Environmental Impact Assessment

Example 8-3: Determine the velocity profile for the seepage of water across an aquifer of coarse sand, and the flow rate of water across a 1m² CV surface.

Data from three wells is available.

Well	X location (m)	Y location (m)	Ground elevation above sea level (m)	Distance from ground to water surface (m)
1	100	0	200	4
2	0	0	200	3.2
3	0	100	200	3.2

The properties of coarse sand are: K = 41 m/d and $\eta = 0.34$.

The field data indicates that the three wells are dug at the 3 corners of a right triangle. Since the ground elevation is constant, the heads of each well are determined relative to a datum that is the same distance from the surface for all three wells. Choosing a datum of 5m below ground, then the heads in each well are: $h_1 = 5-4 = 1m$, $h_2 = 5-3.2 = 1.8m$ and $h_3 = 5-3.2 = 1.8m$. Wells 2 and 3 have the same head and therefore the equipotential line is drawn between them. Seepage occurs perpendicular to this line.

The velocity is:
$$v' = \frac{K}{\eta} \frac{dh}{dL} = \frac{41 \, m / \, day}{0.34} \frac{(1.8-1)m}{100m} = 0.965 \, m/day$$

And the steady uniform flow rate is: $Q = v'A = 0.965 \text{ m/day} \times 1 \text{ m}^2 = 0.965 \text{ m}^3 / \text{day}$

The directional velocity profile has only 2 components and is based on the tan⁻¹ of the hydraulic gradient.

$$\theta_{xz} = \tan^{-1}(dh/dl) = \tan^{-1}\left(\frac{(1.8-1)m}{100m}\right) = 0.008$$

$$v_z' = v'\sin(\theta_{xz}) = 0.965 \times \sin(0.008) = 0.0077 \ m/day$$

$$v_x' = v'\cos(\theta_{xz}) = 0.965 \times \cos(0.008) = 0.965 \ m/day$$

$$\hat{v}' = \left(0.965\hat{i} - 0.0077\hat{k}\right) m/day$$