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1 Introduction

Remote sensing data and information are shown great potential in supplying relevant spatial data 
and parameters at  the appropriate  scale  for use in distributed hydrological  models for  water 
resource applications.  In contrast with many conventional data normally represented by point 
measurements, remote sensing based measurements are spatially averages over the pixels can 
appropriate for distributed hydrological model.  Furthermore, remote sensing enables data access 
from  remote  areas,  where  data  are  typically  sparse.   Remote  sensing  technology  used 
electromagnetic spectrum in the range of wavelengths of different radiations reflected or emitted 
by objects.  Although remote sensing spectrum varies from 0.03 nm to 100 cm, visible, infrared 
and microwave spectrum is commonly used in retrieval of hydrological parameters. 

There are two main types of remote sensing: passive remote sensing and active remote sensing. 
The passive systems are based on the measurement of the natural thermal emission in the form of 
brightness temperature from the earth surface.  On the other hand, the active microwave systems 
generate their own radiation, which is transmitted toward the earth surface, and measures the 
reflected energy.  

The unique characteristics of microwave energy compared to the Visible and Infrared remote 
sensing systems are the ability to penetrate the atmosphere under various conditions including 
clouds,  light  rain,  snow  and  smoke;  as  well  as  the  ability  of  low  frequency  to  penetrate 
vegetation up to a certain level.  Microwave radiation is independent of solar radiation and can 
be used during both night-time and day-time hours; high frequency microwaves are partially 
absorbed  by  vegetation,  therefore  emitted  signatures  contain  information  on  vegetation 
properties (Ulaby et al. 1981).  The microwave remote sensing data is more suitable to estimate 
hydrological variables including snow, soil moisture, and precipitation, can be obtained during 
day or night time. 

There are two critical characteristics of remote sensing data that used in advancing measuring 
hydrological parameters are spatial and temporal resolution.  Remote sensing obtains spatially 
distributed information of hydrological variables that is important and helps to understand the 
spatial variability of watershed properties, to be included in modeling analysis.  These datasets 
can be obtained in on definite time interval, that varies based on sensors and type of orbit.  The 
parameters such as precipitation, is being monitored at every 15 minute interval. 
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2 Monitoring Hydrological Parameters

2.1 Precipitation

Precipitation is  a crucial  parameter that drives the hydrological cycle,  thus helps to improve 
weather  and  climate  predictions.   Improving  hydrologic  forecasting  requires  accurate 
quantitative  precipitation  measurements  at  higher  temporal  and spatial  scales.   The  old  and 
usually  reliable  network  of  rain  gauges  provides  an  overview  of  approximate  precipitation. 
However, spatial densities of these rain gauges are the limiting factor to accurately capture the 
highly varied nature of precipitation.  In such cases, remote sensing based precipitation provides 
a spatially continuous gridded dataset,  using area averaged remotely sensed information rather 
than strictly an interpolated point-based rain gauge field.

Precipitation retrievals from remote sensing sensors are carried out using visible (VIS), infrared 
(IR)  and microwave (MW) wavelengths  on  geostationary and polar  orbiting  satellites.   The 
Infrared (IR) sensor aboard detects radiation within the IR wavelengths that is emitted from the 
nearest surface beneath the satellite.  This radiation is converted to a temperature, and may be 
then  correlated  to  surface-based  rainfall  based  on  an  assumption  such  as  that  colder  cloud 
temperatures indicate clouds of higher vertical extent, and thus may be producing more rainfall. 
The  currently  operated  IR  sensors  includes:  NOAA GOES,  European  Meteosat,  Russia’s 
Elektro–L, India’s INSAT, etc.  

The Microwave (MW) sensors estimate rainfall based on a radiation emitted from sources such 
as liquid water droplets or suspended ice particles.  Surface-based rainfall is thus correlated to 
the extent and composition of actual water in the atmosphere.  The examples of microwave based 
sensors includes: NOAA, DMSP, TRMM satellites, etc.  The TRMM Precipitation Radar (PR) is 
an  active  sensor  that  measures  the  change  between  emitted  and  returned  radiation  due  to 
atmospheric water particles and relates this to previously determined surface rainfall intensity 
(Kummerow et al. 1998).  

The GPM is an international mission by JAXA and NASA as well as other international agencies 
that aims to unify and advance global precipitation measurements using microwave sensors to be 
expected to launch in 2014.  This mission will provide global, uniformly calibrated precipitation 
observations at  every 2-4 hour.   The GPM mission will  deploy Dual-frequency Precipitation 
Radar  (DPR)  and  a  multi-channel  GPM  Microwave  Imager  (GMI)  with  high-frequency 
capabilities. The GMI will  serve as a reference standard for the constellation radiometers by 
means of an advanced calibration system and the DPR will provide microphysical measurements 
such  as  particle  size  distribution  and  vertical  structure  of  precipitating  cloud  systems.  This 
system will be used in conjunction with cloud-resolving models for the creation of a common 
cloud-radiation database for precipitation retrievals from both the GMI and the constellation 
radiometers.   The  constellation  members  in  GPM will  be  represented  by  existing  or  future 
satellites  of  opportunity such as  those  of  the  US Defense  Meteorological  Satellite  Program 
(DMSP),  the  EUMETSAT  Polar  System  (EPS),  the  Japanese  Global  Change  Observation 
Mission (GCOM), the French-Indian tropical mission Megha-Tropiques and several other that 
are  currently being  planned.   During  last  two decades  several  algorithms are  developed for 
estimating rainfall from infrared (IR) and microwave satellite observations.

The global  precipitation records  from point  measurements  are  available  through last  century 
(GPCC; http://gpcc.dwd.de). However, these datasets has own inherent adequacies to quantify 
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distribution  of  global  precipitation  to  yield  acceptable  global  climatology.   The  Global 
Precipitation  Climatology  Project  (GPCP)  was  established  by  the  World  Climate  Research 
Program (WCRP) in  1986 with  an  approach  to  merge  data  and information  available  from 
several sources of precipitation including: Infrared and Microwave remote sensing sensors and 
rain gauges (Huffman et al. 1997). 

2.2 Evapotranspiration

Evapotranspiration (ET) is the largest component in terrestrial water budgets consisting of 60% 
of  land precipitation.   It  modulate  land surface  energy budget,  and constitutes  an  important 
source  of  water  vapor  to  the  atmosphere.   However,  atmospheric  water  vapor  is  the  most 
significant  greenhouse gas and thus plays  a  fundamental  role  in  weather  and climate (IPCC 
2007).

The remote sensing approach to estimate ET is based on thermal infrared spectrum wavelength, 
by solving simplified form of Surface Energy Balance Model.  In this approach, the radiometric 
surface temperature is  used for estimating the sensible heat flux (H), and obtaining ET as a 
residual of the energy balance.  The latent heat flux (LE) representing the evapotranspiration 
fraction can be derived from:

¿=Rn−G−H

where LE is the latent heat of evaporation due to ET; Rn is net radiation absorbed by the land 
surface,  equal  to  incoming  solar  radiation  (Rs)  minus  outgoing  shortwave  and  longwave 
radiation; H is sensible heat flux to the atmosphere; and G is heat flux to the soil. In this equation 
variables are expressed in energy units (W m-2).  ET can be calculated from LE by the amount of 
energy  needed  to  evaporate  water  at  a  given  temperature  and  pressure.   If  heat  transfer 
coefficients are known or can be estimated, H can in theory be calculated from the difference 
between air temperature at reference height and the land surface temperature (LST), measured by 
Thermal Infrared bands on satellites such as the Landsat series (Bastiaanssen et al. 2005; Allen et 
al. 2007), Geostationary Operational Environmental Satellite (GOES) (Jacobs et al. 2004), the 
Advanced  Very  High  Resolution  Radiometer  series  (Loukas  et  al.  2005),  the  Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Galleguillos et al. 2011; 
Sarwar & Bill  2007), and the Moderate Resolution Imaging Spectrometer (MODIS) sensors, 
both on the Terra satellite (Mu et al. 2007; Mu et al. 2011).  Estimates of Rn and G are available 
from remote  sensing  or  ground  data,  allowing  LE  to  be  calculated  as  a  residual  in  above 
equation. This approach has been applied widely to ET measurements higher accuracy in semi-
arid regions. 

The  second  approach  to  estimate  ET  is  based  on  vegetation  indices  derived  from  canopy 
reflectance data.  In this approach, the crop coefficients are estimated that further used to convert 
reference  ET to  actual  crop  ET.   The  crop coefficients  are  modified  for  water  demands  by 
irrigated  crops.   The Crop coefficients  are  empirical  ratios  relating  crop ET to a  calculated 
reference-crop ET that is based on atmospheric water demand over a crop cycle or to actual ET 
measurements  (Nagler  et  al.  2005).   A time-series  of  vegetation  indices  is  correlated  with 
measured  ET  to  develop  a  curve  over  the  crop  cycle.   This  approach  requires  local 
meteorological and soil data to maintain a water balance in the root zone of the crop (Gonzalez-
Dugo et al. 2009).  Duchemin et al. (2006) developed linear relationship between NDVI and crop 
coefficients with good accuracy to derive maps of LAI and transpiration requirements using 
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Landsat7-ETM+ images for agricultural area.  The vegetation indices based approach is also 
tested successfully using AVHRR (Pan et al. 2003; Fisher et al. 2008), MODIS (Guerschman et 
al. 2009; Leuning et al. 2008; Cleugh et al. 2007; Nagler et al. 2005)  The future designed Earth 
Observation Systems with higher spatial and temporal resolution would make this approaches 
feasible for the operational monitoring of evapotranspiration at a regional and global scale.

2.3 Soil Moisture

Soil  moisture  is  a  very important  variable  in  hydrology because  its  variations  influence  the 
evolution of weather and climate. The soil moisture controls runoff, affects vegetation growth, 
and plays a significant role on evaporation and transpiration at the land-atmosphere boundary as 
well  as  surface  energy  flux  (Betts  et  al.  1996).   However,  conducting  ground-based 
measurements of soil moisture consistently and regionally is difficult. Remote sensing provides 
an  opportunity without  the  limitation  of  time  and area.   Active  and passive  remote  sensing 
systems and especially those operating in the microwave region of the electromagnetic spectrum 
have shown the ability to measure the soil  moisture content  since it  is  very sensitive to the 
dielectric properties of the soil.  Low frequency microwave spectrum has the advantage of longer 
penetration, therefore, less atmospheric effect.

Spaceborne active microwave sensors are able to provide high spatial resolution (up to 10 m), 
but have low temporal resolution and are more sensitive to surface characteristics than passive 
systems. However, passive microwave sensors provide low spatial resolutions (40 to 50 km) with 
a higher temporal resolution (12 to 24 hrs). Most of the applications of active microwave in soil 
moisture retrieval are based on the hypothesis that the signal backscattered from the observed 
scene is widely dependent of the dielectric contrast that exists between wet and dry soils. Indeed, 
under the same land cover condition, the stronger radar backscattering values are observed for 
high soil moisture. However, soil moisture estimation based on active microwave data only may 
face  several  challenges  since  the  microwave  sensors  are  sensitive  to  other  land  cover 
characteristics such as vegetation density, surface roughness, and soil texture (Engman 1995; F. 
G. Hall et al. 1995; Ulaby et al. 1986)

The accuracy of satellite-derived soil moisture is usually affected by the presence of vegetation 
which significantly modifies and attenuates the outgoing microwave radiation of the soil and 
makes the retrieval of realistic soil moisture from satellite-based sensors difficult and inaccurate. 
Soil moisture estimation by active remote sensing involves the measurement of backscattering 
which may be affected by both vegetation canopy and soil moisture. The vegetation canopy may 
affect the backscattered energy by contributing to the volume backscatter of the observed scene 
and by attenuating the soil component of the total backscatter (Ulaby et al. 1986; Kasischke et al.  
2003).  The  total  amount  of  attenuation  and  backscatter  depends  on  several  vegetation 
parameters,  such as vegetation height,  leaf area index,  and vegetation water content;  and on 
sensor-related characteristics such as angle of incidence, frequency, and polarization. 

Two microwave satellite missions, the ESA Earth Explorer SMOS (Soil Moisture and Ocean 
Salinity) launched on November 2009 and SMAP (Soil Moisture Active Passive) by NASA that 
has  been  proposed  to  launch  in  2015,  take  advantages  of  low  frequency  in  soil  moisture 
retrievals.  SMOS mission has been designed to observe soil moisture over the global land with 
the first-ever polar-orbiting space-borne radiometer. This novel technique of the SMOS mission 
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will  provide  operational  monitoring  of  water  in  soils.  SMAP mission  will  overlap  with  the 
SMOS  mission  in  time  so  that  it  will  enable  intercalibration  and  intercomparison  of  their 
respective data.  Moreover, the synthetic aperture radar in the SMAP will provide higher spatial 
resolution (1–3 km) soil moisture product.  The EUMETSAT’s Polar System METOP will be a 
continuation of ERS scatterometer mission carrying the Advanced Scatterometer ASCAT. The 
METOP satellite  series,  with  Advanced  Scatterometer  onboard,  will  be  the  first  operational 
satellite system dedicated to the retrieval of soil moisture information.

2.4 Snow 

The storage of water in snowpack affects the surface runoff and soil moisture, and is therefore 
important  at  the  regional  scale  for  various  applications  such  as  flood  prediction  and  water 
resource  management.   The  rising  in  air  temperature  over  land  and  at  most  high  northern 
latitudes, where snowcover is projected to contract, widespread melting of snow and ice, could 
lead to rising global average sea level (IPCC 2007).  Satellite observations in the visible and 
microwave spectral range have been used for the global monitoring of snow cover properties for 
more than three decades.

Remote Sensing sensors in VIS/IR spectrum are well appropriate snow cover mapping due to the 
high albedo of snow presents a good contrast with most other natural surfaces except clouds. 
The  two  visible  and  infrared  based  snow  products  are  widely  used  for  large-scale  climate 
research.  The Interactive Multisensor Snow and Ice Mapping System (IMS) by NOAA, provides 
daily snow cover information for Northern Hemisphere.  IMS product has been based primarily 
on visible and near infrared observations, judged and mapped manually and covers the period 
from late 1998 to present, is being continues to undergo, improvements and refinements.  IMS 
snow cover product is being produced every day, regardless of the presence of clouds.  This 
possible due to IMS analysts looping through sequential GOES and AVHRR images to evaluate 
scenes is based on integrated information (Helfrich et al. 2007; Ramsay 1998).  Second, the suite  
of  products  derived  from the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  by 
NASA provides  weekly global  snow cover  information.   The Moderate  Resolution  Imaging 
Spectro-radiometer (MODIS) snow products are provided as a sequence of products beginning 
with a swath product, and progressing, through spatial and temporal transformations, to an 8-day 
global-gridded  product  (http://modis-snow-ice.gsfc.nasa.gov/).   Snowcover  products  derived 
from MODIS are based on a band rationing of MODIS band 4 (green) (0.545–0.565 μm) and 
band 6 (near-infrared)  (1.628–1.652 μm).  These bands are  used to  calculate  the Normalized 
Difference Snow Index (D. K. Hall & Riggs 2007). 

The  passive  microwave  remote  sensing  sensors:  the  Scanning  Multichannel  Microwave 
Radiometer  (SMMR, 1978–1987),  Special  Sensor  Microwave/Imager  (SSM/I,  1987–present), 
and  the  Advanced  Microwave  Scanning  Radiometer-Earth  Observing  System (AMSR-E)  on 
board the Aqua satellite (2002-2011) provided opportunity to global snow cover and snow water 
equivalent (SWE) mapping (Kelly et al. 2003; Basist et al. 1998).  Microwave emission from 
snowpack depends on the snow grain size, density, depth, and snow water equivalent (Grody 
2008).  Passive microwave sensors have advantage to penetration of cloud cover unlike VIS/IR 
sensors.  However, passive microwave data suffers from being a low resolution measurement, on 
the  order  of  25km.   Therefore,  an  effort  are  being  made  to  develop  a  combination  of  two 
products to provide a significant improvement of snow cover and SWE product with high spatial 
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resolution from the VIS/IR data and cloud transparency from the microwave data (Liang et al.  
2008; Foster et al. 2011; Armstrong & Brodzik 2003; Gao et al. 2010; Yu et al. 2011) . 

2.5 River and Lake Ice

An effect of ice in river and lake produces an increased hydraulic resistance by growing ice and 
storage of frozen winter precipitation that can readily be seen in dramatic short-term changes in 
flow and water levels (Prowse & Ferrick 2002).  Freeze-up and break-up dates of the ice in rivers 
and lakes causes the seasonal hydrograph changes result from the storage and later release of 
significant quantities of water within river channels.  Variability and trends in river and lake ice 
dynamics can serve as indicators of climatic change, as climate influences the timing of lake ice 
melt  and freeze onset,  ice  duration,  and lake thermal  dynamics  that  feedback to the climate 
system initiating further change (Latifovic & Pouliot 2007).  

In the past decade, the use of satellite data has gradually developed to the point that today remote 
sensing based techniques are the main tool in lake and river ice observation and monitoring.  
Visible and infrared channels onboard of polar orbiting satellites are capable of visualization of 
the lake and river ice and location under cloud free condition.  Polar orbiting satellites such as 
MODIS, AVHRR, and Landsat were extensively being used due to their higher spatial resolution. 
Latifovic & Pouliot (2007) proposed a profile feature extraction technique for lake ice phenology 
from historical satellite records acquired by the series of AVHRR sensors and then compared 
with in-situ observations successfully with high accuracy.  

Active microwave synthetic aperture radar (SAR) data is also used successfully in conjunction 
with visible and infrared channels in order to monitor the ice extent, growth and thickness even 
in the presence of cloud.  However, temporal resolution (5–6 days) of current radar sensors and 
the short period for which measurements are available limits their use for climate change studies 
and  operational  monitoring  (Duguay  &  Lafleur  2003).   Using  SAR  data  (ERS-2  and 
RADARSAT-1),  Nolan  et  al  (2003)  were  able  to  determine  dates  for  lake  ice  formation, 
snowmelt, and ice melt to within a few days for four winter seasons. 

2.6 Water storage 

Changes in terrestrial surface water storage affect the gravity field, where the added water mass 
exert a slight additional attraction. Precise measurements of changes in the gravity field sensed 
by orbiting satellites give information about seasonal and interannual shifts in the surface mass 
distribution. Over land, the filling and emptying of water pools, including soil and aquifers, is the 
main  contributor  to  gravity  changes,  though  hydrologically  irrelevant  contributions  such  as 
glacial rebound of the lithosphere exists and must be subtracted from the total gravity signal to 
estimate  the  change  in  water  storage.  While  gravimetric  remote  sensing  cannot  distinguish 
between different surface water pools at a given location, subtracting known changes in pools 
(such  as  lakes  and  snowpack)  permits  inference  of  changes  in  otherwise  poorly  observed 
regional pools (such as groundwater).

Gravity Recovery and Climate Experiment (GRACE) is a pair of NASA satellites launched in 
March 2002 that measure earth's gravity field from orbits at about 500 km height. Small changes 
in the distances between the satellites, due to gravity field variations, are measured via onboard 
K-band  microwave  signals  and  the  Global  Positioning  System.  GRACE generates  maps  of 
gravity anomalies  at  approximately monthly time  resolution  and ~250 km spatial  resolution 
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(Sean Swenson & John Wahr 2006).

Over land, GRACE products show seasonal wet-dry cycles in areas such as the Amazon and 
Mississippi basins (Schmidt et al. 2006).  Interannual variability in water storage can be used to 
quantify drought  and pluvial  episodes.  Regional  decreasing  trends  in  water  storage over  the 
observation  period  have  been  found,  due  to  ice  sheet  melting  over  parts  of  Greenland  and 
Antarctica  and  to  unsustainable  groundwater  withdrawals  in  regions  such  as  northern  India 
(Tiwari et al. 2009) and California's Central Valley. 

The constraints provided by GRACE data for hydrological variability have been used in various 
ways  to  test  and  improve  hydrological  models.  For  example,  Niu  et  al.  (2007)  subtracted 
modeled soil moisture and groundwater variability from total water storage change inferred from 
GRACE to deduce snow water equivalent over boreal river basins.  Syed et al. (2008) compared 
water  storage  variability  inferred  from  GRACE  with  that  given  by  the  Global  Land  Data 
Assimilation System (GLDAS). Assimilation of water storage information from GRACE into 
regional hydrologic models, combined with other data such as streamflow, has been shown to 
improve the  realism of  these model's  simulations  of  river  discharge  and groundwater  levels 
(Zaitchik, Matthew Rodell, et al. 2008; Lo et al. 2010; Werth & Güntner 2010).  On the scale of 
large  river  basins,  GRACE  storage  changes  have  been  used  together  with  precipitation, 
evaporation, and streamflow estimated from remote sensing and/or ground observations to test 
whether these estimates are good enough to close the water budget (Sahoo et al. 2011), and the 
correlation of GRACE water storage with observed streamflow has been used to extend water 
storage estimates to times where GRACE data are not available (Becker et al. 2011).  GRACE 
water storage has also been compared to streamflow in small watersheds (tens of square km) in 
order to clarify the consistency of the relationship between streamflow and watershed storage 
(Krakauer  &  Temimi  2011).   Bloom  et  al.  (2010)  correlated  GRACE  water  storage  with 
anomalies in column atmospheric methane, inferring that tropical moisture status is the leading 
contributor to interannual variability in methane emissions.

2.7 Water Quality

Water quality is a general descriptor of water properties in terms of physical, chemical, thermal, 
and/or  biological  characteristics  that  are  suitable  for  human  consumption.   Major  factors 
affecting  water  quality  in  water  bodies  includes:  suspended  solids,  algae  (chlorophylls), 
chemicals, dissolved organic matter, thermal releases, aquatic vascular plants, pathogens, and 
oils.   Monitoring and assessing the water  quality is  critical  for managing and improving its 
quality.  Polar orbiting, high spatial resolution hyperspectral remote sensing sensors are being 
used increasingly as a tool for monitoring water quality conditions in inland and near-coastal 
waters.  Remote sensing techniques to estimates these water quality parameters are based on 
changes in the spectral signature from water bodies and relate these measured changes on-site by 
empirical or analytical models.  The empirical approach is based on using experimental data sets 
and  statistical  regression  techniques  to  generate  algorithms  relating  the  water  reflectance  or 
radiances at the sensor in specific spectral bands or band ratios/combinations to the observed in 
situ water quality parameters (Moses et al. 2009).  The selection of spectral channel is depends 
upon type and concentration water quality parameters.  
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Figure : High concentrations of microscopic plants called phytoplankton (red regions) along the Florida coast and in 
Tampa Bay are an indicator of ocean health and change as seen in this SeaWiFS image from October 2004 (Source: 

NASA).

Figure : MODIS imagery has shown that water quality of Florida's Tampa Bay decreases in winter months compared 
to summer. More particles suspended in the water, a measure called turbidity, show up as yellow, orange and red in 
December (left image) than in July (right). Images are composites of turbidity data collected in December and July, 

respectively, over a span of three years (Source: NASA/USF)

Most  of  research  for  water  quality  using  remote  sensing  sensors  has  been  carried  out  for 
chlorophyll content estimation which is then used as an estimate for observing algal content and 
hence water quality.  Commonly detected water quality parameters include the concentrations of 
phytoplankton pigments chlorophyll a (Chl a) (Allan et al. 2011; Brezonik et al. 2005), Total 
Suspended Solids and Inorganic Suspended Solids (Giardino et al. 2010; Katlane et al. 2011; 
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Volpe et al. 2011; Kishino et al. 2005), absorption by Colored Dissolved Organic Matter (Kutser 
et al. 2005) and indicators of water clarity such as turbidity (Graves et al. 2004; Potes et al. 
2011).   High  resolution  Landsat  Enhanced  Thematic  Mapper  (ETM)  was  used  to  estimate 
chlorophyll a (chlÂa) concentrations using band ratios for lakes (Allan et al. 2011; Brezonik et 
al. 2005) and coastal sewage outfall area (Forster et al. 1993).  The Medium Resolution Imaging 
Spectrometer (MERIS) onboard ESA's Envisat is used successfully to estimate algal bloom and 
colored  dissolved  oxygen  (Gons  et  al.  2008;  Matthews  et  al.  2010;  Campbell  et  al.  2011). 
MODIS remote sensing data in conjunction with logarithmic band ratio model has shown its 
capability to monitor the impact of hurricane impact on chlorophyll-a concentration in Pensacola 
Bay system (Huang et al. 2011).  Estimation of water quality parameters from remote sensing 
have proved to be useful and successful and are being investigated for operational use.

2.8 Land use -Land cover

The vegetation or land cover plays critical part in hydrological processes including interception, 
and transpiration, which are sink or loss term in water balance model.  The runoff curve number 
uses  land  use  land  cover  condition  with  soil  texture  to  estimate  runoff  from  precipitation. 
Therefore, accurate information on land cover and land cover changes over time is necessary for 
hydrological modeling.  Remote sensing is powerful and cost-effective tools for assessing the 
spatial and temporal dynamics of land use and land cover to evaluate deforestation, biodiversity 
loss  and  climate  change  (Rogan  &  D.  Chen  2004;  Pyke  &  Andelman  2007).   Therefore, 
information on land use and land cover change is critical for decision-making of environmental 
and  water  resources  management  and  future  planning.   Multi-temporal  images  provided  by 
remote  sensing  sensors  for  same  location  are  being  used  in  conjunction  with  Geographical 
Information System (GIS) to effectively determine the land use and land cover changes over time 
(Joshi et al. 2009).  In addition, retrospective and consistent synoptic coverage over 40 years 
from remote sensing satellites is greatly benefited to assess the historic or long term land cover  
changes for climate studies.

Change  detection  methods  including  pre  and  post  classification,  have  been  used  wildly  to 
evaluate land use and land cover changes using remote sensing satellite data (He et al. 2011; 
Kintz et al. 2006; De Jong et al. 2000)   In pre-classification approach, procedures such as image 
differencing  (Bindschadler  et  al.  2010)  band  rationing  (Bahadur  K  C  2009)  change  vector 
analysis  (Baker  et  al.  2007),  principle  component  analysis  (Cakir  et  al.  2006)  have  been 
developed  and  used.   These  techniques  are  developed  on  basic  approach  to  estimate  the 
differences in the pixel reflectance values between the dates of interest.  However, while these 
techniques are effective for identifying change, they cannot identify the nature of change.  On the 
other hand, in post-classification method, the comparison was done over independently classified 
land cover data.   Despite the difficulties associated with post-classification comparisons, this 
technique is the most widely used for identifying land use and land cover changes (Dewan & 
Yamaguchi 2009).

3 Remote Sensing in Hydrological Modeling

The emergence of distributed hydrological model provides a powerful tool for water resource 
management  under  changing  environments.   Distributed  hydrological  models  are  commonly 
physically  based  water  balance  /  water  transport  model  that  requires  large  amounts  of  high 
resolution input data.  The constant improvement of remote sensing data availability made it 
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possible  to  meet  data  needs  in  distributed  hydrological  simulation.   Compared  with  the 
conventional  observation  method,  remote  sensing  can  periodically  obtain  grid-based  ground 
observations within a certain period, so as to elevate the temporal-spatial resolution of data.

3.1 Land Surface Modeling

Historically,  regional and global analyses and reanalyses used for weather forecasting or for 
diagnosing climate variability and change did not directly use observations of many water fluxes 
and  stores,  either  due  to  lack  of  observations  (as  for  e.g.  soil  moisture)  or  because  the 
assimilation techniques for using these variables was not developed (as for e.g. precipitation) 
(Kalnay et al. 1996). This has improved to some extent in recent years -- e.g. the North American 
Regional Reanalysis (Mesinger et al. 2006) ingested land and sea snow/ice cover products based 
on  remote  sensing,  and  precipitation  gauge  observations  over  land  as  well  as  precipitation 
information from satellites (CMAP) over oceans.  In numerical weather forecasting models, there 
is a fundamental need to incorporate those physical processes in the analysis that are linked to 
atmospheric moisture and dynamics.  NASA's Land Data Assimilation System project has used 
observation-based forcing (precipitation, temperature, radiation) datasets to drive land surface 
models over recent decades, helping elucidate trends and variability in soil moisture (M Rodell et 
al.  2004;  J.  Zhang  et  al.  2008;  Gottschalck  et  al.  2005),  but  still  does  not  use  available 
observations of soil moisture or many other land surface variables.

Several recent pilot studies have showed encouraging results in assimilating remotely sensed soil 
moisture into land surface models in reanalysis  mode, taking into account that soil  moisture 
information based on microwave is typically only for a surface layer rather than for the entire 
soil column (Sabater et al. 2007; S.-W. Zhang et al. 2010).

Preliminary work has  also sought  to  assimilate  both  thermal  and microwave information on 
moisture status in  order  to better  constrain soil  moisture at  different  depths.  Additional  data 
streams to assimilate include observed streamflow, which could in some cases be estimated from 
remote  sensing,  and  GRACE  water  storage  change  (Zaitchik,  M  Rodell,  et  al.  2008). 
Improvements in analyzed hydrology resulting from making full use of earth observing satellite 
observations promise to not only result in more accurate retrospective estimates of regional to 
global hydrological variability and change, but also to improve intermediate to seasonal range 
weather forecasts through better capturing land-atmosphere feedbacks (Mishra & Singh 2011; 
Koster et al. 2000; Brunet et al. 2010).

1.1 Flash Flood Guidance and Forecasting

Climate  change  and  variability  increases  the  probability  of  frequency,  timing,  intensity,  and 
duration of flood events.  After precipitation, soil moisture is the most important factor dictating 
flooding, since rainfall infiltration and runoff are based on the saturation of the soil.  Flash Flood 
Guidance (FFG) Systems provide lead-time for emergency responders to evacuate citizens and 
deploy  resources  to  assess  flood  damage.  Remote  Sensing  technologies  have  proved  to  be 
valuable tools to support effective early flood warning system for disasters.  There are few FFG 
systems that have the capability to indicate the likelihood of flooding of small streams or rivers  
over large regions by using bias-corrected remotely-sensed precipitation estimates and real time 
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soil moisture estimates to produce flash flood guidance.  The FFG have the potential to provide 
advance warning of situations likely to lead to floods and thus provide additional lead-time for 
emergency managers to monitor the situation and provide improved flood forecasting services. 
The  FFG  models  are  commonly  water  balance  model  that  portrays  the  grid-based  runoff 
generation process, using grid based inputs including: precipitation, evaporation, soil moisture, 
soil type, vegetation and other underlying surface information.  

Currently, National Weather Service (NWS) issues a daily national map of Gridded Flash Flood 
Guidance  (GFFG)  is  produced  based  on  surface  soil  moisture  deficit  and  threshold  runoff 
estimates.  Similarly,  the Central  America Flash Flood Guidance System (CAFFG, a  regional 
flash flood guidance system) has been in operation since 2004.  These systems use real time 
remotely-sensed  precipitation  datasets  from  NOAA satellites.   However,  these  systems  are 
limited by real time observations of soil moisture, and hence uses model derived soil moisture 
information.  Improved flash flood forecasting requires accurate and high resolution soil surface 
information.  Recent  development  in  soil  moisture  estimation  using  remote  sensing  shows 
potential  in flash flood application.   The already launched Soil  Moisture and Ocean Salinity 
(SMOS) satellites mission and future Soil Moisture Active and Passive (SMAP) mission are two 
potential sources of remotely sensed soil moisture data.  SMAP is a directed mission within the 
NASA Earth Systematic Mission Program and is planned to launch in 2015, while SMOS is a 
Living Planet Programme from the European Space Agency (ESA) and launched in November 
2009.

4 Future Perspective
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