
2. Accuracy and errors

1 / 19

Quantifying error

If x is a computed solution and x∗ is the true value,

▶ Absolute error: Ea = |x − x∗|
▶ Fractional (or relative) error: Ef = |x − x∗|/|x∗|

2 / 19

Estimating error

In real problems, we generally know the computed solution, but
not the true value. Then we have to estimate the (absolute or
fractional) error. One way to do that is by comparing solutions
computed using different methods, or the same method but, for
example, different step sizes or numbers of iterations.

3 / 19

Practice problem

Find the absolute and relative errors of approximating π by 22/7.

4 / 19

Practice problem

Find the absolute and relative errors of approximating the
derivative of x1.8 at x = 0.5 using centered finite difference with
h = 0.1.

5 / 19

Roundoff error

A computation system can only represent some numbers exactly.
Numbers input or arising from computations that can’t be
represented exactly are typically rounded to the closest number
that can.

6 / 19

Floating-point numbers

In, for example, double precision, which is the most frequently used
for numerical computations, each representable (binary) number is
expressed in 64 bits as

(−1)s × 2E−1023 × (1.b2b3b4 . . . b53)2

where s is the sign bit that determines if a number is positive or
negative, the exponent E is an 11-bit integer between 0 to 2046
that sets the number’s scale, and the 52 bits b2 . . . b53 form the
mantissa that specifies the value.

There are other possible formats, such as single precision, which is
less accurate and can only handle smaller numbers, but takes half
as many bits to store.

7 / 19

Machine epsilon

Machine epsilon, ϵ, measures the fractional error due to roundoff in
a given computation system. ϵ is defined as the smallest
representable number larger than 1, minus 1. For double precision,
ϵ = 2−52 ≈ 10−16

8 / 19

Other characteristics of double-precision floating point

▶ Only fractions whose denominator is a power of 2 – i.e. which
can be written I

2p for integer I and p – can be represented
exactly in binary floating-point

▶ Special values: 0,−0,∞ (numpy.inf),−∞, numpy.nan (not
a number)

▶ Largest representable number is 21024 (10308) – anything
larger overflows to inf

▶ Smallest representable positive number is 2−1022 (or 2−1074

including denormal numbers) – anything smaller underflows to
0

9 / 19

Practice problem

The expression f (n) = nn

n! , where n is a positive integer, can be
calculated in two mathematically equivalent ways:
a) (nn)

(n!) ,

b) (nn)(
n

n−1)(
n

n−2) . . . (
n
1).

Try both methods in Python. For each method, which n leads to
overflow?

10 / 19

Propagation of roundoff: multiplication and division

If we have some error at each step of a computation, for example
due to roundoff, what happens to the final result?

If we multiply or divide two numbers a, b, one of which has a
fractional error ϵ, the fractional error in ab or a/b is still ϵ

11 / 19

Addition and subtraction

On the other hand, if we add or subtract two numbers with some
fractional error ϵ, the fractional error in a+ b or a− b could in
some cases be much larger

That’s the case when we subtract two numbers that are very close
together (subtractive cancellation)

This is an example of an ill-conditioned mathematical procedure –
where a small fractional change in one of the inputs can cause a
large fractional change in the result

12 / 19

Some roundoff error examples

▶ 0.3 / 0.1

▶ Plotting (x − 1)7, expanded, near x = 1

▶ Partial sums of the Taylor series of sin(x) about a = 0 for
x = 41π/2

▶ Solving linear systems with almost singular coefficient matrices

13 / 19

Practice problem

a) Rewrite
√
x + 1− 1 to get rid of subtractive cancellation when

x is close to 0.
b) Rewrite

√
x + 1−

√
x to get rid of subtractive cancellation

when x is very large.

14 / 19

Practice problem

Use the Taylor series with remainder term proportional to x6 to
approximate the expression ex−1

x in a form not subject to
subtractive cancellation for x close to 0.

15 / 19

Practice problem

a) Use the Taylor series with remainder term proportional to x5 to
approximate the expression 1− sin(x) in a form not subject to
subtractive cancellation for x close to π/2 radians.
b) Use algebra and trigonometric identities to find an exact
mathematical equivalent to 1− sin(x) that is not subject to
subtractive cancellation for x close to π/2 radians.

16 / 19

Truncation error

▶ Generally, error in solving a mathematical problem using
approximate numerical methods

▶ More specifically, using only some number of terms from a
series such as the Taylor series to derive or apply a numerical
method, when theoretically using an infinite number of terms
would give the exact answer

▶ Examples:
▶ Newton method (exact in convergent cases after infinite

iterations)
▶ Finite difference formula (exact if h = 0)
▶ Euler method (exact if h = 0)

17 / 19

Practice problem

Using Python, estimate e−7 using the Taylor series about a = 0 in
two ways: a) Add the first 50 terms in the Taylor series of ex for
x = −7. b) Add the first 50 terms in the Taylor series of ex for
x = 7 and take the reciprocal. What are the fractional errors of
each estimate? Which of the two estimates is more accurate, and
why?

18 / 19

Total error

In solving a mathematical problem, both truncation and roundoff
errors may occur
Example: Error in the finite difference formula and in the Taylor
series sum can be dominated by either truncation or roundoff,
depending on h or on the number of terms summed
Additionally, there may be modeling, measurement, or other errors
in terms of the mathematical problem representing the engineering
situation

19 / 19

