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Here we briefly review regularization methods for the solution of linear ill-posed prob-
lems, point out relationships among different regularization methods that are used in
inversions for regional carbon fluxes, and show how generalized cross-validation can
be used with different regularization methods. The mathematical developments largely
follow Hansen [1998].

1. Inverse problem for regional carbon fluxes

To estimateCO5, fluxes, one has to estimate a vectan the linear model
Ax=b+e, @)

whereb is a givenn x 1 vector of CO, concentrations at locations;e is a random
error with zero mean and with covariance mattiw(e) = Cy; x is an unknown
p x 1 vector of CO5 fluxes into and out op regions; andA is a givenn x p matrix
representing a transport operator that rel&t€s fluxes toCO- concentrations [e.g.,
Enting, 2002].

If the transport operatoA is ill-conditioned, as is generally the case when the
transport is turbulent so that the effect of regional sources and sink&grconcen-
trations downstream is smoothed out, the least squares estimate@Dthfuxes is
poorly constrained by th€O, concentrations. In inversions for regioraD,, fluxes,
more stable flux estimates are usually obtained by minimizing, in place of the least
squares object function, a regularized object function

J = (Ax —b)7C; (Ax — b) + X2(x — x0)"C; ! (x — x0), (2)

consisting of the sum of the least squares object function (first term) and a penalty term
(second term) that penalizes deviations of the solutidrom a given prior estimate
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xg. The covariance matri&, . represents uncertainty about the prior estimgteThe
regularization parameter indicates the relative weight of the penalty term compared
with the least squares term.

In CO, inversions, the covariance matric€s andC,, are usually taken to be di-
agonal, with diagonal entrias, andc, equal to assumed variances of the loC&),
concentration errors and of the regional prior flux distributions. (However, the meth-
ods presented here may be used regardless of whether the covariance matrices are di-
agonal.) The regularization parameteis usually taken to be equal to one. In the
TransCom protocol, which we followed, the prior standard deviatidnsfor land re-
gions are taken to be proportional to the growing seasof@@gtfluxes estimated with
a model of the biosphere; the prior standard deviat&dﬁ%for ocean regions are taken
to be proportional to the area of each region and to the numb@bgfmeasurements
in each regionGurney et al., 2003].

The minimizerx* of the object function (2) foth = 1 can be interpreted as a
Bayesian maximum a posteriori estimated, fluxes, assuming a Gaussian distribu-
tion of prior fluxes with mearx, and covariance matri,, [Tarantola, 1987;Enting,
2002]. Alternatively, the minimizex* of the object function (2) for any can be in-
terpreted as a Tikhonov-regularized estimat€6X, fluxes [Tikhonov, 1963;Hansen,
1998, chapter 5]. (Tikhonov regularization is also known as ridge regreddimen| [
and Kennard, 1970].) In the Bayesian interpretation, the weighting matrix, or inverse
of the prior covariance matrix;; ! is taken to be known a priori. In the regularization
interpretation, the weighting matri€, ' is taken to be known up to the scaling factor
A, aregularization parameter that must be estimated.

2. Transformation to standard form

The object function (2) can be transformed to a standard form by mapping the prior
estimatex, to zero and by rescaling variables so that the covariance matficesid

C.., assumed to be nonsingular, are identity matrietspen, 1998, chapter 2.3]. The
transformation takes the form

A=C,'?AC!/?, (3a)
x = C;Y2(x — x0), (3b)
b=C, (b - Ax), (3c)

whereCé/ 2 andC}/ 2 are the Cholesky factors of the covariance matriCgandC,..
The linear model (1) in the original variables is equivalent to the linear model

Ax=b+e (4)
in the transformed variables, with an error covariance matnxe) equal to the iden-
tity matrix. In the transformed variables (3), the object function (2) assumes the stan-
dard form
J = [[Ax = b3 + X*|3, (5)
where||-||2 denotes the Euclidean norm. For= 0, minimizing the object function (5)
yields the least squares estimates. ket 1, minimizing the object function (5) yields
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the Bayesian estimates used in the TransQuny inversions (Gurney et al., 2003]

as well as in most otheC O, inversions starting witlenting [1993]. For arbitrary

A > 0, minimizing the object function (5) yields the Tikhonov-regularized estimate
with regularization parametex.

3. Singular value decomposition, filter factors, and regularization methods

The least squares estimate and several regularized estimates for the linear model (4)
can be expressed compactly in terms of the singular value decomposition of the trans-
formed transport operatak,

A =UxV7T, (6)

whereU andV have orthonormal columna; (left singular vectors) andr; (right
singular vectors), anill is a diagonal matrix with diagonal entrieg > 0, which are
assumed to be arranged in descending order. A large family of estizaties the
linear model (4) can be expressed as a linear combination of right singular vegtors

rank(

A)
X" = Z fi
i=1

where the filter factorg; characterize the estimation method [dansen, 1998, chap-
ter 4]. The coefficients! b are often referred to as Fourier coefficients, in analogy to
inverse problems in which the counterpart of the mafixs a convolution operator
whose singular value decomposition is equivalent to a Fourier expansiondiiba,
1977;Anderssen and Prenter, 1981].

— Vi, ()

ulb
g;

a. Least squares estimation

For the least squares estimate £ 0), the filter factors are identically equal to one
(that is, no filtering),
fi=1 forall . (8)

Expressing the least squares estimate in terms of the singular value decomposition (7)
makes manifest that errors of orden the transformed dafatypically result in errors

of ordere /oy, in the estimate*, whereo,,,;,, is the smallest nonzero singular value.

If typical data errors exceed the smallest singular value, the least squares estimate is
poorly constrained by the data. If the transformed transport opeAaimrank-deficient
(i.e.,rank(A) < p), the least squares estimate is not unique. In this case, the estimate
(7) with filter factors (8) is the least squares estimate with minimum rjptit».

If the transformed transport operatar has small singular values, regularization
methods stabilize the least squares estimates by filtering out the contributions of right
singular vectory; that are associated with the small singular valsgsThese contri-
butions to the estimate (7) typically represent high-frequency noise that is not estimable
given the uncertainty of the data.
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b. Bayesian estimation

For the Bayesian maximum a posteriori estimate=(1), for which a prior normal dis-
tribution with mean zero and identity covariance matrix is assumed for the transformed

fluxeszx, the filter factors are

o2

o2 +1° ®

i =

This filter function decays smoothly froify ~ 1 for o; > 1to f; ~ 0 for o; < 1; that
is, right singular vectors with singular values smaller than 1 are effectively filtered out.
This filtering is what is commonly used in inversions {00, fluxes.

c. Tikhonov regularization/ridge regression

For the Tikhonov-regularized estimat& &djustable), the filter factors aréléinsen,

1998, chapter 4.2]
2

fi= e (10)
This filter function decays smoothly froffy ~ 1 for o; > Ato f; = 0 for o; < A;
that is, right singular vectors with singular values smaller thamne effectively filtered
out.
The Tikhonov filter function is structurally identical to the Wiener filter, which
is the optimal filter to separate noise of spectral densttyrom a signal of spectral
densityc? [Papoulis, 1991;Anderssen and Prenter, 1981].

d. Least squares estimation with inequality constraints

The estimate (7) with Tikhonov filter factors (10) is also the solution of a least squares
problem with inequality constraint,

min [|[Ax — b||? subjectto [X|3 < a, (12)

wherea is a parameter constraining the norm of the solution. If the ngeit|, of the

least squares estimate is less tharhe least squares estimate solves the constrained
least squares problem (11). If the norm of the least squares estimate is greater than
«, the Tikhonov estimate solves the constrained least squares problem (11), with a
regularization parameter (a Lagrange multiplier) that is a function of[Golub and

Van Loan, 1989, chapter 12.1.2].

Regularization with an inequality constraint (11), then, is equivalent to Tikhonov
regularization if the inequality constraint is not redundant. Bayesian estimation and
regularization with an inequality constraint, contrasted-by et al. [1999] as differ-
ent methods, are therefore very similar. The methods merely correspond to choosing
different values of the regularization parametgand potentially different scalings of
the variables).
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e. Regularization by truncated singular value decomposition

Another common way to filter out right singular vectors that are associated with small
singular values is to keep only the fidstight singular vectors, corresponding to filter-
ing with a step function filter

1 1<k
for some effective rank < rank(A) [e.g., Hansen, 1998, chapter 3.2Fan et al.,
1999]. This usually yields estimates similar to Tikhonov regularization with regular-
ization parametek ~ oy.

4. Generalized cross-validation

Generalized cross-validation offers a way to estimate appropriate values of parameters
such as the regularization parameters truncated singular value decompositiarin
Tikhonov regularization, ot in least squares estimation with inequality constraint. In
the Bayesian formulation used in TransCom, components of the covariance matrices
C;, andC,,, which are generally poorly known, can likewise be estimated by general-
ized cross-validation.

For the family of estimates (7), the generalized cross-validation function, to be
minimized as a function of the parameters, is given by

|Ax* — bl|3
T2 ’

where the numerator is the squared residual norm and the denominator is a squared

effective number of degrees of freedohgnsen, 1998, chapter 7.4]. For all estimation

methods discussed above, the effective number of degrees of freedom (which is not
necessarily an integer) can be written in terms of the filter factors as

GCV = (13)

rank(A)

T=n- Y f (14)
i=1

The residual norm in the numerator of the GCV function can be computed efficiently
from a singular value decomposition of the transformed transport opekataraking
the evaluation of the GCV function for several regularization parameters straightfor-
ward.

The minimizer of the GCV function approximately minimizes the expected mean
squared error of predictions of the transformed dataith an estimated linear model
(4) [Golub et al., 1979]. With small but nonzero probability, the GCV function has a
minimum near zero regularization (i.e., at= 0 or for « — o0), so that generalized
cross-validation occasionally leads to undersmoothed estimates when, in fact, more
strongly regularized and smoother estimates would be more approphiatbd and
Wang, 1995]. Undersmoothed estimates in such cases can be avoided by constructing
bounds for the regularization parameters, for example, from a priori guesses of the
magnitude of the residualsipnsen, 1998, chapters 7.7 and 7.2].
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In our analyses, we evaluated the GCV function (13) as a function of the regular-
ization parametek and of the weighting parameteron a mesh with spacing 6t05
in 7 and 0f0.27 in \2.

Where inversion results are sensitively dependent on inversion parameters, it may
be useful not only to choose "optimal” values of the parameters but also to estimate
confidence regions for the parameters. Methods that treat inversion parameters as ran-
dom variables and estimate their probability distributions given the data and a probabil-
ity model for the parameters\fang and Wahba, 1995;Koch, 1999;Koch and Kusche,

2002] could be applied for this purpose. Heuristic estimates of confidence regions may
also be obtained from the curvature of the GCV function or other object functions at the
optimum, by analogy with ordinary least squares regres$toes$ et al., 1992, chapter

15.6]. Given confidence regions, the impact the uncertainty about inversion parameters
has on flux estimates could then be quantified using either linear error propagation or
Monte-Carlo methods.
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