11. Solving equations

Outline

- Single variable
- Definition
- Methods: Newton's, bisection, secant, false position
- Multi-variable (just Newton's method)

Definition

- In general form, an equation in one unknown, x, can be written as $g(x)=h(x)$, where g and h are some functions.
- The standard form is $f(x)=0$, which can be obtained from the general form by setting $f=g-h$
- A solution to the standard-form problem is denoted a root of f
- If f is linear in x there will only be one root (or none, or infinitely many), but for nonlinear f there can be multiple roots, e.g. $x^{2}-1=0$

Newton's method

- Start with an initial guess x_{0} for the root
- Iteration is $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
- Can be derived from Taylor series
- 'Close enough' to a root, error after n iterations is proportional to $C^{\left(2^{n}\right)}$, where C depends on the problem and starting point (quadratic convergence)
- In practice, can estimate error (and choose to stop iterating once the error is small snough) from the difference between successive x_{i}, or from the magnitude of $f\left(x_{n}\right)$

Illustration

Example

$$
f(x)=x^{3}-3 x+1 \text { (has } 3 \text { roots) }
$$

Newton method iteration would be $x_{i+1}=x_{i}-\frac{x_{i}^{3}-3 x_{i}+1}{3 x_{i}^{2}-3}$
Starting with $x_{0}=2$, we get
$x_{1}=\frac{5}{3}, x_{2} \approx 1.5486, x_{3} \approx 1.5324, x_{4} \approx 1.5321$
Note that if we start from another point, e.g. $x=0$, we would converge to a different root, and from some points, e.g. $x=1$, we won't converge at all

Bisection

- Start with an interval $[a, b]$ where $f(a)$ and $f(b)$ are different signs (conventionally $f(a)<0, f(b)>0$)
- Each iteration gives an interval half as wide as before, based on checking the sign of f at the midpoint and narrowing the interval accordingly
- Error after n iterations is proportional to 2^{-n} (linear convergence), and doesn't depend much on the function or exact starting points
- A root can be found to within a specified accuracy after a predetermined number of iterations, as long as one exists in the original $[a, b]$

Illustration

Example

$f(x)=x^{3}-3 x+1$
We can take the starting interval to be $a=1, b=2$ since
$f(1)<0, f(2)>0$
For the first iteration, check the midpoint, finding that $f(1.5)<0$.
Therefore, the new interval is [1.5, 2]
For the second iteration, find that $f(1.75)>0$. Therefore, the new interval is [1.5, 1.75]
For the third iteration, find that $f(1.625)>0$. Therefore, the new interval is [1.5, 1.625]
After 20 iterations, we can find the root to about 6 accurate digits ($2^{-20} \approx 10^{-6}$)

Comparing and contrasting

- Newton's method
- Requires function derivative
- Often fast (i.e., very accurate after a few iterations) (quadratic convergence)
- But doesn't always converge (quickly or at all)
- Bisection
- No derivative required
- Relatively slow, but predictable convergence rate
- Always converges (when f is continuous)

Two more, in-between methods

- Secant and false position
- Don't require derivative
- 'Usually' converge faster than bisection (but not as fast as Newton's method)
- But may not always converge (quickly)

Secant method

- Like Newton's method, but replacing $f^{\prime}\left(x_{i}\right)$ with the slope estimated from the values of f at last 2 points
- Needs 2 initial starting points

Illustration

Example

$f(x)=x^{3}-3 x+1$
Starting with $a=1, b=2$, we get $s=4, c=1.25$
For the next iteration, we get $s=5.0625, c=1.4074$
Next, $s=2.3026, c=1.5961$
Note that the root isn't always in $[a, b]$

False position method

- Like bisection, but using the result from the secant method formula instead of the midpoint to be one of the interval endpoints in the next iteration
- Needs 2 initial points as in bisection

Illustration

Example

$f(x)=x^{3}-3 x+1$
Starting with $a=1, b=2$, we get $s=4, c=1.25$, and check that $f(1.25)<0$
With $a=1.25, b=2$, we get $s=5.0625, c=1.4074$, and check that $f(c)<0$
With $a=1.4074, b=2$, we get $s=5.7956, c=1.4824$, and check that $f(c)<0$

Multivariate case

Here we typically are looking for the solution of a system of n equations in the same number of unknowns. Again, for nonlinear equations, there can be multiple solutions.
In standard form, $\boldsymbol{f}(\boldsymbol{x})=0$, or

$$
\begin{aligned}
f_{1}(\boldsymbol{x}) & =0 \\
f_{2}(\boldsymbol{x}) & =0 \\
\ldots & \\
f_{n}(\boldsymbol{x}) & =0
\end{aligned}
$$

(different from the standard form for a system of linear equations, $\boldsymbol{A x}=\boldsymbol{b}$)

Newton's method for systems of equations

Starting from an initial guess x_{0}, each iteration solves the linear system $\boldsymbol{J}\left(\boldsymbol{x}_{i}\right) \Delta_{i}=\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)$ to find the vector of increments Δ_{i}, so that $\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}-\Delta_{i}$
(can also write $\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}-\boldsymbol{J}^{-1}\left(\boldsymbol{x}_{i}\right) \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)$) where \boldsymbol{J} is a matrix of partial-derivative functions (the Jacobian), defined as $J_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}$

Example

For the system of equations

$$
\begin{gathered}
x_{1}+x_{2}+x_{1} x_{2}=0 \\
x_{1}^{2}-x_{2}+3=0
\end{gathered}
$$

$$
\boldsymbol{f}(\boldsymbol{x})=\binom{x_{1}+x_{2}+x_{1} x_{2}}{x_{1}^{2}-x_{2}+3}
$$

and

$$
\boldsymbol{J}(\boldsymbol{x})=\left(\begin{array}{cc}
1+x_{2} & 1+x_{1} \\
2 x_{1} & -1
\end{array}\right)
$$

If we start with $x_{0}=\binom{0}{0}$, Newton's method gives

$$
\begin{gathered}
x_{1}=\binom{0}{0}-\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)^{-1}\binom{0}{3}=\binom{-3}{3}, \\
x_{2}=\binom{-1.3125}{1.8750}, x_{3}=\binom{-0.5579}{2.7419}, \ldots
\end{gathered}
$$

