
Solutions to Homework 11

May 23, 2011

9.52

The problem is

wxx + wyy =
1

c2
wtt , for 0 < x < L, 0 < y < L

w(x = 0) = w(x = L) = w(y = 0) = w(y = L) = 0;w bounded.

Looking for separable solutions by substituting

w(x, y, t) = X(x)Y (y)T (t),

we get

X ′′Y T +XY ′′T =
1

c2
XY T ′′ , for 0 < x < l, 0 < y < l

X(0) = X(L) = Y (0) = Y (L) = 0;X,Y, T bounded.

or

X ′′

X
=

T ′′

c2T
− Y ′′

Y
= −k2

T ′′

c2T
+ k2 =

Y ′′

Y
= −l2

giving us Storm-Liouville problems for X and Y , with general solutions

X ′′ + k2X = 0 → X = c1 sin(kx) + c2 cos(kx)

Y ′′ + l2Y = 0 → Y = d1 sin(ly) + d2 cos(ly)

Using the boundary conditions, we need

c2 = 0, km =
mπ

L
, m = 1, 2, 3, . . .

d2 = 0, ln =
mπ

L
, n = 1, 2, 3, . . .
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For T , the general solution is

T ′′ + c2(k2 + l2)T = 0 → T = e1 sin(c
√

k2 + l2t) + e2 cos(c
√

k2 + l2t)

with no boundary conditions applicable. However, the requirements on k

and l mean that c
√
k2 + l2 will be in the form c

√

m2π2

L2 + m2π2

L2 , or cπ
L

√
m2 + n2.

Considering a superposition of these separable solutions across positive integer
m and n and consolidating the coefficients into amn ≡ c1md1ne2mn, bmn ≡
c1md1ne1mn, we get

w(x, y, t) =
∞
∑

m=1

∞
∑

n=1

sin(
mπx

L
) sin(

nπy

L
)(amn cos(

√

m2 + n2
cπt

L
+bmn sin(

√

m2 + n2
cπt

L
))

as requested (noting that c2 = T
ρ ).

9.58

(a) The problem for the steady-state case is

Txx = 0

T (0) = T1, hlTx(L) + T (L)− T0 = 0

The general solution is T (x) = a + bT , and putting in the boundary condi-
tions we get

a = T1, b =
T0 − a

L+ hL
, leading to

TS(x) = T1 −
T1 − T0

1 + h

x

L
.

(b) The problem for the transient distribution TT (x, t) (henceforth just T )
now is

Txx =
1

α2
Tt, 0 < x < L, t > 0

T (0, t) = 0, hlTx(L, t) + T (L, t) = 0, T (x, 0) = f(x)− TS(x), lim
t→∞

T = 0

Looking for separable solutions,

T = X(x)T(t) →

X ′′T =
1

α2
XT′ →

X ′′

X
=

T′

α2T
= −k2

X(0) = 0, hLX ′(L) +X(L) = 0, lim
t→∞

T = 0
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giving us general solutions for X and T

X ′′ + k2X = 0 → X = c1 sin(kx) + c2 cos(kx)

T′ + k2α2T = 0 → T = d1e
−k2α2t

From the homogenous boundary conditions on X, c2 = 0 and hLk cos(kL)+
sin(kL) = 0, implying that kL must be a root of the equation hx+ tan(x) = 0.
Call these roots kn.

The homogenous boundary condition for T is satisfied as long as k2 is posi-
tive.

The general solution is obtained by superposition over n:

∞
∑

n=1

an sin
knx

L
e−kn

2α2t/L2

with an ≡ c1nd1n.
(c) Because Xn(x) satisfy a Storm-Liouville problem, the characteristic func-

tions {sin knx
L , n = 1, 2, 3, . . .} form an orthogonal set over [0, L] and the function

f(x)−TS(x) can be expanded in terms of them, with expansion coefficients given
by

An =

∫ L

0
(f(x)− TS(x)) sin

knx
L dx

∫ L

0
sin2 knx

L dx

and equating these with an in the general solution to the PDE we obtain a
solution that meets all the boundary conditions.

9.62

(a)
The problem is

Trr +
1

r
Tr =

1

α2
Tt, 0 ≤ r < a, t > 0

T (a, t) = T0 cos(ωt), T finite

For the proposed solution, we have

T (r, t) = Re(F (r)eiωt) = Re(F (r))Re(eiωt)− Im(F (r)) Im(eiωt) = cos(ωt)FR(r) + sin(ωt)F I(r)

where FR ≡ Re(F ) and F I ≡ Im(F ). The condition at r = a gives
that cos(ωt)FR(a) + sin(ωt)F I(a) = T0 cos(ωt), which requires F I(a) = 0 and
FR(a) = T0. Also, if F

R(0) or F I(0) are infinite than T (0, t) will be infinite at
t = 0 or t = π

2ω respectively, so both must be finite. Further,
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Trr = cos(ωt)FR
rr + sin(ωt)F I

rr = Re(Frre
iωt)

Tr = cos(ωt)FR
r + sin(ωt)F I

r = Re(Fre
iωt)

Tt = −ω sin(ωt)FR + ω cos(ωt)F I = ωRe(iFeiωt)

Substituting into the PDE, assuming that the imaginary part also satisfies
it so that we can remove the Re(), and dividing by the common factor eiωt, we
get the given equation.

(b)

The equation derived has the form of Eq. 4.145, with solutions Z0(i
3/2

√
ω
α r),

where the most general solution that is finite when r = 0 is F (r) = CJ0(i
3/2

√
ω
α r) =

C(ber(
√
ω
α r)+ibei(

√
ω
α r)). Adding the boundary condition at r = a to determine

C gives the form shown.
(c) From above,

T (r, t) = Re(U(r, t)) =T0 Re{ ber(kr) + ibei(kr)

ber(ka) + ibei(ka)
(cos(ωt) + i sin(ωt)}

Now a complex number z = x + iy can be written as
√

x2 + y2ei tan
−1 y/x

(magnitude times phase). So

ber(kr) + ibei(kr) =

√

ber2(kr) + bei2(kr)ei tan
−1 bei(kr)

ber(kr) = M0(kr)e
iθ0(kr)

, where M0 and θ0 are real. Substituting,

T (r, t) = Re(U(r, t)) = Re(
M0(kr)

M0(ar)
ei(θ0(kr)−θ0(ar)+ωt))

=
M0(kr)

M0(ar)
Re((cos(θ0(kr)− θ0(ar) + ωt) + i sin(θ0(kr)− θ0(ar) + ωt))

=
M0(kr)

M0(ar)
cos(θ0(kr)− θ0(ar) + ωt)

(d)
ber(0) = 1 and bei(0) = 0, so M0(0) = 1 and θ0(0) = 0. Substituting into

the above, we get the given expression.

9.72

(a)
This follows because the general solutions from separation of variables are
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X(x) = c1 sin(kx) + c2 cos(kx)

T (t) = d1 sin(kct) + d2 cos(kct)

and the homogenous boundary conditions give c2 = 0, d1 = 0 and kn =
nπx/L, n = 1, 2, 3, . . .. This is a Storm-Liouville problem in X(x), and the
formula for the coefficients an follows from the Fourier sine series for f(x) setting
t = 0.

(b) 2(sin(nπx/L) cos(nπct/L)) = sin(nπx/L+nπct/L)+sin(nπx/L−nπct/L)
by the trigonometric identity 2 sinA cosB = sin(A+B) sin(A−B), so the forms
are term-by-term identical.

9.73

(a)
Separation of variables gives us

c2X ′′T = XT ′′ + 2γXT ′

→ X ′′

X
=

T ′′

c2T
+ 2γ

T ′

c2T
= −k2

→ X ′′ + k2X = 0, T ′′ + 2γT ′ + k2c2T = 0

where the exponents for the exponential solutions are ±ikx for X(x) and

(−γ ±
√

γ2 − k2c2)t = (−γ ± ick

√

1− γ2

k2c2
)t

for T (t). Combining the two gives us the form shown.
(b)
Expressing X(x) in sines and cosines, the boundary conditions eliminate

the cosine term and set kn = nπ
L , n = 1, 2, 3, . . .. Expressing T (t) as e−γt

times sines and cosines in
√

k2nc
2 − γ2t gives solutions T (t) = e−γt(c1 cos(ωnt)+

c2 sin(ωnt)), where ωn ≡
√

k2nc
2 − γ2. The homogenous boundary condition

T ′(0) = 0 gives −γc1+ωnc2 = 0. The coefficients an are obtained from equating
w(x, 0) with the Fourier sine series of f(x).
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