
Solutions to Final Exam

May 24, 2011

problem 1

a

At steady state, we have

Txx + C = 0 , for 0 < x < L

T (x = 0) = 0, Tx(x = L) = 0

The general solution to the ODE is

T =
−C

2
x2 + ax+ b

The boundary conditions give us b = 0, a = CL, so we finally have

TS(x) = Cx(L−

x

2
)

which plots as the left half of a down-facing parabola. Note that the hottest
section of the rod, at x = L, is at a temperature of CL2/2.

b

Defining TT ≡ T − TS , where we have TS from (a), gives for TT (referred to as
just T for simplicity)

Txx =
1

α2
Tt , for 0 < x < L, t > 0

T (x = 0, t) = 0, Tx(x = L, t) = 0, T (x, t = 0) = f∗(x) ≡ f(x)− Cx(L−

x

2
), lim

t→∞

T (x, t) = 0
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c

Assuming solutions of the form X(x)Θ(t), we have from the PDE

X ′′

X
=

1

α2

Θ′

Θ
≡ −k2

giving the general solutions

X ′′ + k2X = 0 → X = c1 sin kx+ c2 cos(kx)

Θ′ + α2k2Θ = 0 → Θ = de−k2α2t

The boundary conditions at the ends of the rod give us a Storm-Liouville
problem, with characteristic functions

Xn = sin knx, kn ≡

(n−
1

2
)π

L
, n = 1, 2, 3, . . .

By superposing these solutions we get the transient temperature distribution

T (x, t) =

∞∑
n=1

an sin(knx)e
−k2

n
α2t

where an can be determined from the orthogonal function expansion of the
initial condition:

an =
2

L

∫ L

0

f∗(x) sin(knx)dx

The timescale for the exponential decay of each transient mode is given by

1

k2nα
2
.

The longest timescale corresponds to the smallest k, namely k1, and is equal to

4L2

π2α2
.

d

As long as C is not changing with time, only the steady-state part of the solution
is affected. This becomes

TS(x) = ax+ b−

∫ x

0

∫ χ

0

C(ξ)dξdχ,

where the boundary conditions give b = 0, and

a =

∫ L

0

C(x)dx = LC̄
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, where C̄ is the average heat production rate over 0 < x < L. If C(x) = x, we
have C̄ = L/2, and

TS(x) =
x

2
(L2

−

x2

3
).

TT is as before, with modified f∗ = T − TS .

problem 2

a-b

Assuming solutions of the form R(r)Θ(θ), we have from the PDE

r2
R′′

R
+ r

R′

R
=

Θ′′

Θ
≡ −k2.

or

Θ′′ + k2Θ = 0 → Θ = c1 sin kθ + c2 cos(kθ)

r2R′′ + rR′ + k2R = 0 → R = d1r
−k + d2r

k.

c

The conditions at θ = 0 and θ = π give a Storm-Liouville problem for Θ, with
characteristic functions

Θn = sinnθ, n = 1, 2, 3, . . .

Given that k must be positive integers, the requirement that the field be
bounded at large r gives d2 = 0.

So solutions are of the form

Tn = r−n sinnθ, n = 1, 2, 3, . . .

d

We take

T (r, θ) =
∞∑

n=1

anr
−n sinnθ

with coefficients determined by the boundary conditions at r = 1:

an =
2

π

∫ π

0

g(θ) sin(nθ)dθ.
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