
5. Differentiation
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Derivatives

Numerical methods can be used to find the value of derivatives, if
they can’t be obtained analytically.
With finite difference, we use approximate formulas that are exact
in the limit of a size parameter going to zero.
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Centered finite difference for the first derivative
Subtracting Taylor series,

f (x + h) = f (x) +hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ+)

f (x − h) = f (x) −hf ′(x) +
h2

2
f ′′(x) −h3

6
f ′′′(ξ−)

f (x + h)− f (x − h) = 2hf ′(x) +
h3

3
f ′′′(ξ)

so f ′(x) ≈ f (x + h)− f (x − h)

2h

with absolute error h2

6 |f
′′′(ξ)|, or

|h26 f
′′′(x) + h4

120 f
(5)(x) + h6

5040 f
(7)(x) + . . . |. Since the error is

O(h2), this formula is said to be second-order accurate.
More accurate (higher order) centered finite difference formulas can
be derived by adding, e.g., f (x − 2h) and f (x + 2h) to the formula,
which enables canceling out more initial terms in the Taylor series.
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Centered finite difference for the second derivative

Adding Taylor series,

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f (4)(ξ+)

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x) −h3

6
f ′′′(x) +

h4

24
f (4)(ξ−)

f (x + h) + f (x − h)− 2f (x) =h2f ′′(x) +
h4

12
f (4)(ξ)

so f ′′(x) ≈ f (x + h) + f (x − h)− 2f (x)

h2

with absolute error h2

12 |f
(4)(ξ)|. Again, the error is O(h2), so this

formula is second-order accurate.
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Forward finite difference for the first derivative

f (x + h) = f (x) +hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ1)

f (x + 2h) = f (x) +2hf ′(x) + 2h2f ′′(x) +
4

3
h3f ′′′(ξ2)

4f (x + h)− f (x + 2h) = 3f (x) +2hf ′(x) −2

3
h3f ′′′(ξ)

so f ′(x) ≈ 4f (x + h)− f (x + 2h)− 3f (x)

2h

This is a non-centered finite-difference formula that is second-order
accurate – absolute error is 2

3h
2|f ′′′(ξ)|. A backward

finite-difference formula f ′(x) ≈ −4f (x−h)+f (x−2h)+3f (x)
2h can

similarly be derived, with the same level of accuracy.
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Example

Let f (x) =
√
x . We can estimate f ′(1) using the finite difference

formulas with h = 0.1 as 0.50063 (centered), 0.49895 (forward),
0.49847 (backward). Similarly, we can estimate f ′′(1) as −0.25079

Exercise: check these values and determine the fractional error of
each compared to the analytic derivatives.
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Truncation and roundoff errors

Taking the O(h2) centered finite difference first-derivative formula
as an example,
Absolute truncation error ∼ h2

6 |f
′′′(x)|, increasing with h

Absolute roundoff error ∼ ε|f (x)|
2h , decreasing with h

Total error ∼ truncation + roundoff ∼ h2

6 |f
′′′(x)|+ ε|f (x)|

2h
We can take the derivative of the total error expression with
respect to h and set it to 0 to estimate where the total error is

minimum. The result is hoptim ∼ 3

√
3
2

∣∣∣ f (x)
f ′′′(x)

∣∣∣ ε, so if we take h

smaller than O(ε1/3), roundoff error will likely result in the
finite-difference formula giving inaccurate results.
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Combining different finite difference estimates to reduce
truncation error

Consider the series form of the centered finite difference
first-derivative formula truncation error:∣∣∣∣h26 f ′′′(x) +

h4

120
f (5)(x) +

h6

5040
f (7)(x) + . . .

∣∣∣∣
If we calculate the formula results for two h values, h1 and
h2 = h1

2 , we can cancel out the first (lowest-order) error term by
combining the two results as r = 4

3 r2−
1
3 r1. The error series for r is

∣∣∣∣ ( 43h22− 1
3
h21)

6 f ′′′(x) +
( 4
3
h42−

1
3
h41)

120 f (5)(x) +
( 4
3
h62−

1
3
h61)

5040 f (7)(x) + . . .

∣∣∣∣
=

∣∣∣∣− 1
4
h41

120 f (5)(x) +
− 5

16
h61

5040 f (7)(x) + . . .

∣∣∣∣
We can repeat this process to then cancel out more terms
(h4, h6, . . .), improving the accuracy for small enough h.
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Richardson extrapolation

This is systematized in an algorithm as follows:
Given a function f , where D0

0 is the derivative estimate using
centered finite difference with step size h0, i.e.
D0
0 = f (x+h0)−f (x−h0)

2h0
Estimates with smaller step size are obtained as
D0
i = f (x+hi )−f (x−hi )

2hi
, with hi = h0

2i
, i = 1, 2, . . .

Combined estimates, which cancel out terms in the error series, are
obtained as

D j
i ≡

4j

4j − 1
D j−1
i+1 −

1

4j − 1
D j−1
i ,

for j = 1, 2, . . .

9 / 10



Example

For f (x) =
√
x , we can estimate f ′(1) using Richardson

extrapolation with h0 = 0.4 via

D0
0 =

√
1.4−

√
0.6

0.8 = 0.51077

D0
1 =

√
1.2−

√
0.8

0.4 = 0.50254
D1
0 = 4

3D
0
1 − 1

3D
0
0 = 0.49980

D0
2 =

√
1.1−

√
0.9

0.2 = 0.50063
D1
1 = 4

3D
0
2 − 1

3D
0
1 = 0.49999

D2
0 = 16

15D
1
1 − 1

15D
1
0 = 0.500001

If we reached a certain maximum j ≥ 1, we can estimate the
absolute error in our highest-order estimate D j

0 using the difference

between it and the second-best estimate: |D j
0 − D j−1

1 |
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