(a)
$$\frac{d^2x}{dt^2} + \frac{c}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{h(t)}{m}$$

(b)

This is a linear second-order ordinary differential equation with constant coefficients.

(C)

We assume a solution of the form $x = Ce^{rt}$, giving for r the quadratic equation: $r^2 + (c/m)r + (k/m) = 0$ Using the quadratic formula:

$$r = \frac{(-c \pm \sqrt{(c^2 - 4km)})}{2m}$$

If these roots are distinct, the general solution is $x = C_1 e^{r_1 t} + C_2 e^{r_2 t}$. If $c = 2\sqrt{km}$, there is only one root and the general solution is $x = C_1 e^{-ct/2m} + C_2 t e^{-ct/2m}$.

(d)

For distinct roots, we have $C_1 + C_2 = b$ and $r_1C_1 + r_2C_2 = 0$. So $C_1 = -(r_2/r_1)C_2 = b - C_2 \rightarrow (1 - r_2/r_1)C_2$ = $b \rightarrow C_2 = b / (1 - r_2/r_1), C_1 = b/(1 - r_1/r_2).$

If there is only one root, the condition on x(0) gives $C_1 = b$ and the condition on x'(0) gives $C_2 = bc/2m$.

(e)

If $c > 2\sqrt{km}$, there are two negative real roots, so the solution is the combination of two exponential decay curves. If $c=2\sqrt{km}$, the solution also decays but has a component that is proportional to *t* times an exponential decay. If $c<2\sqrt{km}$, the roots are complex (with negative real part), and the solution has oscillations (sine/cosine waves) superimposed on an exponential decay.

(f)

h(*t*) and its derivatives has a one-member family of basis functions, $\{e^{-t}\}$. So we look for a solution of the form Ce^{-t} . Substituting this in the differential equation, we find that $x(t) = \frac{e^{-t}}{m-c+k}$ is a solution. ((*m* - *c* + *k*) = 0 if and only if e^{-t} is a homogenous solution.)

(g)

Laplace transform of each term in the equation yields $ms^2 \bar{x}(s) - msx(0) - mx'(0) + cs\bar{x}(s) - x(0) + k\bar{x}(s) = a$.

Putting in the given initial conditions,

 $ms^{2}\overline{x}(s) + cs\overline{x}(s) + k\overline{x}(s) = a$ or $\overline{x}(s) = \underline{a}$

$$s = \frac{1}{ms^2 + cs + k}$$