
7. Numerical methods for ordinary differential
equations

Initial value problems

1 / 27

Outline

1. Definitions and introduction

2. Numerical methods
▶ Explicit methods: Euler, Heun, RK4
▶ Implicit methods: Implicit Euler, Crank-Nicolson

3. Extension to systems of differential equations

4. Higher-order differential equations

2 / 27

Definitions

▶ An ordinary differential equation (ODE) is one where
derivatives of an unknown function of one variable appear.

▶ The order of a differential equation is the highest derivative
that appears in it.
▶ An equation can be first-order, second-order, . . .

3 / 27

Standard form for ODE initial value problems (IVPs)

▶ First-order: y ′(t) = f (t, y(t)) and y(t = t0) = y0
where t0, y0 are known values, f is a known function, and y(t)
is an unknown function

▶ Second-order: y ′′(t) = f (t, y(t), y ′(t)) and y(t = t0) = y0
and y ′(t = t0) = dy0

▶ Etc. for higher order; in general, an ODE of order n can be
written as

dny

dtn
= f

(
t, y ,

dy

dt
,
d2y

dt2
, . . . ,

dn−1y

dtn−1

)
and the corresponding initial values as

y(t0) = y
(0)
0 ,

dy

dt
(t0) = y

(1)
0 ,

d2y

dt2
(t0) = y

(2)
0 , . . . ,

dn−1y

dtn−1
(t0) = y

(n−1)
0

(all n initial values must be given at the same t = t0)

4 / 27

Some examples of ODEs

▶ First-order:
▶ Cooling of something hot
▶ Epidemic spread (e.g. the susceptible-recovered-infected [SIR]

model)

▶ Second-order
▶ Mechanics (Newton’s Second Law), electromagnetism
▶ Waves, vibrations (e.g. shear-building model)

▶ Fourth-order
▶ Beam deflection (Euler-Bernoulli theory)

5 / 27

A typical first-order ODE initial-value problem

▶ Given the ODE y ′(t) = f (t, y(t)), and knowing that
y(a) = y0 (the initial value; the initial point is denoted a or
t0), find y(b) (where b is some other point).
▶ Or sometimes we may want to find y at various points

between a and b, not just at the one point b

▶ Example: If y ′(t) = t − y and y(t = 0) = 1, estimate
y(t = 2).
▶ So a = 0, b = 2, y0 = 1

▶ Some ODEs can be solved analytically (cf. your differential
equations class). Here, we will concentrate on numerical
methods that enable us to find approximate solutions even
where there is no analytic solution.

6 / 27

Solving by steps

▶ Typically, we divide the interval [a, b] into segments by taking
points (often equally spaced) a = t0, t1, t2, . . . tN = b and
apply a numerical solution procedure to each segment starting
with the initial point
▶ Thus, we would start with t0, where we know that the value of

y is y0. Then we would estimate the value of y at t1 as y1.
▶ We use this estimated y1 as the new initial value to estimate y

at t2, calling this estimate y2
▶ And continue until, after N steps, we get yN , which is the

estimated value of y at t = b

▶ Generally, for a given numerical method applied at each step,
the smaller each step is, the more accurate our estimate of
y(b)

7 / 27

Euler’s method

▶ As we saw before, for this numerical method, each step is
yi+1 = yi + hf (ti , yi), where h is the step size (ti+1 − ti).

▶ For our example case, if we take N = 3 equal steps so that h
is b−a

N = 2
3 ,

▶ y1 = y0 + h(t0 − y0) =
1
3

▶ y2 = y1 + h(t1 − y1) =
5
9

▶ y3 = y2 + h(t2 − y2) =
29
27 ≈ 1.074, which is the obtained

estimate for y(t = 2).

8 / 27

Sketch of several Euler method steps

A 1

A 2
A

3 A
4

A 0

9 / 27

https://commons.wikimedia.org/wiki/File:Euler_method.svg

Heun’s method

▶ This is more elaborate, in that at each step there are two
estimates of the average value of f between ti and ti+1, which
are averaged to estimate how much y changes over the step:

▶ yi+1 = yi +
1
2(K1 + K2), where

▶ K1 = hf (ti , yi)
▶ K2 = hf (ti + h, yi + K1)

▶ For our example case, with N = 3 equal steps as before,
▶ First step: K1 = h(t0 − y0) = − 2

3 ,K2 = h(t1 − (y0 + K1)) =
2
9 , y1 = y0 +

1
2 (K1 + K2) =

7
9

▶ Second step: K1 = h(t1 − y1) = − 2
27 ,K2 =

h(t2 − (y1 + K1)) =
34
81 , y2 = y1 +

1
2 (K1 + K2) =

77
81

▶ Third step: K1 = h(t2 − y2) =
62
243 ,K2 = h(t3 − (y2 + K1)) =

386
729 , y3 = y2 +

1
2 (K1 + K2) =

979
729 ≈ 1.343, which is the

obtained estimate for y(t = 2).

10 / 27

Heun method sketch

11 / 27

https://commons.wikimedia.org/wiki/File:Heun's_Method_Diagram.jpg

The classic fourth-order Runge-Kutta method (RK4)
▶ Even more elaborate, with 4 estimates per step, 1 for the

value of f at its beginning, 2 for the middle, and 1 for the
end. between ti and ti+1:

▶ yi+1 = yi + (K1
6 + K2

3 + K3
3 + K4

6), where
▶ K1 = hf (ti , yi)
▶ K2 = hf (ti +

h
2 , yi +

K1

2)
▶ K3 = hf (ti +

h
2 , yi +

K2

2)
▶ K4 = hf (ti + h, yi + K3)

▶ For our example case,
▶ First step:

K1 = h(t0 − y0) = − 2
3 ,K2 = h((t0 +

h
2)− (y0 +

K1

2)) =

− 2
9 ,K3 = h((t0 +

h
2)− (y0 +

K2

2)) = − 10
27 ,K4 =

h((t1 − (y0 + K3)) =
2
81 , y1 = y0 + (K1

6 + K2

3 + K3

3 + K4

6) = 169
243

▶ Second step: K1 = − 14
729 ,K2 =

458
2187 ,K3 =

874
6561 ,K4 =

6622
19683 , y2 =

101866
118098 ≈ 0.8626

▶ Third step: K1 ≈ 0.3139,K2 ≈ 0.4315,K3 ≈ 0.3923,K4 ≈
0.4968, y3 ≈ 1.2722, which is the obtained estimate for
y(t = 2).

12 / 27

RK4 method sketch

13 / 27

https://commons.wikimedia.org/w/index.php?curid=64366870

Accuracy of these numerical methods

▶ For each method, the error in each step can be thought of as
truncation of a Taylor series (as we saw explicitly for the Euler
method), with a remainder term that has a derivative of f
times a power of h

▶ The error in yN = y(b) for each method is typically
proportional to a positive power of h (less error if more steps
are taken so that h is smaller). This power is the order of
accuracy of the method (which is not the same as the order of
the differential equation, explained above)
▶ Euler’s method has first-order accuracy
▶ Heun’s method has second-order accuracy
▶ The RK4 method has fourth-order accuracy (hence its name)

14 / 27

Implicit methods

▶ The methods so far for solving ODE IVPs were explicit, in
that at each step, a formula for yi+1 is given in terms of
quantities from the previous step

▶ By contrast, implicit methods have at each step a general
formula for yi+1 that is not given in terms of only known
values. This makes them more complicated to apply, but for
some problems they can be accurate at larger step sizes,
compared to explicit methods.

▶ The implicit methods we will discuss are
▶ The implicit Euler method, which has first-order accuracy
▶ The Crank-Nicolson method, which has second-order accuracy

15 / 27

Implicit Euler method

▶ Each step is yi+1 = yi + hf (ti+1, yi+1)

▶ Note that yi+1 is unknown and appears on both sides of the
equation, which is what makes this method implicit

▶ At least where f is a simple enough function, we can
nevertheless find yi+1 at each step

▶ For our example, where f (t, y) = t − y , each step is
yi+1 = yi + h(ti+1 − yi+1), which we can write as

yi+1 =
yi+hti+1

1+h . So

▶ y1 =
13
15

▶ y2 =
79
75

▶ y3 = 1.432, which is the obtained estimate for y(t = 2).

▶ Note that where the usual (explicit) Euler method gives an
overestimate of the solution, the implicit method will usually
give an underestimate, and vice versa.

16 / 27

Crank-Nicolson method

▶ Each step is yi+1 = yi +
h
2 (f (ti , yi) + f (ti+1, yi+1)) – can be

thought of as averaging the explicit and implicit Euler
methods

▶ Note that yi+1 is unknown and appears on both sides of the
equation, which is what makes this method implicit

▶ At least where f is a simple enough function, we can
nevertheless find yi+1 at each step

▶ For our example, where f (t, y) = t − y , each step is
yi+1 = yi +

h
2 (ti + ti+1 − yi − yi+1), which we can write as

yi+1 =
(1− h

2
)yi+

h
2
(ti+ti+1)

1+ h
2

. So

▶ y1 =
2
3

▶ y2 =
5
6

▶ y3 = 1.25, which is the obtained estimate for y(t = 2).

▶ Tends to give results in between (and more accurate than
either) the two Euler methods

17 / 27

Solution accuracies

▶ Sometimes, we can find the error of the numerical solution
exactly, because the true answer can be calculated

▶ For the example problem, the general solution to the
differential equation is y(t) = Ce−t + t − 1. Putting in the
initial value tells us that C = 2. So
y(2) = 2e−2 + 2− 1 ≈ 1.2707

▶ The fractional error of the different methods with h = 2
3 is

therefore
▶ Euler: 0.15
▶ Implicit Euler: 0.13
▶ Crank-Nicolson: 0.016
▶ Heun: 0.057
▶ RK4: 0.0012

▶ This is the usual pattern: for the same step size, the more
complicated higher-order methods give better accuracy

18 / 27

Stability

▶ In some cases, explicit methods require a very small step size,
otherwise the computed solution goes to infinity after many
steps (numerical instability), while implicit methods can give a
moderately accurate solution with a larger step size.

▶ The classic example of this is the ODE y ′(t) = −ky , where k
is some given positive number, and initial value y(0) = 1

▶ The analytic solution is y(t) = e−kt (exponential decay)

▶ Applying the Euler method to this problem gives
yi+1 = yi + h(−kyi) = (1− hk)yi . So after n steps, the
computed solution is yn = (1− hk)n. This is a good
approximation if h is small enough. But if h > 2

k , then
|1− hk| > 1, so limi→∞ |yi | = ∞

▶ By contrast, the implicit Euler method computed solution
correctly goes to zero no matter how large h is:
yi+1 = yi + h(−kyi+1), so yi+1 =

yi
1+hk , and yn = 1

(1+hk)n

19 / 27

Estimating solution accuracy

▶ In most cases, using higher-order accurate methods or taking
smaller step sizes improves accuracy, but requires more
computation to solve a problem.

▶ We don’t know the analytic solution to most ODE problems.
So we need to estimate the error of numerical solutions to
assess whether they are accurate enough.

▶ The usual way to do this is to compare the computed solution
using two different numerical methods, or one numerical
method with the different step sizes

▶ For example, Python’s scipy.integrate.solve ivp by
default applies a 4th-order and a 5th-order accurate RK
method at each step, and then compares the two to estimate
the error for that step. If the error is too big, then the step is
made smaller for more accuracy. If the error is smaller than
required, the next step is made bigger to reduce the amount
of computation.

20 / 27

Types of numerical methods for ODE IVPs

▶ All the methods discussed here are examples of Runge-Kutta
methods.
▶ The lecture notes give the general definition for a Runge-Kutta

method, though you won’t be required to know the details

▶ Other types of numerical methods for solving ODE IVPs, such
as predictor-corrector methods, are also used, but will not be
discussed in this class

21 / 27

Systems of first-order ODEs
▶ So far we saw how to use numerical methods for solving single

first-order ODEs.
▶ However, engineering problems often involve systems of

ODEs, as we saw, e.g., with the shear building model
▶ The same methods can be used to solve such systems also.
▶ Standard form for first-order ODE IVP systems is

z ′1(t) = f1(t, z1(t), z2(t) · · · zn(t)); z1(t = t0) = z1,0

z ′2(t) = f2(t, z1(t), z2(t) · · · zn(t)); z2(t = t0) = z2,0

· · ·
z ′n(t) = fn(t, z1(t), z2(t) · · · zn(t)); zn(t = t0) = zn,0
▶ Each unknown function zi (t) has its own first-order differential

equation (involving a known function fi) and initial value
▶ All initial values are at a common t0
▶ The problem might be to find the values of some or all of the

unknown functions at t = b
▶ More compactly, we can also write such systems in standard

form using vector notation, as
z′(t) = f(t, z); z(t = t0) = z0 22 / 27

Example with Euler method

▶ Suppose we have

{
z ′1(t) = t − z2; z1(0) = 3

z ′2(t) = z1; z2(0) = 2
or, in vector

form, f =

(
t − z2
z1

)
, t0 = 0, z0 =

(
3
2

)
▶ To find z(2) with 3 equal-length steps (h = 2

3), we would do

▶ First step: z1 = z0 + h

(
t0 − z2,0

z1,0

)
=

(
5
3
4

)
▶ Second step: z2 = z1 + h

(
t1 − z2,1

z1,1

)
=

(
− 5

9
46
9

)
▶ Third step: z3 = z2 + h

(
t2 − z2,2

z1,2

)
=

(
− 83

27
128
27

)
, which is

the obtained estimate for z =

(
z1
z2

)
at t = 2.

23 / 27

Example with Heun method
▶ For the same system and step size, we would do

▶ First step:

K1 = h · f(t0, z0) =
(

− 4
3
2

)
,K2 = h · f(t1, z0 +K1) =(

− 20
9
10
9

)
, z1 = z0 +

1
2K1 +

1
2K2 =

(
11
9
32
9

)
▶ Second step:

K1 = h · f(t1, z1) =
(

− 52
27
22
27

)
,K2 = h · f(t2, z1 +K1) =(

− 164
81

− 38
81

)
, z2 = z1 +

1
2K1 +

1
2K2 =

(
− 61

81
302
81

)
▶ Third step: K1 = h · f(t1, z1) =

(
− 388

243
− 122

243

)
,K2 =

h · f(t2, z1 +K1) =

(
− 596

729
− 1142

729

)
,

z3 = z2 +
1
2K1 +

1
2K2 =

(
− 1429

729
1964
729

)
which is the obtained

estimate for z =

(
z1
z2

)
at t = 2.

24 / 27

Converting higher-order ODEs to first order

▶ Engineering problems can also involve higher derivatives, e.g.,
with the shear building model and with differential equations
for beam deflection

▶ To use the above methods to solve a system with one or more
higher-order ODEs, each ODE of order n > 1 needs to be
converted into an equivalent system of n first-order ODEs.

25 / 27

Converting to first order: procedure
▶ Start with the higher-order ODE in standard form:

dny

dtn
= f

(
t, y ,

dy

dt
,
d2y

dt2
, . . . ,

dn−1y

dtn−1

)
with initial conditions

y(t0) = y
(0)
0 ,

dy

dt
(t0) = y

(1)
0 ,

d2y

dt2
(t0) = y

(2)
0 , . . . ,

dn−1y

dtn−1
(t0) = y

(n−1)
0 .

▶ Define a vector of unknown functions

z = (z1, z2, z3, . . . , zn) ≡
(
y ,

dy

dt
,
d2y

dt2
, . . . ,

dn−1y

dtn−1

)
▶ Write the system of first-order ODEs in terms of these

unknowns as
z ′1 = z2,
z ′2 = z3, . . .
z ′n−1 = zn,
z ′n = f (t, z1, z2, z3, . . . , zn)

▶ Write the initial conditions as zi (t0) = y
(i−1)
0 , i = 1, 2, . . . , n

26 / 27

Converting to first order: example

▶ Pendulum motion (with friction and a driving force)

second-order ODE: d2θ
dt2

+ c dθ
dt + g

L sin(θ) = a sin(Ωt)

▶ In standard form: d2θ
dt2

= a sin(Ωt)− c dθ
dt − g

L sin(θ)

▶ New unknown functions: z1 = θ, z2 = θ′

▶ New system of first-order ODEs:{
z ′1(t) = z2

z ′2(t) = a sin(Ωt)− g
L sin(z1)− cz2

▶ If the initial values are given as, e.g., θ(t0) = 0, θ′(t0) = 0.1,

we would convert them to

{
z1(t0) = 0

z2(t0) = 0.1

27 / 27

