
Practice final exam problems with solutions

1

The subplots below show different interpolating functions fit to the same set
of 10 points, which have x coordinates ranging from 2 to 9. Identify each
function plotted and briefly explain how you know. The options are polynomial
interpolation, linear spline, cubic spline, PCHIP, or none of those (only select
none if you are sure that the other options are all impossible).

Solution: A: linear spline (points are connected by straight-line segments)
B: PCHIP (points are connected by curves that don’t over or undershoot the
points)
C: spline (points are connected by a smoother curve than PCHIP; more oscilla-
tion than PCHIP evident near x = 5 and x = 8)
D: polynomial (the most oscillatory, as indicated by the much larger y axis range
compared to the original points and the other interpolation methods)

1

2

Write a Python script to draw a smooth-looking graph of a function that goes
through the following points:

x 0 1 3 4 6
y 7 8 5 3 2.

Solution: You need to use a smooth interpolation method, such as the
cubic spline, to generate enough points that their graph looks smooth. For ex-
ample:
from numpy import linspace

from scipy.interpolate import CubicSpline

from matplotlib.pyplot import plot

x = [0, 1, 3, 4, 6]

y = [7, 8, 5, 3, 2]

xx = linspace (0, 6, 200)

sp = CubicSpline(x, y, bc type = ’natural’)

yy = sp(xx)

plot (x, y, ’o’, xx, yy)

3

Given the points
xi −2 −1 0 1 2
yi 16 6 4 4 0,

estimate y(x = 1.3) using (a) polynomial interpolation through all the given
points, (b) polynomial interpolation through the three closest points, (c) piece-
wise linear interpolation.

Solution: (a) The interpolating polynomial is y = −x3 + x2 + 4. Its value
at x = 1.3 is 3.493
(b) The interpolating polynomial is y = −2x2 + 2x + 4. Its value at x = 1.3 is
3.22
(c) The interpolating polynomial piece is y = −4x + 8. Its value at x = 1.3 is
2.8

4

Given the points
xi −2 −1 0 1 2
yi 1 −2 1 −2 1,

2

estimate y(x = 1.2) using (a) polynomial interpolation through all the given
points, (b) polynomial interpolation through the three closest points, (c) piece-
wise linear interpolation.

Solution: (a) The interpolating polynomial through the points is x4 −
4x2 + 1, which at x = 1.2 has the value −2.6864
(b) The interpolating polynomial through the 3 closest points is 3(x− 1)2 − 2,
which at x = 1.2 has the value −1.88
(c) Linear interpolation using the x = 1 and x = 2 values gives −1.4

5

(a) Given the (x, y) values (1, 2), (2, 4), (3, 10), (5, 7) write in matrix form the
linear system to solve for the bi coefficients in the interpolating cubic spline
with natural boundary conditions.

(b) If an interpolating cubic spline is as given below, find (1) what points it
interpolates and (2) its value at x = 0.

−1.27(x+ 1)3 + 6.54(x+ 1)− 2 for −1 ≤ x ≤ 1
9.15(x− 1)3 − 7.57(x− 1)2 − 8.59(x− 1) + 2 for 1 ≤ x ≤ 2
−6.63(x− 2)3 + 19.89(x− 2)2 + 3.74(x− 2)− 6 for 2 ≤ x ≤ 3

Solution:
(a) Similar to a homework problem, the linear system can be written in the

form  1 0 0
h1 2(h1 + h2) h2

0 h2 2(h2 + h3)

 b1
b2
b3

 =

 0
3(∆2 −∆1)
3(∆3 −∆2)


which is  1 0 0

1 4 1
0 1 6

 b1
b2
b3

 =

 0
12
−22.5


(b) (1) The x coordinates of the interpolated points are given by the segment

endpoints and the y coordinates by the spline function values at those points.
So the points are (−1,−2), (1, 2), (2,−6), (3, 11).
(2) x = 0 is in the first segment, and the value of the first cubic polynomial
there is 3.27

6

Consider the problem of fitting a regression equation of the form y = β0+β1x+
β2x

2 + β3xz to the following data:

x 0 1 2 3 4
z 0.2 1 1.5 2 0.8
y 33 41 54 75 96

3

(a) Give the design matrix for the problem.
(b) Write code in Python to find the least-squares parameter values.

Solution: (a) The design matrix, which when multiplied by the vector
of unknown parameters β gives the predicted y values for the given predictor
values, is

A =


1 0 0 0
1 1 1 1
1 2 4 3
1 3 9 6
1 4 16 3.2


(b)

from numpy import array, ones, transpose

from numpy.linalg import lstsq

x = array([0, 1, 2, 3, 4])

z = [0.2, 1, 1.5, 2, 0.8]

y = [33, 41, 54, 75, 96]

A = [ones(len(x)), x, x**2, x*z]

A = transpose(A)

beta = lstsq(A, y, rcond=None)

beta[0] #least-squares parameter values

7

You want to approximate the data below with the function f(t) = c1 + c2e
t +

c3e
−t.

t 0 1 2 3 4 5
y 0 2 5 2 9 1

Find ATA and ATb for the system of normal equations ATAc = ATb. You
don’t need to actually solve for the least-squares values of c.

Solution: The design matrix A would have columns corresponding to the
basis functions {1, et, e−t}, while b would be the given y values. The normal
equations then are 6 234.20 1.5781

234.20 25474 6
1.5781 6 1.1565

 c1
c2
c3

 =

 19
722.35
1.6836

 .

8

An air pollution sensor emits a signal (voltage, V) that depends on the pollutant
concentration c (parts per million, ppm) following the relationship c ≈ β1V +

4

β2V
2. Given the calibration data below, use least squares regression to estimate

β1 and β2.
V 0 1 2 3 4 5

c (ppm) 0 2 4 6 10 12

Solution:
We can find the least squares parameter values by solving the normal equa-

tions with the design matrix A having the Vi values in its first column and their
squares in its second column. The system of normal equations ATAβ = AT c

is

[
55 225
225 979

] [
β1

β2

]
=

[
128
532

]
. The result is β1 = 1.74, β2 = 0.14

9

Suppose that the data below are from an experiment on strength S of a concrete
mix as a function of percent cement p.

% cement 1 2 3 5 7 8
Strength (MPa) 1 2 3 7 11 12

Estimate the strength at 6% cement using the least-squares first-degree polyno-
mial fit to the given data.

Solution: A first-degree polynomial would be of the form f(p) = b1 + b2p,
where p is the percent cement. To find the values of b1, b2 such that f(p) is as
close as possible (in a least squares sense) to the given strengths, we can solve
the normal equations with the design matrix

A =


1 1
1 2
1 3
1 5
1 7
1 8


and right-hand side are the strength values,

S =


1
2
3
7
11
12


. The system of normal equations ATAb = ATS is then(

6 26
26 152

)(
b1
b2

)
=

(
36
222

)
,with solution

(
b1
b2

)
=

(
−1.27
1.68

)
.

5

So the estimated value at x = 6 would be −1.27 + (1.68)(6) = 8.80 MPa

10

Suppose that the data below are from an experiment on strength S of a concrete
mix as a function of curing time t.

Time 0 1 2 4 8 16 32
Strength 5 6 6 8 12 21 58

(a) Write Python code to find the least-squares values for b1, b2 in the linear

regression model

S(t) = b1 + b2e
√
t.

(b) If instead we used the regression function

S(t) =
10

β1 + eβ2(t−β3)
,

and fitted parameter values β1 = 0.1, β2 = −0.1, β3 = 6, find RSS, R2, adjusted
R2, and AIC score.

Solution: (a)

from numpy import array, ones, exp, sqrt, transpose

from numpy.linalg import lstsq

t = [0, 1, 2, 4, 8, 16, 32]

S = [5, 6, 6, 8, 12, 21, 58]

A = [ones(len(t)), exp(sqrt(t))]

A = transpose(A)

beta = lstsq(A, S, rcond=None)

beta[0] #least-squares parameter values

(b) To find these, start by determining the regression function value S∗(t) at
the given points:

t 0 1 2 4 8 16 32
S 5 6 6 8 12 21 58
S∗ 5.20 5.72 6.28 7.57 10.88 21.37 57.38

Now RSS is the sum of squares of the residual vector S − S∗, which is 2.15; R2

is 1− RSS/TSS, which is 0.99898 (TSS is 2106). With n = 7,m = 3, we get
R2

a = 0.99847 and AIC = 5.75

6

11

Suppose that the data below are from an experiment on strain of a composite
material as a function of time under load.

Time 0 1 2 4 8 16 32
Strain 35 39 43 52 77 154 474

(a) Write Python code to find the least-squares values for b1, b2 in the linear

regression model

S(t) = b1 + b2e
t/16

.

(b) If instead these data were fitted with the regression function

S(t) =
100

β1 + eβ2(t−β3)

with β1 = 0.1, β2 = −0.1, β3 = 10, find RSS, R2, adjusted R2, and AIC score.

Solution: (a)

from numpy import array, ones, exp, sqrt, transpose

from numpy.linalg import lstsq

t = array([0, 1, 2, 4, 8, 16, 32])

S = [35, 39, 43, 52, 77, 154, 474]

A = [ones(len(t)), exp(t/16)]

A = transpose(A)

beta = lstsq(A, S, rcond=None)

beta[0] #least-squares parameter values

(b) To find these, start by determining the regression function value S∗(t) at
the given points:

t 0 1 2 4 8 16 32
S 35 39 43 52 77 154 474
S∗ 35.48 39.07 43.00 52.03 75.68 154.13 474.38

Now RSS is the sum of squares of the residual vector S − S∗, which is 2.15; R2

is 1− RSS/TSS, which is 0.99999. With n = 7,m = 3, we get R2
a = 0.99998

and AIC = 5.72

12

Suppose a bridge’s displacement due to vibration as a function of time follows
the equation

y(t) = a1 sin(ωt) + a2 cos(ωt).

7

(a) Estimate a1 and a2 using linear least squares fitting to the data below (and,
e.g., solving the normal equations) if it is known that ω = 0.7
(b) Find RSS, R2, adjusted R2, and AIC score for this fit.
(c) Based on your regression model, estimate y(t = 7).
(d) Write Python code to estimate ω along with a1 and a2 using nonlinear least
squares fitting.

t 1 2 3 4 5
y 71 160 175 107 −11

Solution: (a) The design matrix has as columns sin(ωt) and cos(ωt), as
follows:

A =


0.64422 0.76484
0.98545 0.16997
0.86321 −0.50485
0.33499 −0.94222
−0.35078 −0.93646


The normal equations for the least-square parameter values a are (ATA)a =

(ATy), which work out to

2.36652 0.23729 394.175
0.23729 2.63348 −97.366

Solved, this gives a1 ≈ 172, a2 ≈ −52.
(b) The fit is very good. To find RSS, we first need to find r ≡ y −Aa =

(0.43−0.41 0.20 0.02 0.15)T . The sum of squares of this is RSS = 0.41. The total
sum of squares is that of y− ȳ, which works out to 22435. R2 = 1−RSS/TSS =
0.99998. The adjustedR2 is 1−(4/3)×RSS/TSS = 0.99998.AIC = n log(RSS/n)+
2pn/(n− p− 1) = −2.4801(n = 5, p = 2).

(c) y(7) ≈ a1 sin(7ω) + a2 cos(7ω) = −179.
(d)

from numpy import array, sin, cos, transpose, dot

from numpy.linalg import lstsq, norm

from scipy.optimize import fmin

t = array([1, 2, 3, 4, 5])

y = [71, 160, 175, 107, -11]

A = lambda omega, t: transpose([sin(omega*t), cos(omega*t)])

afit = lambda A: lstsq(A, y, rcond=None)[0]

RSS = lambda omega: norm(y - dot(A(omega, t), afit(A(omega, t)))) **

2

omegafit = fmin(func=RSS, x0=0.7)

8

13

If fluidity f of a concrete mix is supposed to follow temperature T as log(f) =
b0+b1T, estimate b0 and b1 using least squares linear regression (setting up and
solving the system of normal equations) with the following measurements:

T 10 20 30 40 50
f 17 45 172 453 1572

Solution: The design matrix A has ones as its first column and T as its
second column. The predicand vector y is equal to log(f). The resulting system
of normal equations ATAb = ATy therefore has the augmented matrix

5 150 25.26
150 5500 871.53,

with solution b0 = 1.644, b1 = 0.1136

14

An equation from mechanics is M = A− e sin(A). If M is 26 and e is 0.1, use 2
iterations of Newton’s method from a reasonable initial guess to estimate A.

Solution: The equation shows that A differs from M only by the term
e sin(A), which is no more than |e| in absolute value. A good initial guess
for A is therefore M. The iterations on f(A) = A − e sin(A) − M then give
26, 26.081530,26.081255

15

(a) Use 5 iterations of Newton’s method to find a root of the function f(x) =
x5−2x+1 starting with x0 = 0. (b) Estimate the fractional error of your result.

Solution: (a) f(x) = x5−2x+1, f ′(x) = 5x4−2, and successive iterations
give
0
0.5
0.518
0.518790000907635
0.518790063675881
0.518790063675884
(b) Using the difference between the last two iterations as a measure of the

absolute error, we get |xi−xi−1|
xi

= 6 × 10−15. Note though that even if the last
two values are identical to our computer/calculator precision, we should not
assume that the fractional error is smaller than machine epsilon or (assuming
double precision) ∼ 10−16.

9

16

Apply 3 iterations of the false position method to estimate where
x3 − 3x2 − x = −1, for x between 0 and 1.

Solution: In standard form, the problem is f(x) = x3 − 3x2 − x+ 1 = 0.
Applying the false position method,
Initialize: a← 1, b← 0 (f is negative at a and positive at b).
Iteration 1: s = −3, c← 1/3, f(c) > 0, b← c
Iteration 2: s = −3.5556, c← 0.4375, f(c) > 0, b← c
Iteration 3: s = −3.6836, c← 0.45705, f(c) > 0, b← c

17

Given the system of equations

x3 = y2

x+ y = 7,

carry out an iteration of Newton’s method to estimate x and y. Use the initial
values x0 = 2, y0 = 4

Solution: Writing the system in standard form as
x3 − y2 = 0
x+ y − 7 = 0,
the Jacobian matrix is

J =

(
3x2 −2y
1 1

)
.

Setting x ≡
(

x
y

)
, one iteration involves

x1 = x0 − J(x0)\f(x0) =

(
2
4

)
−
(

12 −8
1 1

)
\
(
−8
−1

)
=

(
2.8
4.2

)

18

Set up and do 1 iteration of Newton’s method for finding an intersection point
of the curves x2 + y3 = 10 and y + y2 = sin(x), starting from (x, y) = (1, 2).

Solution: With v1 ≡ x, v2 ≡ y, the system of equations to solve can be

written as f(v) =

(
v21 + v32 − 10

v2 + v22 − sin(v1)

)
=

(
0
0

)
, and the Jacobian matrix is

J(v) =

(
2v1 3v22

− cos(v1) 1 + 2v2

)
. Using the given starting point of

(
1
2

)
, we

10

have v1 = v0 − J(v0)\f(v0) =

(
1
2

)
−

(
2 12

−0.54030 5

)−1 (−1
5.1585

)
=(

5.0587
1.4069

)
.

[Doing a few more iterations will in fact result in convergence to the solution
x = 3.162279, y = −0.021132]

19

Estimate where
f(x) = 2ex − 3x

reaches a minimum, using 3 iterations of golden section search. Assume that
the minimum lies between x = 0.4 and x = 1

Solution: The iterations can be done as

a b c d f(c) f(d)
1 0.4 1 0.77082 0.62918 2.0106 1.8646
2 0.4 0.77082 0.62918 0.54164 1.8646 1.8127
3 0.4 0.62918 0.54164 0.48754 1.8127 1.7872
4 0.4 0.54164 0.48754,

giving as our best guess the current c, 0.48754, with a possible range of
0.4− 0.542

20

The deflection of a beam under loading is described by y(x) = x5 − 2x3 + x.
Use 4 iterations of golden section search with starting values a = 0.1, b = 0.8 to
estimate for what x the deflection is maximum.

Solution: With a = 0.1, b = 0.8, 4 iterations give a = 0.37, b = 0.47, and
the position of maximum displacement can be estimated as 0.42± 0.05

21

(a) Estimate where f(x) = −2e−x − 2x2 reaches a maximum using 6 iterations
of golden section search. Assume that the maximum lies between x = 0.2 and
x = 0.6
(b) Use 1 iteration of Newton’s method to improve your estimate from (a).
(c) Write Python code to solve this problem using fmin, with an initial guess
of x = 0.4

11

Solution: (a) The iterations can be done as

a b c d f(c) f(d)
1 0.2 0.6 0.44721 0.35279 −1.6788 −1.6544
2 0.2 0.44721 0.35279 0.29443 −1.6544 −1.6633
3 0.44721 0.29443 0.35279 0.38885 −1.6544 −1.6581
4 0.29443 0.38885 0.35279 0.33050 −1.6544 −1.6556
5 0.38885 0.33050 0.35279 0.36656 −1.6544 −1.6550
6 0.33050 0.36656 0.35279 −1.6544,

giving as our best guess the current c, 0.35279, with a possible range of
0.330− 0.367
(b) Using our result from (a) as a starting point, we have

x = c− 2e−x − 2 · 2 · c
−2e−x − 2 · 2

= 0.35173

(c)

from math import exp

from scipy.optimize import fmin

f = lambda x: 2*exp(-x) + 2 * x**2

x = fmin(func=f, x0=0.4)

22

(a) Estimate the minimum of f(x) = ex−2x using 5 iterations of golden section
search assuming that it lies between x = 0 and x = 2.

(b) Estimate the same minimum using 2 iterations of Newton’s method.

Solution: (a) For f(x) = ex − 2x, a = 0, b = 2, the iterations can be done
as

a b c d f(c) f(d)
1 0 2 1.2361 0.76393 0.96992 0.61884
2 0 1.2361 0.76393 0.47214 0.61884 0.65914
3 1.2361 0.47214 0.76393 0.94427 0.61884 0.68240
4 0.47214 0.94427 0.76393 0.65248 0.61884 0.61534
5 0.47214 0.76393 0.65248 0.58359 0.61534 0.62528
6 0.76393 0.58359 0.65248 0.61534,

giving as our best guess the current c, 0.65248, with a possible range of
0.58359 to 0.76393

(b) Starting with the best guess from (a) and with xi+1 = xi−f ′(xi)/f
′′(xi) =

xi − (exi − 2)/exi = xi − 1 + 2/exi , we have

12

x
0 0.65248
1 0.69399
2 0.69315.

13

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

