12. Optimization

Outline

- Definition and examples
- Single variable (golden section search, Newton's method)
- Multi-variable (just Newton's)

Definition

- Given a known function, $f(x)$, find a point that is a local optimum (maximum or minimum, depending on problem)
- By convention, we usually consider minimization - note that $\max f(x)=-\min -f(x)$
- Functions may have many local optima - plotting the function can find a range over which the desired minimum is the only one

Applications

- Minimizing travel time
- Minimize cost in building, water distribution, ...
- How much to charge to maximize profit (homework problem)
- Solving regression problems (Section 10)

Examples from calculus

- What's the largest-volume open box that can be constructed from a 1.5 m by 1 m cardboard rectangle?
- What's the largest volume a cylinder with a surface area of $100 \mathrm{~cm}^{2}$ can have?
- What size board with rectangular cross-section should be cut from a 2-m diameter cylindrical log to maximize its strength under cantilever loading, if this strength is proportional to $x y^{2}$, where x and y are the rectangle sides?
- You're designing a 3-m long hollow concrete column whose cost in dollars is given by $\left(\mathrm{m} / \mathrm{m}_{0}\right)^{1.2}$, where m is the column mass and m_{0} is 1 kg . If your budget is $\$ 500$ and the density of concrete is $2000 \mathrm{~kg} \mathrm{~m}^{-3}$, what diameter d and thickness t should the column have to be as strong as possible, given that the strength (against buckling) is proportional to $d t\left(d^{2}+t^{2}\right)$?

Golden-section search

- Similar to bisection in that it will always find a minimum if one exists within an interval
- Converges at a slow, predictable rate
- Uses the 'golden ratio', $\phi=\frac{\sqrt{5}+1}{2} \approx 1.618\left(\phi-1=\frac{1}{\phi}\right)$
- Each iteration:
- Given an interval $[a, b]$
- Compare the values of f at $c=a+(\phi-1)(b-a)$ and $d=a+(2-\phi)(b-a)$
- If $f(c)<f(d)$, the new interval is $[b, d]$
- If $f(d)<f(c)$, the new interval is $[a, c$]
- Regardless, interval width drops by a factor of ϕ each iteration, so after n iterations, error decreases by about ϕ^{-n} (linear convergence)
- To find a maximum instead of a minimum, either replace f by $-f$ or replace $<$ by $>$

Illustration

Example

Find a minimum of $f(x)=x-5 \sin (x)$
By plotting the function, we see that it has a local minimum for x between 1 and 2
Choosing $a=1, b=2$, for the first iteration of golden section search we find that $c=1.618, d=1.382$ and $f(d)<f(c)$, so the new interval is 1 to 1.618
With $a=1, b=1.618$, we have $c=1.382, d=1.236$ and $f(c)<f(d)$, so the new interval is 1.618 to 1.236 With $a=1.618, b=1.236$, we have $c=1.382, d=1.472$ and $f(c)<f(d)$ still, so the new interval is 1.236 to 1.472
We would need about 30 iterations to find the minimum to 6 accurate digits $\left(\phi^{-29} \approx 10^{-6}\right)$

Newton's method

- Do root finding for the derivative of f, since at an optimum point, this derivative should be 0
- Works for finding a minimum or maximum
- Iteration is $x_{i+1}=x_{i}-\frac{f^{\prime}\left(x_{i}\right)}{f^{\prime \prime}\left(x_{i}\right)}$
- Converges fast if starting value is 'good'

Example

For this function, the iteration is $x_{i+1}=x_{i}-\frac{1-5 \cos \left(x_{i}\right)}{5 \sin \left(x_{i}\right)}$
If we start with $x_{0}=1$, we have
$x_{1}=1.4044, x_{2}=1.3695, x_{3}=1.3694$

Multi-dimensional optimization

- Often f is actually a function of several variables, which we can write as $f(\boldsymbol{x})$.
- Finding an optimum then is a more difficult problem
- Golden-section search doesn't work in this case
- Newton's method can be generalized to work
- In practice, there are many numerical methods available you'll learn more about them in CE 316

Newton's method for multidimensional optimization

- The equivalent of $f^{\prime}(x)$ is the gradient vector of first partial derivatives, $\nabla(\boldsymbol{x})$, where $\nabla_{i}=\frac{\partial f}{\partial x_{i}}$
- The equivalent of $f^{\prime \prime}(x)$ is the (symmetric) Hessian matrix of second partial derivatives, $\boldsymbol{H}(\boldsymbol{x})$, where $H_{i, j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$
- The iteration is $\boldsymbol{x}_{i+1}=\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{H}^{-1}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \nabla\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$, or (computationally preferable) solve $\boldsymbol{H}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \Delta_{i}=\nabla\left(\boldsymbol{x}_{i}\right)$ for the vector Δ_{i}, and then $\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}-\Delta_{i}$

Example

If $f=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-e^{-x_{1}^{2}}+10 \cos \left(x_{1}-x_{2}\right)$, then
$\nabla=\binom{2 x_{1}-x_{2}+2 x_{1} e^{-x_{1}^{2}}-10 \sin \left(x_{1}-x_{2}\right)}{2 x_{2}-x_{1}+10 \sin \left(x_{1}-x_{2}\right)}$
\boldsymbol{H}
$\left(\begin{array}{cc}2+\left(2-4 x_{1}^{2}\right) e^{-x_{1}^{2}}-10 \cos \left(x_{1}-x_{2}\right) & -1+10 \cos \left(x_{1}-x_{2}\right) \\ -1+10 \cos \left(x_{1}-x_{2}\right) & 2-10 \cos \left(x_{1}-x_{2}\right)\end{array}\right)$

By plotting the function, we might come up with $x_{0}=\binom{1}{-1}$ as a good starting point for finding a minimum.
We then have $\nabla\left(\boldsymbol{x}_{0}\right)=\binom{-5.3572}{6.0930}$ and
$\boldsymbol{H}\left(\boldsymbol{x}_{0}\right)=\left(\begin{array}{cc}5.4257 & -5.1615 \\ -5.1615 & 6.1615\end{array}\right)$
Then $\boldsymbol{x}_{1}=\boldsymbol{x}_{0}-\boldsymbol{H}\left(\boldsymbol{x}_{0}\right) \backslash \nabla\left(\boldsymbol{x}_{0}\right)=\binom{1.2297}{-1.7965}$.

More steps

Repeating the process results in $\boldsymbol{x}_{2}=\binom{0.9533}{-1.7421}$ and
$x_{3}=\binom{0.9608}{-1.7242}$.
We can check that we are actually moving toward a minimum by monitoring f. $f\left(x_{0}\right)=-1.5293, f\left(x_{1}\right)=-3.2053, f\left(x_{2}\right)=$ $-3.8195, f\left(x_{3}\right)=-3.8203$, which is the direction we want.

