
3. Solving linear systems
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I. Matrix concepts
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Matrix

Defined as a table of numbers, arranged in rows and columns.

▶ Plural: matrices

▶ Conventionally denoted by bold (or double underlined in
handwriting) capital letters

Example:

M =

 1 −1 2 2
1 0.3 0.1 1
1 1 0 −1


An element in a matrix can be denoted by the row and column
indices. For example, M2,3 = 0.1

A matrix is square if the number of columns is equal to the
number of rows.

The main diagonal of a matrix includes the elements whose row
index is the same as their column index.
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Diagonal matrix

This is a matrix where all elements not in the main diagonal are
zero.
Example: 

9 0 0 0
0 2 0 0
0 0 10 0
0 0 0 8
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Identity matrix

This is a diagonal square matrix where all elements on the main
diagonal are 1.
Example:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Upper triangular matrix

This is a matrix where everything in the lower triangle (below main
diagonal, row index greater than column index) is 0.
Example: 

9 6 2 6
0 8 3 2
0 0 3 2
0 0 0 8
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Lower triangular matrix

This is a matrix where everything in the upper triangle (above
main diagonal, row index less than column index) is 0.
Example: 

0 0 0 0
3 −4 0 0
−2 0 2 0
1 0 0 0
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Transpose
The transpose of a matrix is formed by interchanging its row and
column indices.
Example:

If M =

 1 −1 2 2
1 0.3 0.1 1
1 1 0 −1

 , then MT =


1 1 1
−1 0.3 1
2 0.1 0
2 1 −1


A row vector is a matrix with only one row. Its transpose would be
a column vector, with only one column.

A symmetric matrix is one that is the same as its transpose.
Example: 

9 3 1 3
3 5 2 8
1 2 6 4
3 8 4 7


8 / 38



Matrix addition

We can add a number (scalar) to each element in a matrix:

3 +

 1 −1 2 2
1 0.3 0.1 1
1 1 0 −1

 =

 4 2 5 5
4 3.3 3.1 4
4 4 3 2


Or we can add corresponding elements in two matrices that are the
same size (number of rows and columns) −1 −1 0 2
−1 −1 2 3
−1 0 1 0

+

 1 −1 2 2
1 0.3 0.1 1
1 1 0 −1

 =

 0 −2 2 4
0 −0.7 2.1 4
0 1 1 −1


Similarly for subtraction.
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Scalar and elementwise multiplication

We can multiply each element of a matrix by a number:

2

 1 −1 2 2
1 0.3 0.1 1
1 1 0 −1

 =

 2 −2 4 4
2 0.6 0.2 2
2 2 0 −2


Or we can multiply corresponding elements in two matrices that
are the same size: −1 −1 0 2
−1 −1 2 3
−1 0 1 0

⊙
 1 −1 2 2

1 0.3 0.1 1
1 1 0 −1

 =

 −1 1 0 4
−1 −0.3 0.2 3
−1 0 0 0


Similarly for division.
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Matrix multiplication

This is different from elementwise multiplication. Each element in
the result is the dot product of the corresponding row of the first
matrix with the corresponding column of the second matrix,
notated as (AB)i ,j =

∑p
k=1 Ai ,kBk,j .

p the number of columns in A and the number of rows in B, which
must be the same.
For example,

 −1 −1 0 2
−1 −1 2 3
−1 0 1 0




1 1 1
−1 0.3 1
2 0.1 0
2 1 −1

 =

 4 0.7 −4
10 1.9 −5
1 −0.9 −1

 .

Matrix multiplication is associative, i.e. (AB)C = A(BC), but not
commutative, i.e. BA ̸= AB
If A has n columns and In is the n × n identity matrix, AIn = A.
Similarly, if A has n rows, InA = A
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Matrix inverse

An n × n matrix B is said to be the inverse of a given matrix A of
the same size if AB = BA = In
For example, −1 −2 1

−1 0 1
−4 2 −1

 −0.2 0 −0.2
−0.5 0.5 0
−0.2 1 −0.2

 =

 1 0 0
0 1 0
0 0 1

 .

“Most” square matrices have an inverse. A matrix can only have
one inverse.
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Sparse matrices

A matrix is said to be sparse if most of its elements are zero.

Sparsity is relevant to computation because if a matrix has many
elements but the vast majority are zero, storing only the nonzero
elements (and their row and column indices) can save memory.
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Tridiagonal matrices

A tridiagonal matrix only has nonzero entries on the main diagonal
and directly above and below it (i.e., where the row index and
column index differ by no more than 1).

For example, 
4 1 0 0 0
7 8 5 0 0
0 5 9 8 0
0 0 2 8 1
0 0 0 5 7
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II. Solving linear systems
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Systems

Typically in an engineering problem, there are many quantities that
all play a part. Instead of just changing one at a time, we need to
think of a system that includes them all.

If these quantities are denoted x1, x2, x3, . . . , xn, the simplest
mathematical model for a system includes linear combinations of
them, of the form
a1x1 + a2x2 + a3x3 + . . .+ anxn = b
where the ai and b are some known values (a linear equation).
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System of linear equations

If we have n quantities and n different linear equations involving
them, there is typically a unique solution to the system. We can
write the system generically as

a1,1x1 + a2,1x2 + a3,1x3 + . . .+ an,1xn = b1

a1,2x1 + a2,2x2 + a3,2x3 + . . .+ an,2xn = b2

a1,3x1 + a2,3x2 + a3,3x3 + . . .+ an,3xn = b3

. . .

a1,nx1 + a2,nx2 + a3,nx3 + . . .+ an,nxn = bn,

where for each equation j , the ai ,j coefficients are different.

Using the definition of matrix multiplication, we can write this
more compactly as Ax = b, where A is the n× n matrix whose row
i , column j element is ai ,j , x is the n × 1 matrix of problem
quantities whose ith element is xi , and b is the n× 1 matrix whose
jth element is bj .
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Example
If the linear equations are

2x1 + 3x3 = 17

−x1 + x2 − 2x3 = −4
x1 + 2x2 − 4x3 = −5,

we can write them as a matrix multiplication: 2 0 3
−1 1 −2
1 2 −4

 x1
x2
x3

 =

 17
−4
−5


Or, more compactly, we can not show the unknown xi , giving the
augmented matrix form 2 0 3 17

−1 1 −2 −4
1 2 −4 −5
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Solving linear systems: diagonal coefficient matrix

If Ax = b and A is a diagonal matrix, we can solve for x quickly
with just n divisions of the form xi = bi/Ai ,i . There is a unique
solution as long as none of the diagonal elements Ai ,i is zero.
For example,  2 0 0

0 1 0
0 0 −4

 x1
x2
x3

 =

 17
−4
−5
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Solving linear systems: upper triangular coefficient matrix
If Ax = b and A is an upper triangular matrix, we can find x with
a total of n2 arithmetic operations as follows (back substitution):

xn = bn/An,n

xn−1 = (bn−1 − An−1,nxn)/An−1,n−1

xn−2 = (bn−2 − An−2,nxn − An−2,n−1xn−1)/An−2,n−2

. . . [xi = (bi −
n∑

j=i+1

Ai ,jxj)/Ai ,i ]

x1 = (b1 −
n∑

j=2

A1,jxj)/A1,1

There is a unique solution as long as none of the diagonal elements
Ai ,i is zero.
For example,  2 0 3

0 1 −2
0 0 −4

 x1
x2
x3

 =

 17
−4
−5
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Solving linear systems: lower triangular coefficient matrix
If Ax = b and A is a lower triangular matrix, we can find x with a
total of n2 arithmetic operations as follows (forward substitution):

x1 = b1/A1,1

x2 = (b2 − A1,2x1)/A2,2

x3 = (b3 − A1,3x1 − A2,3x2)/A3,3

. . . [xi = (bi −
i−1∑
j=1

Ai ,jxj)/Ai ,i ]

xn = (bn −
n−1∑
j=1

An,jxj)/An,n

There is a unique solution as long as none of the diagonal elements
Ai ,i is zero.
For example,  2 0 0

−1 1 0
1 2 −4

 x1
x2
x3

 =

 17
−4
−5
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Solving general linear systems

If Ax = b and A is a general matrix, one approach to finding x is to
convert the problem to an equivalent one with an upper triangular
coefficient matrix by systematically subtracting multiples of upper
rows of the augmented matrix from lower rows (elementary row
operations) so that more of the lower triangle elements become
zero. This approach is called row reduction or Gaussian
elimination. Because there are almost n2/2 elements to convert to
zero and each elementary row operation requires O(n) arithmetic
operations, the whole process involves O(n3) arithmetic operations.

22 / 38



Gauss elimination example

With

 2 0 3 17
−1 1 −2 −4
1 2 −4 −5

 ,

,we can subtract −1/2 times row 1 from row 2: 2 0 3 17
0 1 −1/2 9/2
1 2 −4 −5


and subtract 1/2 times row 1 from row 3: 2 0 3 17

0 1 −1/2 9/2
0 2 −11/2 −27/2


,then subtract 2 times row 2 from row 3: 2 0 3 17

0 1 −1/2 9/2
0 0 −9/2 −45/2


.
This gives an upper triangular coefficient matrix, and we can now
find x by back substitution.
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Practice problem

Use row reduction to write the following as an upper triangular
system:  3 1 5 −60

4 1 0 37
3 4 4 −76
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Row reduction algorithm

Inputs: n × n matrix A and n × 1 b.
Go from column 1 to column n− 1 (denote the column index as c)
Go from row c + 1 to row n (denote the row index as r)
Find the multiplier as mr ,c = Ar ,c/Ac,c

Apply a row operation: Ar ,i ← Ar ,i −mr ,cAc,i for i = 1, 2, . . . n,
and br ← br −mr ,cbc .

The result will be a new A (upper triangular) and b, as long as
none of the pivots Ac,c are zero.
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A modification: row pivoting

Row pivoting (also called partial pivoting) aims to avoid zero
pivots, and also pivots that are almost zero (possibly due to
roundoff; dividing by them could make the problem conditioning
worse).
It relies on changing the order of rows, so that the pivot element is
as far from zero as possible
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Row reduction algorithm with pivoting

Inputs: n × n matrix A and n × 1 b.
Optional: start with a vector v of numbers 1 to n, or a
permutation matrix P equal to In
Go from column 1 to column n− 1 (denote the column index as c)
Let p be a row, out of the rows c to n, where |Ap,c | is as large as

possible
Interchange rows p and c of A, same for b
Optional: Also interchange rows p and c of v or P
Go from row c + 1 to row n (denote the row index as r)
Find the multiplier as mr ,c = Ar ,c/Ac,c

Apply a row operation: Ar ,i ← Ar ,i −mr ,cAc,i for i = 1, 2, . . . n,
and br ← br −mr ,cbc .

Note: with this form of pivoting, all the multipliers m will be 1 or
less in absolute value
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Row pivoting example

With

 2 0 3 17
−1 1 −2 −4
1 2 −4 −5

, no interchange is needed to begin

with, since row 1 already has the largest absolute value of all rows
for column 1. Subtract −1/2 times row 1 from row 2 and subtract

1/2 times row 1 from row 3:

 2 0 3 17
0 1 −1/2 9/2
0 2 −11/2 −27/2

. Now

row 3 has the largest absolute value for column 2 across rows 2
and below, so interchange rows 2 and 3: 2 0 3 17

0 2 −11/2 −27/2
0 1 −1/2 9/2

. Then subtract 1/2 times row 2 from

row 3:

 2 0 3 17
0 2 −11/2 −27/2
0 0 9/4 45/4

.

This gives an upper triangular coefficient matrix, and we can now
find x by back substitution.
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Practice problem

Use row reduction with row pivoting to write the following as an
upper triangular system: 3 1 5 −60

4 1 0 37
3 4 4 −76
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Matrix factorization interpretation of row reduction

The effect of A of each elementary row operation is equivalent to
multiplying it on the left by a unit lower triangular matrix whose
only nonzero element in the lower triangle is −mc,r at position
(c , r).
It turns out that when the original A is transformed to an upper
triangular matrix U, we can recover A by multiplying U by a unit
lower triangular matrix L, each of whose lower triangular elements
is equal to the corresponding mc,r multiplier.
So A = LU, where the matrix factors L,U can be found using row
reduction. This is called the LU factorization/decomposition of A.
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Example

For A =

 2 0 3
−1 1 −2
1 2 −4

,

U =

 2 0 3
0 1 −1/2
0 0 −9/2

 ,L =

 1 0 0
−1/2 1 0
1/2 2 1

 .

We can verify that U is upper triangular, L is lower triangular, and
LU = A.
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Factorization using row reduction with pivoting

To avoid zero (or small) pivots, we usually want to add row
pivoting to the row reduction. The result is then L and U factors
that multiply to A with the same rows interchanged as done in the
pivoting steps, that is LU = PA.
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Example with row pivoting

For A =

 2 0 3
−1 1 −2
1 2 −4

,

U =

 2 0 3
0 2 −11/2
0 0 9/4

 ,L =

 1 0 0
−1/2 1 0
1/2 1/2 1

 .

We can verify that U is upper triangular, L is lower triangular, and

LU = PA =

 1 0 0
0 0 1
0 1 0

 2 0 3
−1 1 −2
1 2 −4

 = 2 0 3
1 2 −4
−1 1 −2

 .
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Uniqueness of solution to a linear system

If Gauss elimination with row pivoting returns a solution, it
normally will be a unique solution, corresponding to x = A−1b. If
A has no inverse (is singular), there is no unique solution and the
Gauss elimination + back substitution will fail (there will be zero
or infinitely many solutions).
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Accuracy of solution where there are errors

If A or b have small fractional errors, or if there is roundoff error in
the row reduction computations, the computed x may differ from
the true one. The expected fractional error is proportional to the
condition number of A times the roundoff machine epsilon (or
magnitude of other fractional error) ϵ. The condition number is at
least 1, goes to infinity where A has no inverse, and becomes very
large if A does have an inverse but is close to a singular matrix.
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Solving linear systems with LU factorization

If PA = LU, we can solve any linear system Ax = b in two steps:
1) Solve Ly = Pb for y (forward substitution)
2) Solve Ux = y for x (back substitution).
Each step only requires n2 operations, as opposed to O(n3) to get
the L and U factors using row reduction.
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Finding the matrix determinant with LU factorization

▶ The determinant of a matrix product is the product of the
determinants of the factors.

▶ The determinant of a triangular matrix is the product of the
elements on the main diagonal.

▶ Each interchange of rows in a matrix flips the determinant’s
sign.
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Finding the matrix inverse with LU factorization

▶ The inverse of A can be found by solving AX = I for X.

▶ In theory, for any invertible A, we can write the solution to
Ax = b as x = A−1b. However, finding the inverse is not the
most computationally accurate or efficient way to solve the
problem – it’s better to use the LU factorization of A to set
up and solve triangular systems.
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