
9. Interpolation

1 / 24



Outline

▶ Definition
▶ Types of interpolation

▶ Polynomial
▶ Piecewise polynomial

▶ Linear spline
▶ Cubic spline
▶ Shape-preserving cubic

2 / 24



Definition of interpolation

▶ Given a set of n points {xi , yi}, i = 1, 2, . . . n, find a function
f such that for all i , f (xi ) = yi .

▶ We’ll assume that the points are arranged so that the xi are in
ascending order, x1 < x2 < x3 < . . .

▶ Many different types of functions can be fit to any given set
of points. We can choose a type that makes sense for a
particular problem, or try out a few

3 / 24



A graphic example

-1

0

1

1 2 3 4 5 6

-1

0

1

1 2 3 4 5 6

-1

0

1

1 2 3 4 5 6

Figure: Different interpolating functions fit to one set of points:
polynomial, linear spline, cubic spline

4 / 24

https://en.wikipedia.org/wiki/Interpolation


Example applications

▶ Estimate quantities at different locations, temperatures, etc.
given a few experimental or computed data (table lookup)

▶ Estimate derivatives or integrals given values at a few points
(by fitting an interpolating function to those points that can
be readily differentiated and integrated)

5 / 24



Polynomial interpolation

▶ For any n different x values and any associated y values,
{xi , yi}, there’s a unique polynomial of (up to) degree n − 1
that interpolates them

▶ Advantage is that polynomials are easy to work with

▶ We’ll look at 3 methods of finding this polynomial, which give
it in different forms: 1) Solving a linear system; 2) the
Lagrange form; 3) the Newton form

6 / 24



1. Solving a linear system

The equations

xn−1
1 an−1 + xn−2

1 an−2 + . . .+ x1a1 + a0 = y1

xn−1
2 an−1 + xn−2

2 an−2 + . . .+ x2a1 + a0 = y2

. . .

xn−1
n an−1 + xn−2

n an−2 + . . .+ xna1 + a0 = yn

form a linearly independent set for the unknown coefficients ai , so
can be solved using Gauss elimination to find the coefficients. The
coefficient matrix for this system is called a Vandermonde matrix.

7 / 24



Example

For sample points
x −2 −1 0 1 3
y 9 −1 −3 −3 −5,

the linear system is

16 −8 4 −2 1 9
1 −1 1 −1 1 −1
0 0 0 0 1 −3
1 1 1 1 1 −3

81 27 9 3 1 −5,
which can be solved for the coefficients ai to give the interpolating
polynomial p(x) = 2

15x
4 − 11

15x
3 + 13

15x
2 − 4

15x − 3.

8 / 24



2. Lagrange form
Add up n polynomials of degree n − 1, each of which has the right
value at one point and is zero at the other points
Each such polynomial is of the form

yi

n∏
j=1
j ̸=i

x − xj
xi − xj

The sum is therefore p(x) =
∑n

i=1 yi
∏n

j=1
j ̸=i

x−xj
xi−xj

For the example points, this looks like

p(x) =
3

10
(x + 1)x(x − 1)(x − 3) +

1

8
(x + 2)x(x − 1)(x − 3)

− 1

2
(x + 2)(x + 1)(x − 1)(x − 3) +

1

4
(x + 2)(x + 1)x(x − 3)

− 1

24
(x + 2)(x + 1)x(x − 1)

9 / 24



3. Newton form

Add up one polynomial each of degree 0, 1, 2, . . . n− 1, so that sum
of the first i polynomials gives the right value at the first i points
The result is therefore Pn, where the intermediate partial sums are
P1 = y1 and

Pi = Pi−1 + (yi − Pi−1(xi ))
i−1∏
j=1

x − xj
xi − xj

for i = 2, . . . n
For the example points, this looks like

p(x) = Pn = 9− 10(x + 2) + 4(x + 2)(x + 1)

− (x + 2)(x + 1)x +
2

15
(x + 2)(x + 1)x(x − 1)

10 / 24



Comparing the interpolating polynomial computation
methods

▶ Solving a linear system gives directly the coefficients of the
polynomial in standard form. However, it requires more
computation (O(n3) arithmetic operations) compared to the
other methods, and is prone to roundoff error because the
condition number of Vandermonde matrices is often large.

▶ Finding the Lagrange or Newton forms requires O(n2)
operations and is less vulnerable to roundoff error

▶ The most important thing to know about these methods is
that they all result in the same polynomial, even if written
differently. For our example, p(2) = −3.8 for all of them.

11 / 24



Drawbacks of polynomial interpolation

▶ Especially for larger n, the whole interpolating polynomial may
change greatly if the value at one point is only changed
slightly (an example of ill conditioning). Also, the polynomial
will often have large oscillations even if the y values of the
points being interpolated are all within a small range

▶ Further, if more and more points are sampled within a given
interval from a known function, interpolating increasingly
higher-degree polynomials based on these points doesn’t
necessarily converge to that function (Runge’s phenomenon)

▶ Therefore, polynomial interpolation is generally not
recommended for many points (n > 5 or so)

12 / 24



Piecewise polynomials

▶ Interpolating function is made up of segments, each of which
is a polynomial of some given (lower) degree

▶ Less smooth than polynomials, but avoid the drawbacks given
above
▶ Generally local and well-conditioned – changing one point will

change the interpolating function primarily close to that point,
and a slight change in the data will not greatly change the
function

▶ Computation is faster when the number of points is large, and
not as subject to roundoff

▶ Does converge to the generating function over an interval if
more and more equally spaced points from it are added

13 / 24



Linear spline

▶ Piecewise linear function, where we draw straight lines
connecting each adjacent pair of points

▶ General formula for the ith piece (with i going from 1 to
n − 1) is
si (x) = yi +

yi+1−yi
xi+1−xi

(x − xi ) for xi ≤ x ≤ xi+1

▶ This linear spline is continuous, but doesn’t have a continuous
first derivative

14 / 24



Linear spline example

For the given points, the interpolating linear spline can be written
as

S(x) =


−11− 10x if −2 ≤ x ≤ −1

−3− 2x , if −1 ≤ x ≤ 0

−3, if 0 ≤ x ≤ 1

−2− x , if 1 ≤ x ≤ 3.

For example, S(2) would be −4.

15 / 24



Cubic spline

▶ Piecewise cubic function, where we draw cubic polynomials
connecting each adjacent pair of points

▶ The cubic polynomials are chosen such that the first and
second derivatives of the combined function are continuous,
so it looks smoother than the linear spline

16 / 24



Finding cubic splines for given points
▶ The cubic spline has n − 1 pieces, each of which is a cubic

polynomial, so looks like
si (x) = ai (x − xi )

3 + bi (x − xi )
2 + ci (x − xi ) + di for

xi ≤ x ≤ xi+1

▶ The interpolation and continuity conditions impose that
▶ si (xi ) = yi → di = yi
▶ si (xi+1) = yi+1 → aih

3
i + bih

2
i + cihi + di = yi+1

▶ s ′i (xi+1) = s ′i+1(xi+1) → 3aih
2
i + 2bihi + ci = ci+1

▶ s ′′i (xi+1) = s ′′i+1(xi+1) → 6aihi + 2bi = 2bi+1

where hi ≡ xi+1 − xi
▶ These conditions give us 4n − 6 linear equations in the 4n − 4

unknown coefficients {ai , bi , ci , di}. We need 2 more
conditions to get a unique solution. Different choices are
possible, but a common one is ”natural boundary conditions”,
where the second derivatives at the first and last points are
set to zero:
▶ s ′′1 (x1) = 0 → 2b1 = 0
▶ s ′′n−1(xn) = 0 → 6an−1hn−1 + 2bn−1 = 0

17 / 24



Linear system for the cubic spline coefficients

▶ We can simplify the system of equations algebraically by
solving for the a and c coefficients in terms of b. The result is
this tridiagonal system for the unknowns {bi |i = 1, 2, . . . n} :

1 0 0 0 . . . 0 0 0 0 0
h1 2(h1 + h2) h2 0 . . . 0 0 0 0 3(∆2 − ∆1)
0 h2 2(h2 + h3) h3 . . . 0 0 0 0 3(∆3 − ∆2)

. . .
0 0 0 0 . . . hn−3 2(hn−3 + hn−2) hn−2 0 3(∆n−2 − ∆n−3)
0 0 0 0 . . . 0 hn−2 2(hn−2 + hn−1) hn−1 3(∆n−1 − ∆n−2)
0 0 0 0 . . . 0 0 0 1 0

Here ∆i is short for
yi+1−yi

hi
The first and last equations are for natural boundary
conditions
We include an extra coefficient bn, which is not one of the

cubic coefficients but stands for the
s′′n−1(xn)

2

▶ Tridiagonal → only O(n) operations to find coefficients

▶ (The lecture notes for cubic spline use a different indexing,
where i for the points xi goes from 0 to n instead of 1 to n)

18 / 24



Finding the remaining coefficients

▶ Once the bi coefficients have been found by solving this linear
system, the remaining coefficients can be found as
▶ ai =

bi+1−bi
3hi

▶ ci = ∆i − hibi − h2i ai
▶ di = yi

19 / 24



Results for example: natural boundary conditions

The h values are 1, 1, 1, 2
The ∆ values are −10,−2, 0,−1
The linear system for the b values is
1 0 0 0 0 0
1 4 1 0 0 24
0 1 4 1 0 6
0 0 1 6 2 −3
0 0 0 0 1 0

which has the solution b = (0, 5.965, 0.140,−0.523, 0)T , based on
which a = (1.988,−1.942,−0.221, 0.087)T and
c = (−11.988,−6.023, 0.081,−0.302)T

The interpolating cubic spline is thus

S(x) =


1.988(x + 2)3 − 11.988(x + 2) + 9 if −2 ≤ x ≤ −1

−1.942(x + 1)3 + 5.965(x + 1)2 − 6.023(x + 1) − 1 if −1 ≤ x ≤ 0

−0.221x3 + 0.140x2 + 0.081x − 3 if 0 ≤ x ≤ 1

0.087(x − 1)3 − 0.523(x − 1)2 − 0.302(x − 1) − 3 if 1 ≤ x ≤ 3

S(2) is 0.087− 0.523− 0.302− 3 = −3.738

20 / 24



Shape-preserving cubic

▶ Also piecewise cubic function, but pieces are chosen so that
function is monotonic wherever the given points are
▶ Like linear spline, function has no more maxima/minima than

what’s necessary to match points, and does not go outside
range of data

▶ Smoother than linear spline, but less smooth than cubic spline
(S ′(x) is continuous but S ′′(x) isn’t)

▶ We won’t cover how to find the coefficients, but can use
scipy.interpolate.PchipInterpolator in Python

21 / 24



Results for example

PchipInterpolator returns

S(x) =


7
3(x + 2)3 + 4

3(x + 2)2 − 14(x + 2) + 9 if −2 ≤ x ≤ −1
2
3(x + 1)3 + 2

3(x + 1)2 − 10
3 (x + 1)− 1 if −1 ≤ x ≤ 0

−3 if 0 ≤ x ≤ 1
1
12(x − 1)3 − 2

3(x − 1)2 − 3 if 1 ≤ x ≤ 3

S(2) is 1
12 − 2

3 − 3 = −3.583

22 / 24



Python functions

▶ Polynomials
▶ numpy.polyfit (solves linear system) returns vector of

coefficients
▶ numpy.polyval evaluates polynomial at given points

▶ Piecewise polynomials
▶ scipy.interpolate.interp1d (with options ‘linear’

(default), ‘cubic’ (spline), ‘pchip’, . . . ) returns a piecewise
polynomial function

▶ See the scipy.interpolate documentation for different
options

23 / 24



Cubic spline boundary conditions
▶ By default, scipy.interpolate.CubicSpline in Python

returns the interpolating cubic spline with so-called not-a-knot
conditions, which are that (1) the first and second pieces are
the same cubic polynomial, (2) the second-to-last and last
pieces are the same cubic polynomial.(bc type = natural

can be used for natural boundary conditions.)
▶ We can find the bi in that case

by replacing the first and last equations in our linear system with
h2 −(h1 + h2) h1 0 . . . 0 0 0 0 0
. . .
0 0 0 0 . . . 0 hn−1 −(hn−2 + hn−1) hn−2 0

▶ For our example, these equations are
1 −2 1 0 0 0
. . .
0 0 2 −3 1 0

and the resulting function is

S(x) =

{
−1.157(x + 2)3 + 7.471(x + 2)2 − 16.314(x + 2) + 9, −2 ≤ x ≤ 0

−0.216x3 + 0.529x2 − 0.314x − 3, 0 ≤ x ≤ 3

with S(2) = −3.235
24 / 24


