
 

 

Sustainability in Civil Engineering

II. Power & Heat: Thermodynamics II. Power & Heat: Thermodynamics 



 

 

What is sustainability?



 

 

What are some 
manifestations of 
unsustainability?



 

 

How does engineering practice need to 
change?

 A useful starting point is to think about 
energy...



 

 

Energy in physics

 Motion or the ability to cause motion
 This definition is so that the total amount stays 

the same (conservation; First Law of 
Thermodynamics)

 Many different forms
 Conversion between forms is at least partially 

possible
 Unit: joule (J)
 Power: energy per unit time, unit: watt (W)



 

 

Example energy forms and 
expressions

 Kinetic (or mechanical): ½mv2, ½Iω2

 Gravitational potential: mgh
 Thermal: 3/2nkT (ideal gas), mcT (generic 

substance with heat capacity c)
 Chemical potential: ΣiμiNi

 Electrostatic potential: q1q2/(4πε0r)
 Blackbody radiation: σT4⋅AΔt
 Nuclear potential: c2Δm



 

 

Energy conversion examples
 Steam turbine (thermal → mechanical)
 Wind generator (kinetic → electric)
 Solar water heater (radiative→ thermal)
 Air conditioner (electrical → thermal)
 Tree (radiative → chemical) 
 Hydroelectric plant (gravitational→electric)
 Wood stove (chemical → thermal)

Energy conversion toward a particular direction and 
at a particular speed typically requires apparatus 
(which itself takes energy to construct)



 

 

Energy quality
 Energy in a given form can only be wholly 

converted to energy of lower quality
 It can be partly converted to to energy of 

higher quality if the rest of it is converted to 
energy of lower quality, so that the average 
energy quality deteriorates

 The Second Law of Thermodynamics: energy 
dissipates (loses quality)



 

 

Exergy and Entropy
 Exergy is energy multiplied by a quality factor 

that quantifies the extent to which it can be 
converted to other forms: this factor ranges 
from 0 (lowest quality) to 1 (highest quality)

 Entropy is a measure of how disorganized 
(diffuse) a system is, with different units than 
energy

 High quality = high exergy = low entropy
 Unlike energy, exergy and entropy are not 

conserved (exergy decreases, entropy 
increases)



 

 

Other statements of the Second Law

● Heat will not flow spontaneously from a 
cold object to a hot object

● The entropy of a closed system does not 
decrease

● A given amount of heat energy cannot 
all be converted to useful work



 

 

Temperature
● A measure of how much energy is evenly, 

incoherently dispersed among the particles of a 
system (for example, as random motion) 
[internal energy]

● Heat flows from high to low temperature
– Basis for many of our energy conversion systems
– Major cause of exergy demand

● Zeroeth law of thermodynamics: the concept of 
thermal equilibrium

● With absolute scale (K), can say that A is twice 
as hot as B (has twice as much dispersed 
energy per mode)



 

 

Entropy and heat transfer
● When a quantity of heat energy Q is transferred 

at a temperature T, the entropy change is Q/T
● Thus, if heat flows from a hot object (TH) to a 

cold object (TC), the entropy changes are -Q/TH 
and +Q/TC respectively

● By the Second Law, TH > TC – total entropy 
won’t decrease (TH = TC is the reversible limit, 
but then the heat transfer would be infinitely 
slow)

● Cf. the sun-earth-space system



 

 

Entropy and disorder
● Entropy can also change without heat transfer

– Entropy of mixture containing nA molecules of 
gas A and nB molecules of gas B:  -k(nA⋅ln(xA) + 
nB⋅ln(xB)), where xA, xB are the respective 
number fractions (cf. ore extraction, 
desalination)

– Chemical reactions progress in the direction that 
increases the entropy of the system (chemical 
entropies [or exergies] under standard 
conditions can be found in tables)



 

 

Quality of common forms of 
energy

(multiplier for exergy)
 Kinetic energy, gravitational potential energy, 

electricity, chemical energy: ~1
 Sunlight: 0.93
 Thermal, hot steam: ~0.5
 Thermal, hot water: ~0.1

 In general, the quality of the thermal energy for a 
hot object at (absolute) temperature T in an 
environment at temperature TE is given by

 (T – TE) / T



 

 

Car travel as an example of 
energy conversion

 Internal-combusion engine converts high-quality 
chemical energy in gasoline + oxygen to medium-
quality thermal energy, and in turn to high-quality 
mechanical energy plus exhaust heat (and high-
entropy exhaust gas, mostly CO2 and water)

 Around 25% of the high-quality chemical energy 
input in converted to high-quality mechanical energy 
output to the transmission

 The mechanical energy generated goes to 
accelerating the car and air in front of the car and to 
countering road friction. It quickly dissipates into low-
quality heat



 

 

What is energy efficiency?
● First-law (energy) efficiency: energy 

obtained  ∕ energy put in
● Second-law (exergy) efficiency: exergy 

lost  ∕ minimum exergy loss theoretically 
needed to do the job (other definitions also 
possible)

● E.g. an insulated natural-gas fueled 
water heater might have an energy 
efficiency >0.9 but an exergy efficiency 
<0.2



 

 

Exergy analysis and environmental 
impacts

● Low exergy efficiency likely means that 
environmental damage is too high, esp. if obtaining 
the exergy is damaging (fossil fuel mining, burning)

– Conserve exergy!
● High exergy of wastes means that they could have 

serious impacts on the environment
– Encourage pests, damage life forms – as in nutrients 

and organic chemicals in wastewater
– Hypothetical zero-exergy waste would be 

indistinguishable from environment, hence should 
blend in and have low impact

– (However, toxicity/harm not always proportional to 
exergy)



 

 

Heat engine
● Heat causes the expansion of a gas, which 

generates mechanical energy (pushes a piston 
or turns a turbine)

● Major source of motive power for last 200 y
● Source of heat can be burning fossil fuel or 

biomass; nuclear; direct (focused) sunlight; etc.



 

 

Processes and notation
● TH: temperature of heat source; TC: of heat sink
● Q: heat transfer
● W: work output, equal to PΔV
● At steady state, by energy balance, W = QH - QC; 

first-law efficiency: W / QH, or 1 -  QC/QH



 

 

Carnot Cycle for a heat 
engine● 1-2: Add heat at 

TH (isothermal 
expansion)

● 2-3: Allow gas to 
expand, cool to TC 
(doing work; 
adiabatic)

● 3-4: Reject heat at 
TC (isothermal 
compression)

● 4-1: Compress 
gas to TH

● Net work output is given 
 by area enclosed by 
cycle in P-V diagram
(clockwise = work out)



 

 

Carnot cycle (another 
rendering)



 

 

Ideal Carnot engine efficiency

● Net work output is QH(TH - TC)/ TH 
● First-law efficiency is (TH - TC)/ TH = 1 - TC/ TH

● Second-law efficiency is 1 for the ideal engine
– All exergy available from the given temperature 

difference is converted to work
– There is no net entropy generation (reversible)
– Maximally efficient (ideal) heat engine

● Note: the greater the temperature difference, the 
more work can be extracted from a given heat flow



 

 

What makes real engines less 
efficient than ideal cycles?

● Taking in and rejecting heat at an infinitesimal 
temperature difference would be infinitely slow!

● Engine materials (e.g. steel) limit the maximum 
operating temperature and pressure, usually 
well below that attainable from the fuel

● Friction and viscosity: compressor and turbine 
losses plus turbulence in the working gas



 

 

Another heat-engine cycle example: 
the Otto Cycle



 

 

The thermodynamics of water

Phase diagram



 

 

Vapor pressure and 
evaporation

● Vapor pressure doubles per 10 K 
warming (around room temperature)

● Liquid water heat capacity is 4.2 J g-1 K-1

● Heat of melting is 330 J g-1; heat of 
evaporation is 2500 J g-1

● For a substance changing phase, adding 
or removing heat goes into the phase 
change, and doesn’t change the 
temperature (infinite heat capacity)



 

 

Steam engines – the 
Rankine Cycle

This is how electricity is generated 
from coal or nuclear power



 

 

Heat pumps: heat engines reversed
● Heat a warm area, or cool a cold area
● If electricity, etc. (high-quality energy) is available, 

can put in work to transfer heat from low to high 
temperatures

● Ideal first-law efficiency: Q/W =  TH  / (TH – TC) (the 
“coefficient of performance”  – can exceed 1! )

● Applications: heat pumps, refrigerators, air 
conditioners (reverse Rankine cycle with an organic 
working fluid)

● Even so, refrigerators and air conditioners heat up 
the surroundings



 

 

Combined heat and power
● Hot water from power plant 

exhaust can be piped for 
heating buildings or 
industrial processes

– Needs relatively high 
density to be 
economical (e.g. the 
NYC Steam System; 
college campuses)

● Can be integrated into 
renewables, e.g. roof water 
heating under 
photovoltaics



 

 

Heat transfer

● Heat flows from hot to cool – but speed can vary
● Heat transfer modes:

– Conduction: slow!
– Convection: natural or forced (fans/blowers)
– Radiation



 

 

Slowing down heat transfer
● When is this good?
● General solutions:

– Air transfers heat poorly as long as it stays still
● Insulation: material with many small air pockets 

that can’t readily exchange heat
● Multi-paned windows

– Low-emissivity coatings 
to reduce radiation

Straw-bale building



 

 

Speeding up heat transfer
● More surface area: 

Heat exchangers, 
distribution systems, 
radiators

● Fans, blowers, 
mixers

Biological example: 
rete mirabile for transfer 
of heat, ions, oxygen



 

 

Reducing temperature fluctuations
● Increase effective heat 

capacity:
– Thermal mass
– Natural or induced 

circulation from 
e.g. outside or 
underground

– Phase-change 
materials 
(sweating, 
icepacks, molten 
salt) Basis for “geothermal” 

heating/cooling

Eastgate Centre in Zimbabwe -- stays cool with 
ventilation system that emulates a termite mound
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