;2'1”“ = 10,
with h = 0.8 here. Including also the boundary conditions for yo and y5 as the

first and last equations, the linear system is

1 0 0 0 0 0 Yo 1
25 25 75

_i _gj 75 - 1
0 0 6 2 g 0 Y3 0
o o0 o0 - -2 2 Ya 10
0 0 0 0 0 1 Us 3



35

Set up a system of algebraic equations (in matrix form) using finite difference
with n =5 for ¢/ — ¢’ + y = 2 subject to the boundary conditions y(0) = 0 and
y'(3) = 2. Use second-order-accurate (centered where possible) finite difference
approximations. You only need to write down the system, not to solve it.

Solution: Replacing the derivatives with second-order-accurate centered
finite difference approximations, we have for the interior grid points

i+i . + 1f3 . ifi . =92
n o ) Vit R ) YT\ o ) Y T

and for the first-derivative boundary condition

1 23,
2hyn72 hynfl 2hyn— .

Here h = 3/5, so the linear system is

1 0 0 0 0 0 Yo 0
65/18 —41/9 35/18 0 0 0 n 2
0  65/18 —41/9 35/18 0 0 yw | | 2
0 0  65/18 —41/9 35/18 0 ys | 7| 2
0 0 0  65/18 —41/9 35/18 U 2
0 0 0 5/6 —10/3 5/2 ys 2

The unknowns y; are the values of y(x) at the grid points, which are equally
spaced x; from x =0 to x = 3.

36

Set up a system of algebraic equations (in matrix form) using finite difference
with n = 5 to solve y” + ¢y’ — y = 4 subject to the boundary conditions y(x =
0) =0 and y'(z = 3) = 2. Use second-order-accurate (centered where possible)
finite difference approximations. For full credit, solve this system and sketch

y(z).

Solution: Replacing the derivatives with second-order-accurate finite dif-
ference approximations, we have for the interior grid points

1 1 2 1 1
<hQ—2h>yi1+<—1—hQ>yi+<hQ+2h>yi+1—4

and for the first-derivative boundary condition

IR T S
2hyn—2 hyn—l thn— .

14



Here h = 3/5, so the linear system is

1 0 0 0
35/18 —59/9 65/18 0
0  35/18 —59/9 65/18

0 0  35/18 —59/9
0 0 0  35/18
0 0 0 5/6

The unknowns y; are the values of y(z) at the grid points, which are
spaced z; from z = 0 to z = 3. The solution to the linear system is

y:

0 0
0 0
0 0
65/18 0
—59/9 65/18
~10/3  5/2

0

—1.921
—2.380
—2.178
—1.565
—0.561

which points can be connected to sketch y(z).

37

N = R R e O

equally

Set up a system of algebraic equations (in matrix form) using finite difference
with n = 5 to solve ¢y’ + ¢’ + y = 2 subject to the boundary conditions y(z =
0) =0 and y/'(z = 1) = 2. For full credit, solve this system and sketch y(z).

Solution: Replacing the derivatives with second-order-accurate finite dif-

ference approximations, we have for the interior grid points

1 1
Yi + ﬁJr% Yir1 = 2

Here h = 1/5, so the linear system is

1 0 0 0
225 —49 275 O
0 225 —-49 275

0 0 225 —-49 275

0 0 0 225
0 0 0 2.5

2

1 1
2 9 Yi—1 + lfﬁ

0 0
0 0
0 0
0
—49 275
—-10 7.5

NN O

(N}

The unknowns y; are the values of y(z) at the grid points, which are equally

spaced x; from x = 0 to x = 1. The solution to the linear system is

0
1.433
2.627
3.580
4.303
4.810

15



which points can be connected to sketch y(z).

38

(a) Set up a system of linear algebraic equations (in matrix form) using finite
difference with n = 5 to solve 3" +%y = x +4 subject to the boundary conditions
y(x = 0) = 0 and y(x = 5) = 2. Explain what the unknowns in this system
represent.

(b) Write Python code to solve the same problem numerically and to plot y(x).

Solution: (a) Replacing the second derivative with a second-order-accurate
finite difference approximation, we have for the interior grid points

1 2 1
pa¥i-1t 1—ﬁ yi+ﬁyi+1:$i+4

Here h = 1, so the linear system is

1 0 0 0 0 0 o 0
1 -1 1 0 0 0 " 5
01 -1 1 0 0 w | | 6
00 1 -1 1 0 s | 7| 7
00 0 1 -1 1 Ya 8
00 0 0 0 1 s 2

The unknowns y; are the values of y(z) at the grid points z;.
(b)

from scipy.integrate import solve_bvp

from matplotlib.pyplot import plot

dzdx = lambda x, z: [z[1], x + 4 - z[0]]

bc = lambda za, zb: [za[0], zb[0] - 2]

xi = [0, 5]

zi = [[1, 0.4], [1, 0.4]]

sol = solve bvp(dzdx, bc, xi, zi)

plot (sol.x, sol.y[O, :1)

(For example, y(z =2.5) =~ 13.366)

39

(a) Set up a system of linear equations (in matrix form) using finite difference
with n = 4 to solve the equation y” — y = z + 3 subject to the boundary
conditions y(z = 0) =0 and y(z = 2) = 0.

(b) Solve this system (for example, using Gaussian elimination) and sketch y(x).
(c¢) Write Python code to solve the boundary-value problem numerically and plot
y(@).
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Solution: A finite-difference approximation to the ODE would be
h2yii1 — (1 +2h72)y; + h 2y = o + 3.
Applying this here with h = % fori=1,2,3, z; =0.5,1,1.5, we get

—9 4 035
4 -9 4| 4
0 4 —9|45,

which can be solved to get the estimates y(0.5) = —1.01,y(1) = —1.39,y(1.5) =
—1.12. Draw a smooth curve connecting these with the boundary conditions to
sketch y(x).

(¢c) Converting to a first-order system with 21 = y, 20 = ¢/, 2] = 29,25 = z1+2+3
and boundary conditions z;(0) = z;(2) = 0,

from scipy.integrate import solve_bvp

from matplotlib.pyplot import plot

from numpy import zeros

dzdx = lambda x, z: [z[1], x + 3 + z[0]]

bc = lambda za, zb: [zal[0], zb[0]]

xi = [0, 2]

zi = zeros((2, 2))

sol = solve bvp(dzdx, bc, xi, zi)

plot (sol.x, sol.y[0, :1)

(For example, y(z =1)~ —1.408)

40

(a) Set up a system of linear equations (in matrix form) using finite difference
with n = 6 to solve the equation y” + 3y’ = y + 4 subject to the boundary
conditions y(z =0) =0 and y(z =1) = 0.

(b) Solve this system (for example, using Gaussian elimination) and sketch the
solution y(z).

Solution: (a) A discretized approximation for y” + 3y’ = y + 4, assuming
a grid with equal spacings h, is

Y+l — 2Yi + Yi—1 Yitr1 — Yi—1
3
h? + 2h

:yi+47

or

(h=2 = 1.5h Yy 1 + (=22 = 1)y; + (h~2 + 1.5 )y g = 4.

With h = 1/6, the coefficients are 27, —73, 45 respectively. Also putting in
the boundary conditions, the linear system in augmented matrix form becomes

17



—-73 45 0 0 0
27 =73 45 0 0
0 2r =73 45 0
0 0 2T =73 45
0 0 0 2T =73 | 4,

where the unknowns yq,¥o,...ys are the approximate function values at
1/6,1/3,...,5/6.

(b) Since this is a tridiagonal system, it can be solved relatively quickly by
Gaussian elimination (without pivoting). The steps are

—73 45 0 0 0 |4 —73 45 0 0 0 4
27T =73 45 0 0 |4 0 —56.356 45 0 0 |5.479
0 271 =73 45 014 = 0 27 —73 45 0 4 -
0 0 21 73 45 | 4 0 0 2T 73 45 4
0 0 0 2T =73 | 4, 0 0 0 271 =73 | 4,

—73 45 0 0 0 4 —73 45 0 0
0 —56.356 45 0 0 |5.479 0 —56.356 45 0
0 0 —51.441 45 0 [6.625 — 0 0 —51.441 45
0 0 27 —-73 45 4 0 0 0 —49.381
0 0 0 27T =73 | 4, 0 0 0 0
After which back substitution gives y5; = —0.1671,y, = —0.3037,y3 =

—0.3945,y, = —0.4122,y; = —0.3089. Together with the boundary conditions
yo = 0,y6 = 0, these values can be used to sketch y(z) as a downward-pointing
parabola-like (but asymmetric) curve with a minimum (y less than —0.41) near
x=04.

18

0
0
0
45
—48.395

4
5.479
6.625
7.477
8.088,



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

