
1. Computational methods and Taylor series
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Design and building

Many team members
Many subproblems
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Solving a quantitative problem as an engineer

Modeled in mathematical form (often, equations) using physics or
empirical rules.

An algorithm gives step-by-step process (derived using analytical
and numerical methods) to solve a math problem, which can be
written as a program for a computer to solve.

The solution then needs to be interpreted in the original context.
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Analytic and numeric methods

▶ Analytical methods: exact solutions derived for particular
math problems, as in algebra and calculus (e.g. quadratic
formula, simple harmonic oscillator)

▶ Numerical methods: solution process for more general math
problems using arithmetic and logic operations as basic
building blocks
▶ Often approximate
▶ Trade-off between accuracy and amount of computation
▶ Need error analysis and error estimates
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Computation

“Whenever someone speaks of using a computer to design an
airplane, predict the weather, or otherwise solve a complex science
or engineering problem, that person is talking about using
numerical methods and analysis.”
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Simplification

▶ Given a complicated math problem, we can try to approximate
it as something simpler that we know how to compute using
arithmetic and logic

▶ Thus, many numerical methods are based on approximating
arbitrary functions with simpler ones
Some example of simple functions are
▶ Constant: f (x) = a, for some number a
▶ Linear: f (x) = a1x + a0, for some a0 and a1
▶ Quadratic: f (x) = a2x

2 + a1x + a0
▶ Polynomial: f (x) =

∑n
i=0 aix

i

▶ Taylor’s theorem is important in numerical analysis because it
gives us a way to approximate functions as polynomials, along
with an expression for the error of the approximation
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Taylor’s theorem

If f (x) has derivatives of order 0, 1, 2, . . . , n + 1 on the closed
interval [b, c],
then for any x and a in this interval

f (x) =
n∑

k=0

f (k)(a) (x − a)k

k!
+

f (n+1)(ξ) (x − a)n+1

(n + 1)!
,

where ξ is some number between x and a, and f (k)(x) is the kth
derivative of f at x (f (0) is f )
The first n + 1 terms form a polynomial of degree n
The rightmost term is the ‘remainder’, Rn+1.
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Taylor series with different number of terms

▶ n = 0: f (x) ≈ f (a)

▶ n = 1: f (x) ≈ f (a) + f ′(a)(x − a)

▶ n = 2: f (x) ≈ f (a) + f ′(a)(x − a) + f ′′(a)(x − a)2/2

▶ In each case, how good the approximation is depends on the
size of the left-out remainder term

▶ Full series:
∑∞

k=0
f (k)(a) (x−a)k

k! – should exactly equal f (x) (if
the remainder term goes to 0 as n → ∞)
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Alternative form of Taylor’s theorem

If f (x) has derivatives of order 0, 1, . . . , n+1 on the closed interval
[b, c],
then for any a in this interval and any h such that a+ h is in this
interval,

f (a+ h) =
n∑

k=0

f (k)(a) hk

k!
+

f (k+1)(ξ) hn+1

(n + 1)!
,

where ξ is some number between a and a+ h.

With either form, we say that the Taylor expansion is centered at a
or about/around a.
(The special case a = 0 is called the Maclaurin series.)
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Taylor series example: exponential function

f (x) = ex or exp(x) has all its derivative equal to itself
Therefore, the Taylor series is

ex = ea(1 + (x − a) +
(x − a)2

2
+

(x − a)3

6
+ · · · ),

For example, given e, we could approximate e1.2 as

e1.2 ≈ e(1 + 0.2 +
0.04

2
+

0.008

6
),

The remainder term would look like f (n+1)(ξ) (x−a)n+1

(n+1)! = eξ(x−a)n+1

(n+1)! .
In this case, with a = 1, x = 1.2, n = 3, we can bound the error

term as (0.2)4e
24 ≤ Rn+1 ≤ (0.2)4e1.2

24 , which is around 2× 10−4
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Taylor series example: sine function

If f (x) = sin(x), f ′(x) = cos(x) and so forth
Therefore, the Taylor series is

sin(x) = sin(a)+cos(a)(x−a)−sin(a)
(x − a)2

2
−cos(a)

(x − a)3

6
+· · · ,

For example, given a = 0 we could approximate sin(0.5) as

sin(0.5) ≈ 0 + 0.5− 0− 0.125

6
,

The remainder term with a = 0, x = 0.5, n = 3 would look like
f (n+1)(ξ) (x−a)n+1

(n+1)! = sin(ξ)0.54

4! . In this case, we can bound the error

term as 0 ≤ R4 ≤ sin(0.5)
24·16 , which is less than 1.25× 10−3
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Cosine

If f (x) = cos(x), f ′(x) = − sin(x) and so forth
Therefore, the Taylor series is

cos(x) = cos(a)−sin(a)(x−a)−cos(a)
(x − a)2

2
+sin(a)

(x − a)3

6
+· · · ,

For example, given a = π/2 we could approximate cos(2) as

cos(2) ≈ 0− (2− π/2) +
(2− π/2)3

6
,

The remainder term with a = π/2, x = 2, n = 3 would look like
f (n+1)(ξ) (x−a)n+1

(n+1)! = cos(ξ)(2−π/2)4

4! . In this case, we can bound the

error term as cos(2)(2−π/2)4

24 ≤ R4 ≤ 0, which is less than 6× 10−4

in absolute value
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Polynomial

If f (x) = x4, we can use Taylor’s theorem to approximate it as a
degree-2 polynomial about a = 1 as

x4 ≈ 1 + 4(x − 1) + 6(x − 1)2

For example, for x = 1.1, this approximation gives f (x) ≈ 1.46,
compared to the exact value (1.1)4 = 1.4641
On the other hand, if x is not close to 1, this approximation is no
longer close to x4. In fact, we can see from the remainder term
that the error of the approximation is proportional to (x − 1)3
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Practice problem

Given f (3) = 6, f ′(3) = 8, f ′′(3) = 2, and that all other higher
order derivatives of f (x) are zero at x = 3, and assuming the
function and all its derivatives exist and are continuous between
x = 3 and x = 6, what is the value of f (6)?
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Practice problem

Let f (x) = x cos x .
Find a second-order polynomial that approximates f (x) using
Taylor’s theorem about a = 0.
Use this polynomial to approximate f (0.5).
Based on the remainder term, get an upper bound for the absolute
error in the approximation.
How does the actual absolute error compare to this upper bound?
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Practice problem

To what order in x should the Taylor series of sin(x) about 0 be
taken so to make sure that it approximates sin(x) with absolute
error less than 10−4 for all x between 0 and 0.2?
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Some numerical methods derived from Taylor’s theorem

▶ Newton’s method

▶ Centered finite difference

▶ Euler’s method
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Newton’s method for solving nonlinear equations

Suppose we have some known function f and want to find a value
x such that f (x) = 0
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Taylor theorem application

Writing the Taylor series about some guess xi for x ,

0 = f (x) = f (xi ) + f ′(xi )(x − xi ) +
f ′′(ξ)(x − xi )

2

2
,

so that

x = xi −
f (xi )

f ′(xi )
+

R2

f ′(xi )

≈ xi −
f (xi )

f ′(xi )

where the approximation should be good if x is close to xi (and f ′′

not too large, and f ′(xi ) not too close to 0)

19 / 29



Newton’s method as an iteration

▶ Given f , start with some initial guess x0 for where it’s equal to
0

▶ Derive a hopefully better estimate using

xi+1 = xi −
f (xi )

f ′(xi )

▶ Stop once f (xi ) is close enough to 0
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Example of using Newton’s method

To find where cos(x) is equal to x ,
Let f (x) = cos(x)− x
If x0 = 0.5, we get x1 = 0.75522, x2 = 0.73914, x3 = 0.73909, and
f (x3) = −1.2× 10−9 is quite close to 0
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Practice problem

Do an iteration of Newton’s method for finding the cube root of 6,
starting from an initial guess of 2.
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Centered finite difference for numerically approximating
derivatives

Suppose we have some known function f and want to find a value
f ′(x) at some given point x
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Taylor theorem derivation
Centered finite difference uses the values of f at points x + h and
x − h, on either side of x
Writing the Taylor series up to order 2 about x for those two
points,

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) + R3,+

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− R3,−

Combining those expressions, we can extract f ′(x) as

f ′(x) =
f (x + h)− f (x − h)

2h
−R3,+ + R3,−

2h
≈ f (x + h)− f (x − h)

2h

The remainder term can also be written as 1
6h

2f ′′′(ξ) for some ξ
between x − h and x + h, so it normally gets smaller as h becomes
closer to 0
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Example of using centered finite difference

Find the derivative of cos(x) at x = 0.5.
With h = 0.2:
cos′(0.5) ≈ cos(0.7)−cos(0.3)

0.4 = −0.47624
With h = 0.1:
cos′(0.5) ≈ cos(0.6)−cos(0.4)

0.2 = −0.47863, which is more accurate
compared to the actual derivative − sin(0.5) = −0.47943
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Euler’s method for numerically solving a differential
equation

Suppose we know that y ′(x) = f (x , y) and that y(a) = y1, and we
want to know y(b)
(an initial value problem)
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Taylor theorem derivation

If F is the integral of f over x ,

F (a+ h) = F (a) + hF ′(a) +
h2

2
F ′′(ξ)

and hence

y(a+ h) ≈ y1 + hf (a, y1)

The remainder term normally gets smaller (making the
approximation better) as h becomes closer to 0
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Example of using Euler’s method

Normally we would use the method with a small step size h for
better accuracy, using the result from the last step as the initial
value from the next step until we reach x = b

Find y(2) if y ′(x) = −y and y(1) = 3.
With h = 0.5:
y(1.5) ≈ 3 + (0.5)(−3) = 1.5
y(2) ≈ 1.5 + (0.5)(−1.5) = 0.75

In this case, we can solve analytically to find that
y(2) = 3/e = 1.1036
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Summary of Lecture 1

▶ Computation in engineering

▶ Characteristics of numerical methods
▶ Taylor’s theorem

▶ Finding unknown function values
▶ Approximating functions as polynomials
▶ Newton’s method
▶ Centered finite difference
▶ Euler’s method
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