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Abstract
The vegetation of theGalapagos Islands (Ecuador) is strongly influenced by climate. ElNiño events,
seasonality, isolation, volcanism, and increasing human activity define the ecosystems of the
archipelago. Given their socio-cultural and economic importance, it is critical tomonitor the response
ofGalapagos vegetation to changes in climate and assess its vulnerability. This study explores the
potential to useNormalizedDifference Vegetation Index (NDVI) as a proxy to describe trends in
primary productivity in theGalapagos (2000–2019) andmodels the relationship betweenNDVI and
climate variables including evaporation and atmospheric carbon dioxide concentration.

Fromnumerous possible co-variates compiled from reanalysis and satellites, we identify the
independent variables thatmost strongly influenceNDVI using the least absolute shrinkage and
selection operator (LASSO)method. Significant variables, including carbon dioxide concentration,
evaporation, and autocorrelation (1-month and 12-months laggedNDVI) are then used tomodel
NDVI in a generalized linearmodel (GLM) framework. Themodel predicts NDVImore effectively
where values forNDVI are high (high elevation, lush vegetation), and clearly reflects seasonality.
Validation of themodel across pixels producesR2 values ranging from0.05 to 0.94, and themeanR2 is
0.57 (0.65 for elevation>20m). Thismethodology has the potential to continuously and non-
intrusivelymonitor vegetation changes in sensitive ecological regions, such as theGalapagos.

1. Introduction

TheGalapagos Islands, located∼1000 kmoff thewest coast of Ecuador in the equatorial Pacific, areworld
famous. According to theUnitedNations Educational, Scientific andCultural Organization (UNESCO), these
islands and the surroundingmarine reserve are a unique ‘livingmuseum and showcase of evolution’ [1]. Island
ecosystems often boast uniquely diverse biota, due to their isolation andmicro-climates, which can drive species
endemism [2]. Even so, theGalapagos have an exceptional scientific legacy. CharlesDarwin conducted field
research in theGalapagos in 1835 that helped informhis theory of evolution by natural selection—a theory that
has fundamentally changed scientific understanding of biological diversity [3]. The organisms he studied and
chronicled inOn theOrigin of Species [4], including tortoises and finches, are legendary; they are textbook
examples of adaptive radiation and provide living evidence of evolution in progress [1]. They also help draw
approximately 170,000 annual visitors to the islands, bestowing considerable economic importance to the
Galapagos [1].
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Galapagos vegetation, which supports the famous animal life of the archipelago, is influenced by a unique
climate system shaped by ocean-atmosphere dynamics, the ElNiño SouthernOscillation (ENSO), active
volcanic island formation, and—more recently—human activities. The topography of the islands defines their
ecoregions, with the volcanic island peaks receiving themost precipitation and therefore containing the lushest
vegetation. Nevertheless, arid ecosystems at or near sea level dominate theGalapagos, accounting for an
estimated 83%of land area, with humid and transitional zones occurring only at elevations>200meters above
sea level (MASL) and littoral zones fringing the islands [5]. New volcanism and island formation provide
continuing opportunities for primary succession, speciation, and the formation of novel colonizer
communities, both through the creation of new land and through the destruction of existing habitat [6].

Despite their dynamism, theGalapagos ecosystems have been resistant to past climate changes, perhaps due
to their continual exposure to ENSO-driven natural climate variability. ENSO creates extreme inter-annual
variability in temperature, humidity, and precipitation, which have acclimatized the ecological communities of
theGalapagos to climate disturbance. A fossil pollen study by Restrepo et al 2012 [7] suggests that plant regimes
in theGalapagos have been remarkably stable over the last 2690 years; researchers found few changes to
ecological community composition as a result ofmajor climate events such as the Little Ice Age (1550–1880CE)
and theMedievalWarmPeriod (800–1250CE). On the other hand, these ecosystems are vulnerable to
anthropogenic disturbance.Humans have known about and regularly used theGalapagos Islands since the 16th
century for piracy, whaling, and sealing, creating permanent settlements in the 1800s [8]. Since the 1960s and
1970s, human activities have intensified; population has increased, fishing has becomemore lucrative (and thus,
more intense), and land use has changed to accommodate agriculture, urbanization, and tourism [9]. Climate
change and introduced species are additional stressors to the archipelago’s ecosystems.

As a result, vegetation regimes in the archipelago are now changing in unprecedentedways [2, 10]. Non-
native herbivores, such as goats, have negatively affected net primary productivity (NPP) across the islands
through prolific and indiscriminate grazing. Invasive plant species nowdominate the humid highlands, where
favorable growing conditions have enabled them to outcompete native species.Most endemicGalapagos species
are now confined to the xeric lowlands, where conditions are harsher. Rivas-Torres et al 2018 [2] estimate that
40%of vascular plants in theGalapagos are found nowhere else on Earth; of these, 62%are considered to be rare
and/or have vulnerable populations. El Niño events, whichmimic rainy seasons in theGalapagos, are
hypothesized to benefit invasive plant species at the expense of natives [7] by easingwater scarcity, and recent
research suggests that extreme ElNiño events are becomingmore frequent [11].Moreover, anthropogenic
climate change is expected to cause higher ocean temperatures and increased precipitation in the eastern
equatorial Pacific, analogous to sustained ElNiño conditions [12]. These climate trends point to the possibility
ofmajor plant community shifts in the coming decades. Vegetation is the base of theGalapagos food chain,
meaning changes in species composition, biomass, or productivity have the potential to affect consumers at
higher trophic levels, and ultimately, to change the structure and stability of the overall ecosystem. For these
reasons, it is immensely important to assess,monitor, and understand theGalapagos plant community.

Remote sensing can non-intrusively gather enormous amounts of data and has been employed for
monitoring purposes inmany researchfields, including ecology, oceanography, and geography [13]. The remote
sensing productNormalizedDifference Vegetation Index (NDVI) is a commonproxy for vegetation condition/
phenological stage [14] and above-ground primary productivity (AGPP).

Despite widespread scientific interest in both climate change and the unique ecology of theGalapagos
Islands, few studies have usedNDVI to explore the effect of climate variability on the archipelago’s plant life.
Previous studies using remote sensing to assess the environmental health of theGalapagos Islands have focused
on the impact of herbivory on native vegetation [10, 15] or on specificfloral species [2, 16] and land cover
changes [9]. None of these studies usedNDVI as their primary dependent variable, and none analyzed theNDVI
of the entireGalapagos archipelago, focusing instead on individual islands or groups of islands relevant to their
given research question.We seek to examinewhetherNDVI can be used in an island biodiversity hotspot like the
Galapagos tomonitor vegetation andmeasure its response to climate dynamics in an era of anthropogenic global
change,making this study the first to assess the association betweenNDVI and climate change in theGalapagos
holistically.

We useNDVI calculated from satellite remote sensing to quantify the response ofGalapagos vegetation to
climate variability, looking at both decadal trends (that could show signals of anthropogenic climate change) and
cyclical patterns associatedwith natural variability (e.g., those driven by seasonality and ENSO cycles).We
analyze theNDVI of theGalapagos archipelago using data collected fromFebruary 2000 to February 2019 by
MODIS satellites (Terra andAqua) and compiled on amonthly basis. This study has two principal objectives: 1)
describe any observed trends inNDVI over the 19-year period of theMODIS data, and 2) develop a robust
multiple regressionmodel to explainNDVI variability in theGalapagos, using independent variables related to
climate, geology, and human activities. The list of considered independent variables is presented in section 2.2.3.
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2. Study region, data, andmethods

2.1. Study region
TheGalapagos archipelago (figure 1) sits on the Equator and extends for approximately 260 kmE–W (90°01′W
to 89°16′W) and approximately 200 kmN–S (1°40′ S to 1°36′N) [17], with a total area near 52,000 km2. It is
composed of 128 named islands [6]; four of the islands, including the largest, Isabela, are inhabited, with a
combined population of approximately 30,000 [1, 18]. The archipelago is volcanic in origin and geologically
young; The oldest islands formed 3–6million years ago (mya) and the youngest formed 0.05–0.5 mya [19]. Lavas
represent∼44%of land area.

Monthly average daytime/nighttime surface temperatures range from24–42 °C/14–23 °C, respectively,
with average diurnal temperature swings of 14 °C. Average precipitation varies from88–263 mm/year and is
largely seasonal, driven by the interaction of nearby air and sea currents. From January-May, the Inter-Tropical
Convergence Zone (ITCZ) is to the south of the Islands and the PanamaCurrent brings tropical heat and rain to
theGalapagos. [5]. From June-December, the ITCZmoves north of theGalapagos and theHumboldt Current
keeps the archipelago unusually cool and dry for its latitude [5, 6]. Garúa (misty/drizzly air blown inland and
upslope from the ocean) is characteristic of this period, and rainfall is uncommon [22]. El Niño events, which
occur every 2–8 years [5, 23], resemble sustained rainy seasons in theGalapagos. Alongwith volcanism, ENSO is
primarily responsible for interannual climate variability in the archipelago. Of vegetated land in theGalapagos,
∼61% is dry forest, which dominates the lowlands.∼21% is evergreen forest and scrubland, which occurs at
higher elevations (>200MASL). A study of theGalapagosNational Park found that∼54%had vegetation cover
characteristic of native ecosystems, while∼2%was dominated by invasive species [2]. The dominant species
associatedwith dry and evergreen forest ecosystems are summarized in table A1–2 in the appendix.

2.2.Data
2.2.1. Normalized difference vegetation index
Many Earth-observing satellites are equippedwith sensors designed tomeasure near-infrared (NIR) and red
reflectances (ρ). These are converted intoNDVI [24] as:

r r
r r

=
-
+

NDVI . 1NIR Red

NIR Red

( )

NDVI values range from−1.0 and 1.0 [25]. High values indicate a higher density of green vegetation, low
values indicate scarce,moisture-stressed, or dryland vegetation [26, 27], and values close to 0 are likely to

Figure 1.Map of theGalapagos Islands. (Esri, ‘World imagery’. Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/
AirbusDS,USDA,USGS, AeroGRID, IGN, and theGISUser Community [20]; and ‘World ocean base’. Sources: Esri, Garmin,
GEBCO,NOAANGDC, and other contributors [21].)
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correspond to non-vegetated surfaces (such as bare soil, urbanized areas, and exposed rock/lavaflows). Negative
values correspond primarily to clouds, water, or snow.

AverageNDVI in the islands varies from−0.04 to 0.78. Lower values ofNDVI are found on Isabela,
Fernandina, Santiago, andMarchena Islands. These values correspond to active volcanic areas near the shore,
which also have lower elevations and predominantly arid climates. HigherNDVI values aremainly associated
with elevations 200–800MASL. Rivas-Torres et al (2018) [2] classified themean values ofNDVI across the
diverse ecosystems of theGalapagos Islands, and showed that values 0–0.2 corresponded to rocky outcrops and/
or sparse, deciduous vegetation; values from0.2–0.59 represented deciduous vegetation, and values higher than
0.6 indicated dense and evergreen vegetation. Zones ofmixed vegetation (such as transitional zones)had
intermediatemeanNDVI values [2]. Section 3.1 gives additional details on the distribution ofNDVI across the
archipelago.

2.2.2. Independent variables
The set of independent variables used in this studywas divided in 5 categories: air composition, atmospheric
state, soil, ENSO, and topographical.

Variations in the concentration of airmolecules and particles, which can potentially affect vegetation, are
both natural andman-made. The concentration of carbon dioxide, amajor greenhouse gas, varies due to
anthropogenic emissions, biological activity, and air-sea fluxes. Carbonmonoxide is associatedwithfires, as well
as transport of polluted air from industrial areas. Dust is carried bywind, and can be generated by lofting from
volcanoes or deserts. It can negatively affect plant photosynthesis, or in some cases supply valuable nutrients.
Ozone is another species whose concentration is affected by anthropogenic activity and atmospheric transport
pathways and that in high concentration can negatively affect plant development by oxidizing tissues exposed to
it. These variables are listed in table 2 as variables 1–4.

The atmospheric variables include day and night air and surface temperatures. Excessively high
temperatures stress plants and increase respiration rates.Wind can affect plant water loss rate and physical
integrity, depending on the direction, velocity, and duration. Thewater cycle is very important in vegetation
growth. The amount of rain (precipitation) is a key component of ecosystemwater balance, alongwith the
amount of water that evaporates from earth or plants. The variables thus considered are listed in table 2 as
variables 5–12.

Water fromprecipitation can be stored by the soil at different rates depending on the type of soil. This is
known as soilmoisture. Alongwith the temperature of soil at different depths, this influences the amount of
water and nutrients plants can absorb. Soil variables are listed in table 2 as variables 15–18.

The ElNiño-SouthernOscillation (ENSO) includes thewarm (ElNiño) and the cool (LaNiña) phases of a
recurrent climate pattern across the tropical Pacific. Affecting the air currents and the ocean temperature, it can
impact the growth of plants. Indices of ENSO are listed in table 2, variables 19–20.

The topographical variable consists of an elevation data set, which allows identifying the elevation ranges
where vegetation is generallymore dense. In addition, from the gridded elevationwe can calculate aspect (slope
face direction) and slope (change in elevation per unit horizontal distance) over the archipelago, which could
potentially affect light andwater fluxes and hence local temperature andmoisture status. This is listed in table 2
as variable 21.

2.2.3. Datasets
Datawere obtained from the following sources:

TheModerate Resolution Imaging Spectroradiometer (MODIS) is a sensor on board the Terra andAqua
satellites, whichwere launched in 1999 and 2002 respectively. As polar-orbiting satellites, theymove around the
Earth in a north-south orientation, with Terra crossing the equator in themorning andAqua crossing in the
afternoon. Terra andAqua observe the entire Earth surface every 1–2 days, acquiring data in 36 spectral bands
(ranges of wavelengths) [28]. TheMODISCollection 6 products provide vegetation index (VI) values on a pixel
basis using blue, red, and near-infrared reflectances with a spatial resolution of 0.05° latitude/longitude (5,600m
at the equator). TheseMODIS products are amonthly composite of cloud-free spatial Level 3 products. The
NDVI products, used independently in this study, areMOD13C2 (Terra) andMYD13C2 (Aqua). The new
EnhancedVegetation Index (EVI) is another product fromMYD13C2, and uses the blue band to remove
atmospheric contamination,minimizes canopy variations, andmaintains sensitivity over dense vegetation.
NDVI ismuchmore commonly used as a vegetation index in theGalapagos and other tropical research,
compared to EVI [2, 9, 10].MODIS products also include land surface temperature and emissivity (MOD11C3),
both of which average the corresponding daytime and nighttime observations over eachmonth.

TheModern-Era Retrospective analysis for Research andApplications, Version 2 (MERRA-2) incorporates
and synthesizes data gathered since 1980within a global climatemodel framework.MERRA-2 incorporates
space-based observations of aerosols to represent their interactions with other physical processes in the climate
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system, and has a spatial resolution of 50 km in the latitudinal direction [29]. From the different products that
MERRA-2 produces, we selected 15 products, includingmeteorological, atmospheric, and geologic variables
that have the potential to affect vegetative phenology (as summarized above, and listed in table 2).

The Tropical RainfallMeasuringMission (TRMM) (1997–2015)was designed to improve the understanding
of the distribution and variability of precipitationwithin the tropics [30]. The TRMM-3B43-7monthly
precipitation product is used, which is based on data fromTRMM3B42 product (3-hoursmergedmicrowave
and infrared based precipitation (mm/hr), calibrated to station precipitation gauges).

TheAdvanced Spaceborne Thermal Emission andReflectionRadiometer (ASTER)Global Digital Elevation
Model Version 2 (GDEMV2), released onOctober 2011, has a coverage from83°N-83° S latitude, spanning
99%of Earth’s landmass, with a resolution of 30meters [31].

Monthly CO2 dry airmixing ratio fromMauna Loa,Hawaii (20°N) is used to quantify the potential impact
of global carbon dioxide (CO2) concentration on the vegetation of theGalapagos Archipelago.

MEI (Multivariate ENSO Index) andONI (OceanicNiño Index) are used to quantify the effect of ENSOover
the islands. ONI, an index of theNationalOceanic andAtmospheric Administration (NOAA), uses the sea
surface anomaly for theNiño 3.4 region in the Equatorial Pacific, with ElNiño defined as when the anomaly
exceeds+0.5 °C for threemonths.MEI is aweighted average of the anomaly of sixmeteorological variables as
associatedwith ENSO: sea surface temperature, sea level pressure, surface air temperature, surfacewind
(meridional and zonal components), and cloud fraction [32].

Table 1. List of abbreviations and acronyms used on thismanuscript.

Abbreviations Explanation

andAcronyms

AGPP Above-ground primary productivity

AR Autoregression spectrum

ASTER TheAdvanced Spaceborne Thermal Emission

andReflectionRadiometer

CO Carbonmonoxide

CO2 Carbon dioxide

DEM Digital elevationmodel

E Evaporation rate over land

ENSO ElNiño SouthernOscillation

GDEMV2 GlobalDigital ElevationModel Version 2

GLM Generalized linearmodel

GNP GalapagosNational Park

IRLS Iteratively reweighted least squares

ITCZ Inter-Tropical Convergence Zone

LASSO The least absolute shrinkage and selection

operator

MASL Meters above sea level

MATLAB Matrix laboratory

MEI Multivariate ENSO Index

MERRA-2 TheModern-Era Retrospective analysis for

Research andApplications, Version 2

MODIS TheModerate Resolution Imaging

Spectroradiometer

NASA TheNational Aeronautics and Space

Administration

NDVI Normalized difference vegetation index

NIR Near infrared

NPP Net primary productivity

O3 Ozone

ONI OceanicNiño Index

R2 Coefficient of determination

RMSE RootMean Square Error

TA Air Temperature

TRMM TheTropical RainfallMeasuringMission

TS Surface Temperature

UNESCO TheUnitedNations Educational, Scientific and

CulturalOrganization

VEI Volcanic explosivity index
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CO2 ,MEI, andONI are globally representative time series andwere obtained fromNOAA sources [33–35].
All other datasets presented in table 2 (below) andNDVI datasets are spatially resolved andwere downloaded
fromNASA’s Giovanni web interface [36]. All data representmonthly values, except for the digital elevation
model (DEM)which is temporally constant. Data were processed inMATLAB v9.4.

2.3.Methods
Themethods used in this paper tomodel the spatiotemporal patterns inNDVI are the Least Absolute Shrinkage
and SelectionOperator (LASSO) regression for selecting predictor variables, followed by the generalized linear
model (GLM) forfitting the selected variables. First, we preprocessed each dataset byfilling inmissing values
using nearest-neighbor or linear interpolation, as long as the percentage of themissing data did not exceed 5%of
the study period (≈11.5 months). Filled data represent 13.6%of the total study area. Then the remaining
selected pixels are used as amask to eliminate independent variables that havemore than 5%ofmissing data.
Each dataset was spatially regridded from its original resolution (shown in table 2) tomatch theNDVI resolution
(0.05°≈5.6 km). The regriddedmethod used is the nearest neighbor interpolation. Then, each series was
standardized using themean and standard deviation for that pixel. In addition to the original set of 20 variables
(table 2, variables 1–20), lags of 1month, 3months, 6months, 9months, and 12months was applied to the
NDVI, soilmoisture, and precipitation data to consider possible relationships between long-termmoisture
accumulation, stress, and vegetation. Finally, all data sets were divided into two parts. The first 183months of the
data set (80%of the data)was used for calibration of themodel, and themost recent 49months (20%of the data)
was used in validation of themodel. Themodel was additionally tested using two other subsets, 70%–30%and
60%–40% for calibration-validation respectively (table 4).

Table 2. List of explanatory independent variables. Each independent variable is numbered, named, and presentedwith its unit, source,
spatial resolution, and product name. The temporal resolution ofNDVI and potential independent variables ismonthly, expcet for
topographywhich is constant in time. The table is divided in sections. The first row is the dependent variable, followed by the numbered
rows of independent variables categorized under airmolecules and particles, atmosphere, soil, ENSO, and topography.

# Dataset name Unit Source Resolution Product version

— NDVI — MODIS 0.05° MOD13C2 (Terra) andMYD13C2 (Aqua)

Airmolecules and particles

1 Carbon dioxide (CO2) ppm NOAA global Mauna LoaCO2monthlymean data

2 Carbonmonoxide (CO) emission kg m−2 s−1 MERRA-2 0.5×0.625° M2TMNXCHM_5_12_4_COEM

3 Dust kg m−3 MERRA-2 0.5×0.625° M2TMNXAER_5_12_4_DUSMASS

4 Ozone (O3)mix ratio kg/kg MERRA-2 0.5×0.625° M2IMNPASM_5_12_4_O3-1000hPa

Atmosphere

5 Evaporation from land kg m−2 s−1 MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_EVLAND

6 Precipitation mm hr−1 TRMM 0.25° TRMM_3B43_7_precipitation

7 Surface air Temperature K MERRA-2 0.5×0.625° M2TMNXFLX_5_12_4_TLML

8 TA (Air Temperature) K MODIS 0.5° M2IMNPANA_5_12_4_T-1000hPa

9 TS day (Surface Temperature) K MERRA-2 0.5×0.625° MOD11C3_006_LST_Day_CMG

10 TS night (Surface Temperature) K MERRA-2 0.5×0.625° MOD11C3_006_LST_Night_CMG

11 Wind Speed m s−1 MERRA-2 0.5×0.625° M2TMNXFLX_5_12_4_SPEED

12 Wind Speedmax m s−1 MERRA-2 0.5×0.625° M2TMNXFLX_5_12_4_SPEEDMAX

Soil

13 SoilMoisture m−3 m−3 MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_GWETTOP

14 Temperature (T) Soil 1 K MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_TSOIL1

15 T Soil 2 K MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_TSOIL2

16 T Soil 3 K MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_TSOIL3

17 T Soil 4 K MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_TSOIL4

18 T Soil 5 K MERRA-2 0.5×0.625° M2TMNXLND_5_12_4_TSOIL5

ENSO

19 MEI (Multivariate ENSO Index) — NOAA global Version 2 (MEI.v2)
20 ONI (OceanicNiño Index) — NOAA global Version 5 (ONI_v5)

Topography

21 Digital elevationmodel (DEM) m ASTER 30 m ASTERTIF
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For calibration, we used a regression-based technique known as LASSO [37, 38], to identify the best set of
independent variables that can explainNDVI variability while dealingwithmulticollinearity between the
possible independent variables for each pixel. The LASSOmethod assumes a linear relationship between
dependent and independent variables, withGaussian noise, but constrains the L1 normof the regression
coefficients in the least-squares optimization. The inclusion of the L1 constraint (α=1) results in the shrinkage
of certain coefficients to zero, hence providing away to obtain the best subset of independent variables. The
variables associatedwith the coefficients that were shrunk to zerowere dropped, giving afinal set of 10
independent variables.

Then, we developed a generalized linear regressionmodel, which usedmaximum likelihood [39] tomodel
NDVIwith independent variables selected from the LASSO analysis alongwith functions of time to account for
seasonality and interannual variability. TheGLMused aGaussian link function, whichmakes ourmodel
equivalent to a linearmodel. Autoregressive (AR) spectrum analysis was used to detect frequencies in theNDVI
and select the peakNDVI cycle amplitudes. Thus, themodel took the following form:

b b b a w a w= + + + + + + + Y x x t tg ... sin ... sin 2i i ni in n n0 1 1 1 1( ) ( ) ( ) ( )

where i indicate that the values are different for each grid point,β0 is the intercept,βi (αi) is the independent
variable (frequency) coefficient, xji is an independent variable,ωi is a frequency component, and òi is an error
term, assumed to be aGaussian distributed random variable. Depending on the number of frequencies present
in the data, themodel could use up to three sine components.

Different combinations of the ten possible independent variables, including lags, were individually tested,
and p-values were calculated. A series of GLMswith aminimumof one independent variable and amaximumof
ten (including autocorrelation)were constructed and run; themodels with higher correlationwith theNDVI
trend, using the least number of independent variables and best p-value were selected.Models were compared
using adjustedR2 (hereafter referred to asR2) and a robust linear regressionmodel. The robust regressionmodel
used iteratively reweighted least squares (IRLS) to assign aweight to each data point. This weight was assigned
equally to each data point in the first iteration andmodel coefficients were estimated using ordinary least
squares. At following iterations, points further from themodel predictions in the previous iteration are given
lowerweight, thenmodel coefficients are recomputed usingweighted least squares. This process continued until
the values of the coefficient estimates convergedwithin a specified tolerance. This weighting ensured that the

Figure 2.Diagram of the overall analysis structure andworkflow.
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finalmodel was notmuch affected by outliers [40] and allowed us to identify a smaller set of independent
variables that robustly improveNDVI prediction.

Finally we compared themodel-predictedNDVIwith the observed data at each pixel, andwe validate the
model using the second part of the data. Figure 2 shows the overall workflow.

3. Results and analysis

3.1.Description ofNDVI data
Figure 3(a) shows the spatial distribution of the averageNDVI value, and figure 3(b) shows the standard
deviation (SD). The SD values reflect the temporal variability ofNDVI at each pixel. Themaximum standard
deviation is 0.18 (inNDVI units). Regionswith lowNDVI values also have low standard deviations, as shown in
figure 3(b). However, higher standard deviations are not necessary indication of higherNDVI values.

To get a general overview of theNDVI trend for the years of this study,NDVI values were averaged spatially,
giving ameanNDVI value for thewhole archipelago permonth. Figure 3(c) shows a linear trend and a two step-
changemodel formeanNDVI, alongwith a clear seasonal cycle. Using a linear regression on thewhole period,
meanNDVI shows a 1%annual increase (R2=0.065, p-value=5.73E-05, RMSE=64.1). Two significant
change points were found using Pettitt’s test. In significance order, one occurred at January 2010 (month=120,
p-value=2.36E-08) and the other occurred at June 2003 (month=41, P-value=3.50E-03). During thefirst
period, theNDVI average valuewas 0.3447 for 3.33 years (40months). Then, during the second step,NDVI
decreased, with an averageNDVI value of 0.3089 for the next 6.58 years (79months). Then, for the last step,
NDVI increased, with an averageNDVI value of 0.3673 for the next 9.17 years (110months)figure 3(d) shows
the seasonal cycle ofNDVI.NDVI values are higher from January to June (max: 0.33–0.48 inMay [interannual
range]), which is awarm andwet season, and lower from July toDecember (min: 0.26–0.36 inOctober), which is
a cool and dry season. The dry season has lower interannual variability inNDVI, while thewet season has higher
interannual variability.

Infigure 4, topographical features such as aspect, slope, and elevation are comparedwith averageNDVI to
observe relationships between vegetation and the island topography. Figure 4(a) (left) shows the spatial
distribution of the aspect angle over thewhole archipelago, and (right) the radial distribution in degrees of each

Figure 3. (a) Spatial distribution of the average normalized difference vegetation index (NDVI) on theGalapagos Archipelago, and (b)
standard deviation of eachNDVI pixel. (c)Time series ofmean normalized difference vegetation index (NDVI) for 229monthswith
two step changes showing three phases and a linear trend for thewhole period, (d)Themean seasonal cycle of NDVI±1 standard
deviation represented with a red line and gray shading on theGalapagos Archipelago.
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pixel. There is not a clear relationship between aspect andNDVI values.R2=0.1% (p-value=4.46E-1)
figure 4(b) (left) shows the spatial distribution of the angle of the slope over thewhole archipelago, and (right)
the scatter plot of the dependence ofNDVI to the slope angle.R2=5.29% (p-value=5.01E-6). Elevation has
the clearest relationshipwithNDVI. There are twomarked elevation zones whereNDVI values are very high
(over 0.6). One is between 2–16MASL and the other is between 250–800MASL (figure 4(c)). Higher variability
of the seasonal trend inNDVI is observed at elevations lower than 20MASL. Because of this, later analysis is
divided in two elevation ranges. One elevation range includes the pixels with an elevation lower or equal to 20
meters above sea level (MASL) (35%of the area of study) and the other includes pixels with an elevation higher
than 20MASL (65%of the area of study). Elevation is unevenly distributed, resulting in gaps inNDVI data for
certain elevation ranges; thus,figure 4(c) showsmonthlymeanNDVI based on a 100 m elevation interval.

Figure 4. (a) Spatial distribution of aspect across theGalapagos Archipelago andAspect versusNDVI. (b) Spatial distribution of slope
across the archipelago and Slope versusNDVI. (c)Monthly distribution ofNDVI by elevation.
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Therefore, this figure does not showwell trendswithin the lower elevation range. Even though pixels
representing 2–16mof elevation comprise approximately 10%of the data, they are lost when averagedwith the
rest of the pixels in this range because of the decreasing number of pixels with respect to increasing elevation.

Figure 5 showsmaximumannualNDVI (mean andmedian, using dashed and solid red lines, respectively).
MonthlyMEI values are presented in blue bars, and volcanic eruptions that registered on theVEI scale are
presentedwith black asterisks. NegativeMEI values indicate LaNiña events, and positiveMEI values indicate El
Niño events. Figure 5 shows that largermagnitude ENSO events tend to correlate with higher averagemaximum
NDVI values, whileminor events (such as those indicated between 2003 and 2008) tend to correlate with lower

Figure 5.YearlymaximumNDVImean (red dashed line) andmedian (red line) values for thewhole archipelago,monthlyMEI values
(blue bars), and registered volcanic eruption usingVEI scale (black asterisks). NegativeMEI values indicate LaNiña events and positive
MEI values indicate El Niño events.

Figure 6. Spatial representation of the variance decomposition of each independent variable used in themodel with elevation in black
contour lines.
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overall NDVI values.HigherNDVI values are often foundwith negativeMEI values, suggesting that during these
events vegetationmay benefit from extended effects of ElNino, even after it passes.

3.2. Selection of independent variables
After gap filling and standardization, 368 (374) pixels fromTerra (Aqua)were available to be used in the
analyses. The ten independent variables selected after lasso regression are CO2, evaporation, precipitation,
surface temperature day, and lags of 1month forNDVI and soilmoisture, 3months for soilmoisture, and 12
months forNDVI, soilmoisture and precipitation. The averageR2 forNDVIwas calculated using the
independent variables named previously for each elevation region. For pixels with elevation less than or equal to
20MASL,R2=46.88%, and for elevation higher than 20MASL,R2=69.03%.NDVI autocorrelation
(NDVIt−1), CO2, evaporation (E), andNDVI autocorrelation (NDVIt−12)were selected as independent variables
to build thefinalmodel (table 3); eachwas the dominant independent variable for 68%, 51%, 42%, and 46%of
the area of study, respectively. Using these 4 independent variables (section 3.3), theR2 values changed to
43.28% (ΔR2=−3.6% fromusing all the lasso-selected independent variables); for pixels with elevations
�20MASL, andR2 changed to 66.41% (ΔR2=−2.62% fromusing all the lasso-selected independent
variables) for elevations higher than 20MASL.

3.3. Building of themodel and calibration
The following results are based in the calibration set.R2 valuespresentedon the graphs arebasedon themeanNDVI,
andmodeledmeanNDVI for thewhole archipelago. Figure 8 shows the spatial distributionofR2 for the twoelevation
rangespreviouslymentioned. In the top left panel, shorelinepixelswith elevations less thanor equal to20MASL, are
highly variable inR2 values.Thenumberof pixels in this range is 130, representing 35%of the study area. Pixelswith
elevationshigher than20MASL (top right panel)generally havehigherR2 values. For each range, eachpixel shows the

Table 3. List of independent variables used to build themodel and the number of pixels that they
influence (expressed as percentage of the study area), RMSE, adjustedR2, and P-value for carbon
dioxide, evaporation, autocorrelation of one-month and 12-months lag inNDVI for the study
period, 2000–2019.

Independent variableName N (%) RMSE Adj.R2 p-value

Carbon dioxide (CO2) 189 (51%) 0.079 0.1597 2.39E-10

Evaporation land (E) 156 (42%) 0.662 0.4000 8.81E-27

Autocorrelation ofNDVI (NDVIt−1) 251 (68%) 0.306 0.7991 8.83E-77

Autocorrelation ofNDVI (NDVIt−12) 168 (46%) 0.480 0.4772 3.49E-32

Figure 7. (a)Distribution ofR2 based on averageNDVI and elevation in log scale, (b) based on averageNDVI and elevation, and (c)
based on averageNDVI andNDVI skewness. (b) and (c) show those pixels that have an elevation higher than 20 MASL.
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time seriesof themodeledNDVI, the actualNDVI trend, and their average for thewhole archipelago (figure8, second
row). Thepeaksof themodeledNDVIhave lower amplitude than the real observations, but theperiodicity and trends
matchprecisely.

Figure 9 top panel shows a bar plot of all usable pixels in the archipelago fromwhichR2 was calculated. The
lowestR2 is 4.5%and the highestR2 is 93.8%. The values ofR2 range from4.5%–89%and 16–93.8% in lower
and higher elevation zones, respectively. The overallmeanR2 is 58.5%; for pixels with an elevation higher than
20MASLmeanR2 is 66.32% and for pixels with an elevation lower than 20MASLmeanR2 is 45.4% .

Variance decompositionwas used on the independent variables retained in the finalmodel (figure 6). NDVI
autocorrelation of onemonth lag explained the largest proportion of themodeledNDVI variance (42%),
followed by evaporation (33%), NDVI autocorrelation at twelvemonths lag (21%), andCO2 (5%). After
subtracting the effect of theNDVI autocorrelation, evaporation explained 83%of theNDVI variance, followed

Figure 8.On the left sideR2 values for pixel with an elevation lower or equal than 20 MASL, and on the right sideR2 values for pixel
with an elevation higher than 20 MASL. The first row shows the spatial correlation of the normalized difference vegetation index
(NDVI)R2. Pixels in black represent pixels outside of the area of analysis. The second row shows the time series of the normalized
difference vegetation index (NDVI)(light blue) and its average (blue) and the generalized linear regressionmodel by pixel (mustard)
and its average (red). These results are for the calibration section of themodel, and on the third row are the results for the validation
section of themodel.
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byCO2,which explained17%.CO2wasmore important as an independent variable in areaswith very lowNDVI
values, as shown infigure 3ofRivasTorres et al (2018) [2], corresponding to siteswith relatively recent lavas and scarce
or absent vegetation. Fernandina Islandand Isabela Island,whichhave themost active volcanoesof the archipelago
[41]present goodexamplesof lowNDVIvalues associatedwith recent and active lavaflows [42]. Evaporation increases
in importancewith thepresenceof vegetation, but its predictivepower is also influencedby the typeof vegetation
present,whichvaries across the archipelago.NDVIonSantaCruz Island,which is oneof themain agricultural zonesof
the archipelago, is highly influencedby evaporation.NDVIautocorrelation (lag-1month) showshigherpredictive
power close to shoreon Isabela, Fernandina, Santiago, SanCristobal, andFloreana islands.The areawithdense
vegetation suchasbetweenactive volcanoeson Isabela andFernandina islands, anunusual ecoregion, also corresponds
tohigher values ofNDVIautocorrelation (lag-12months).

Different combinations of independent variables and periodic trendswere used in an attempt to improve the
predictive power of themodel for the entire archipelago. TheAR spectrum analysis showed that the peakNDVI
cycle amplitudes (in decreasing order) have periods of 17, 34, and 13months. After a series of iterations, the best
fit to theNDVI data included periodic trends with 17 and 34-month periods. These timescales are influenced by
ENSO [34]. However, adding these periodic terms to themodel only resulted in a slight increase (0.002%) in the
average values ofR2 across pixels. Therefore, theywere not included in thefinalmodel.

Removing theNDVI autocorrelation resulted in a dramatic decrease inR2 to amaximumof 27.82% for
pixels with an elevation�20MASL and 39.04% for pixels with an elevation>20MASL (appendix,figure A2–2).

Figure 9.Bar plot ofR2 of the calibration section (top) and validation section (bottom) for the whole archipelago, segmented by two
elevation ranges. One segment shows pixels with an elevation lower or equal to 20 MASL in red, and the other segment shows pixels
with an elevation higher than 20 MASL in blue.On the right side of the plot, the total number of pixels corresponding to eachR2% is
presented in grey.
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In both elevation regions, themodel without autocorrelation does notfit with the observedNDVI trend
during the period of lowerNDVI in 2003–2008. The peaks ofmodeledNDVI have lower amplitude than the
observations, but the periodicity and trendsmatch exactly for pixels with elevations higher than 20MASL. This
match is weaker for pixels with elevations�20MASL. Figure A2–3 (appendix) shows a bar plot of all usable
pixels in the archipelago fromwhichR2 was calculated. For elevation less than or equal to 20MASL,R2 is
between 0%–71%. The number of pixels with anR2 greater than 50% is 26. For elevation higher than 20MASL,
R2 range is between 0%–75%. The number of pixels with anR2 lower than 20% is 41. The different ranges ofR2,
0%–70%, have an average number of pixels of 50.

BecauseNDVI autocorrelation (onemonth-lag, and 12-months lag) improved the fit of themodel,
especially for the period of lowerNDVI (2003–2008), NDVI autocorrelationwas retained in themodel. Thefinal
model was reduced to

b b b b b= + + + + +- - NDVI CO E NDVI NDVI 3t t0 1 2 2 3 1 4 12 ( )

Residuals were temporally independent, indicating that themethod produced an adequate fit to theNDVI
dataset. Kolmogorov-Smirnov (K-S) test was applied to check the fit of the residuals of each pixel to a normal
distribution. Residuals did not follow a standard normal distribution (p-value=6 x 10−6). Themean value of
residuals for thewhole archipelago is 0.0036; themodel very slightly underestimates observedNDVI, which is
most apparent in peak values, but otherwisematches the observed trendwell. Ten other normality tests [43]
(α=0.05)were applied on the residuals. These results are presented in table A1–1.

Figure 7 shows the comparison ofR2 with elevation, averageNDVI, andNDVI skewness. Figure 7(a)
presents the distribution ofR2 based on pixel elevation and averageNDVI value. Pixels withR2 values<50%are
generally thosewith elevation<20MASL andNDVI values<0.3. These pixels could be representative of
disturbed or arid zones. Those pixels with higherR2 values and elevations generally haveNDVI values>0.3,
indicating denser vegetation. Figure 7(b) showsR2 based on the averageNDVI for those pixels that have an
elevation higher than 20MASLPixels show an inverted u-patternwhere pixels with lower (<0.15) and higher
(>0.7) values of averageNDVI tend to have a lowerR2 value. Figure 7(c) shows the distribution of theNDVI
skewness for the comparison ofR2 with averageNDVI. Pixels that represent extreme averageNDVI values
likewise have extreme skewness values (<−1 or>1). Based on these results, NDVI under 20MASL ismore
variable and not as influenced by the independent variables used in the currentmodel.

3.4. Validation
Themodel was validated using data from January 2016 to January 2018 (the validation subset described in 2.3).
The period of analysis is shorter than the full 4 years because of the need to incorporateNDVI autocorrelation
(12month lag) in themodel. The bottom left panel offigure 8 shows the averageR2 value for those pixels with
elevation�20MASL is 35.47%,while the averageR2 values for higher elevations is 64.86% (bottom right panel).
At higher elevation, the values ofR2 are similar to those values obtained from calibration processes with
differences (Δ)<5%.On the other hand,�20MASL,Δmay be up to 10%. RMSE values are low for all
elevations, and lower for elevations�20MASL at any percentage of the data set. Table 4 showsRMSE andR2 for
three sets of calibration and validation data. Additionally, themodel was runwithNDVI from theAqua data set
for the same validation period tested using data fromTerra (table 4, last two columns). Results for lower

Table 4. List ofR2 from calibration (higher%data) and validation (lower%data) using different data sets length. Validation values are
compared toNDVI fromAqua data set (last two columns).

Elevation %NDVI data set RMSE R2 RMSE R2

Lower or equal to 20 MASL 60 0.1621 0.3919 — —

Greater to 20 MASL 60 0.2033 0.6257 — —

Lower or equal to 20 MASL 40 0.1558 0.3477 0.1261 0.3417

Greater to 20 MASL 40 0.1839 0.5977 0.2051 0.5231

Lower or equal to 20 MASL 70 0.1761 0.4426 — —

Greater to 20 MASL 70 0.2125 0.6537 — —

Lower or equal to 20 MASL 30 0.1654 0.3725 0.1228 0.3465

Greater to 20 MASL 30 0.2043 0.6068 0.2099 0.5216

Lower or equal to 20 MASL 80 0.1730 0.4540 — —

Greater to 20 MASL 80 0.2707 0.6632 — —

Lower or equal to 20 MASL 20 0.1514 0.3547 0.1134 0.3612

Greater to 20 MASL 20 0.2318 0.6486 0.2407 0.5496
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elevation are similar in both data sets. For higher elevation,R2 associatedwith the Aqua data set are lower (up to
10%). Values are stable with different lengths of data for validation.

In the bottompanel offigure 9, a large number of pixels with elevation lower or equal to 20 MASL have anR2

value that range between 0 to 20%while at higher elevation,many pixels haveR2 values between 70 to 90%.
Overall, themaximumR2 is 75%.

4.Discussion

4.1. Interpretation of results
Climate change is expected to trigger changes to temperature and precipitation patterns across the globe. In the
Galapagos, climate change is expected to create warmer andwetter conditionswith stronger ElNiño events; all
of these are conditions that enhance plant growth and greenness, which can bemeasured throughNDVI.Our
results show a statistically significant increase inNDVI of 1%per year over the 19 years of study, which could be
a signal of anthropogenic climate change (e.g. changes in temperature, precipitation, or CO2 concentration),
although a change-point detection (step change) analysis shows a decrease inNDVI values from2003 to 2010,
which could be related to ENSO events and volcanic eruptions at that time. Furthermore, small peaks in
average/median annualmaximumNDVI (2002, 2008, 2011, 2015, and 2017) could reflect themulti-year
periodicity associatedwith ENSO [34]. Importantly, not all the above years correspond to ElNiño events, e.g.
2008, but this year is noted as having been unusually warm and rainy in theGalapagos [5]).

Our results show that, out of over 20 potential predictors considered, temporal autocorrelation at 1-month
and 12-months lag, evaporation, and carbon dioxide levels are themost important independent variables for
modelingNDVI in theGalapagos Islands, yielding values ofR2 for theGLM that range from5%–93%. Prior
research supports the importance of considering temporal autocorrelation in explanatoryNDVImodels [44];
given the uniquely stable character of Galapagos ecosystems, it is unsurprising that intrinsic variables and/or
systemmemory are important formodeling vegetative dynamics.

We offer conjectural interpretations of some of the spatial patterns seen in the coefficients of ourmodel for
NDVI variability. These interpretations are subject to refinement as longer and finer-resolution data sets become
available.

Evaporation appears to be an important proxy ofNDVI in the ecosystems that exhibit strong seasonality, as
shown infigure 6. This is particularly true of the deciduous forests and shrublands across the archipelago (see
Rivas-Torres et al (2018) [2],figure 3). In Santiago, Santa Cruz, SanCristobal, Genovesa, and Pinzon, the
dominant ecosystem is dry forest, where primary productivity is limited bymoisture availability and dependent
on seasonal rainfall [45]; importantly, precipitation is extremely variable in theGalapagos (spatially, inter-
annually, and intra-annually) [45] and its relationship toNDVI is not direct—especially in the xeric ecosystems
that dominate the archipelago [2, 45]. On the other hand, increased evaporation—even at a coarse scale—can
indicate overall conditions that are favorable for plant growth, including increasedmoisture availability, higher
temperatures, and increased solar irradiation [5, 45, 46]. Evaporation and leafiness are positively associated in
seasonal forests, because plants only produce larger leaves with larger surface areas when they can afford to lose
water (figure A2–1). The inverse is also true; leaf shedding is a phenological response of deciduous organisms to
water stress. Indeed, other studies of vegetative response to atmospheric and climate variables have shown
evaporation to bemore strongly correlated with above ground primary productivity (AGPP) than precipitation
[46–48]. Chen et al (2019) [46] offer a compelling explanation for this phenomenon, arguing that evaporation
provides amore accurate estimation ofNDVI by considering the interaction ofmoisture availability with
available solar energy—both of which are limiting factors for plant growth [46]. ACO2 fertilization effect has
been observed in the tropics as well as,more famously, in the northern hemisphere; Krakauer et al [49] showed
that forNepal, global CO2 concentrationwas better atmodelingNDVI intrannually than climate variables,
(whichweremore important interannually).Moreover, we suggest that in volcanic zones of theGalapagos,
pioneer speciesmake global CO2 concentration a better indicator ofNDVI than local climatic variables. Fast
growing plants (such as pioneers) aremore sensitive to elevatedCO2 than slow growers [50–52]. On primary
lava, temperature andmoisture are highly variable due to the lack of surface vegetation and soils, yet early
successional species are adapted to full sun conditions and photosynthesizemore rapidly than later successional
species. Idealized curves for photosynthesis rates fromBazzaz (1979) [53] show that in full sun, early
successional species achieve photosynthesis rates of≈25mgCO2dm

−2 h−1 , compared to≈15 mgCO2dm
−2

h−1 formid successional species, and≈2–5 mgCO2dm
−2 h−1 for late successional species. Pioneer species in

theGalapagos include numerous representatives of the fast growing ‘weeds’ of the Poaceae family (including
Aristida repens andEragrostis mexicana (lovegrass)) andAsteraceae family (including Sonchus oleraceus L., a
dandelion relative, andBaccharis gnidifolia). Just outside of the ashy barren zones, pioneer communities also
includemembers of the Solanacae family (e.g. Solanum erianthum, the potato tree,Lycopersicon (tomato),
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Exedeconusmiersii (shore petunia), and numerous vines. Solanaceae are C3 photosynthesizers, which have been
shown to respond to elevatedCO2 levels with higher levels of photosynthesis, compared toC4 species [54]. The
predictive power of CO2 forNDVI in areas that correspond to recent lavaflows suggests a quickly colonizing,
resilient pioneer community that is adapted to local climate variation and geologic disturbance. At the same
time, sensitivity toCO2 levels suggests that global CO2 increasemay have the capacity to drive successional
dynamics and pioneer community composition in the future [55].

In the sameway as volcanic zones, shoreline areas have a very dynamic and challenging environment that
promotes pioneer communities. In these areas, the importance of previous-monthNDVI as a predictor of
current-monthNDVI speaks to the sustainability of these communities within seasons in these harsh
environments. Finally, previous-yearNDVI as a predictor represents the adaptability of vegetation to slower
changes in climate factors on the region. This is especially visible for dense vegetationwhereNDVI values are
higher.

Since ourmodel works best to explainNDVI at higher elevations (>20MASL), andworks especially well for
sites with elevation>200MASL, low elevation areas and littoral zonesmay represent unique plant communities
(endemicGalapagos dry forest, shrub land, and/orMangrove forests), whose overall productivity responds
most strongly to variables not considered in this study. Themodel works best to explainNDVI in the dry season
(June-December), with higher variability during rainy periods, including ElNiño events, a trend also observed
byKalisa et al (2019) [56]. Seasonally anomalousNDVI values could be representative of a nearly universal
greening response towater availability during these periods.

4.2. Potential implications formanagement
Trueman et al (2011) [5] present a detailed description of how a changing climatemight affect the phenology of
the islands’ varied vegetation. Increased ElNiño, temperatures, and precipitation are generally expected to
enhance greenness across the islands, by stimulating growth and producing largerflowers, leaves, and bushes, as
well as through longer growing seasons and leaf retention periods. Although climate change is broadly expected
to benefit Galapagos flora, it is the non-native species that are expected to benefitmost [5]. Among endemic
species, sustainedwet conditions can be detrimental.Opunita echios (prickly-pear cactus) Jasminocerus thouarsii
(candelabra cactus), andBursera graveolens (palo santo tree) can becomewaterlogged, lose large proportions of
seedlings, and even break or collapse under theweight of rapidly growing vines and herbaceous species, which
proliferate underwet conditions[2, 57].

In the highlands, Scalesia pedunculata (daisy tree) is also speculated to be vulnerable to climate change
because historically, it has been shown to die back in response to ElNiño events [5, 57]. In addition to direct
mortality, dramatic die offs of Scalesia could fundamentally alter the ecosystem by ceding valuable growing
territory in the humid highlands to opportunistic non-native species that have been shown to respond to ElNiño
conditionswith increased growth [5].

Over the last several decades, there has been a concerted effort in theGalapagos to remedy direct
anthropogenic disturbances to the ecosystem, including creation of theGalapagosNational Park (GNP) Service
and delineation of the official Park boundaries, the establishment of theGalapagos Biosphere Reserve andWhale
Sanctuary, and concentrated eradication campaigns directed at large non-native herbivores such as goats and
pigs [10, 58].Watson et al (2010) [58] attempted to quantify the proportion of the archipelago that had been
severely degraded by direct human activities (defined as active and abandoned agricultural areas and urban
centers). The team arrived at an overall estimate of∼5%,which varied across the five inhabited islands froma
maximumof 17%and 14%degraded land area on SanCristobal and SantaCruz Islands respectively, to 8%, 5%,
and 0.1%of total land area on Floreana, Isabela, Santiago, respectively. The teamhighlighted that the humid
highlands are significantlymore degraded than the lowlands, because growing conditions aremore favorable for
agriculture and invasive colonizers [58]. TheGalapagosNational Park currently occupies over 96%of the land
area of theGalapagos Islands, and is protected fromdirect anthropogenic stressors such as land conversion and
agricultural development [2]. Accordingly, anthropogenic impacts on the ecosystems of the archipelago are
primary indirect for the period of our study, related to the dynamics of invasive species and—we argue—the
early signals of a changing global climate.

The variability of ourmodel’s predictability across theGalapagos highlights the diversity of theflora that
NDVI is designed to assess. Although climate is fundamentally important to vegetative activity and phenology,
the variables thatmost strongly influenceNDVI have been shown to vary, both by ecosystem and by plant type
[56, 59]. TheGalapagos has a unique climate and a stable biological community that has existed for thousands–
perhaps tens of thousands–of years [22], sorted into unique ecosystems across the archipelago.Many of the
ecosystems that flourish in theGalapagos are poorly quantified byNDVI because they are adapted to aridity and
characterized by low levels of greenness; indeed, the evolutionary advantage ofmany endemicGalapagos plants
comes from their toughness and ability towithstand extreme environmental conditions.Wetter summers and
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more frequent ElNiño events, which are expected over the next century, could benefit non-native plants whose
life strategy is to grow fast and die young, at the expense of natives that evolved overmillennia to survive
extremes and poor growing conditions, and rely on seed banks that are similarly adapted to the severity of the
environmental context.

Due to the lack of public local information from the different islands, it was not possible to corroborate the
different remote sensing datasets used in themanuscript. Resolution of the different sets plays a significant role
in exploring and understanding the vegetation on theGalapagos Islands. Since the finest resolution on this study
is∼5.6 km from theNDVI dataset, a large number of small islandswere not taken into account in the analysis. It
is alsoworthmentioning that sparse vegetation, such as that common in dryland systems, is underestimated by
the spatial resolution ofMODIS (∼5.6 km). This effect would be dominant at elevations lower than 20MASL
where vegetation is primarily deciduous grass, shrubland, and dry forest.Moreover, the 50 km resolution of the
MERRA-2 reanalysis does not capture topographic variability across the archipelagowell, which could be
hindering our effort tomodel the factors driving variability inNDVI. In addition, global data such as
atmospheric CO2 concentrations can affect the credibility of the results since they are based on observations
fromhigher latitude than theGalapagos Islands.We consider that thosemeasurements give us a general idea of
how atmospheric CO2 affects vegetation in the archipelago, although theymay not fully represent site-specific
interactions between atmospheric CO2 andflora at the different islands.

5. Conclusions

Our study demonstrates thatNDVI can quantify the effect of changing climate variables on vegetation (NDVI
0.3) in theGalapagos Archipelago. This is significant, given the cultural, economic, educational, and scientific
importance of these islands. Their capacity to serve as amuseum and evolutionary laboratory for future
generationswill depend on the resiliency of the ecosystem and of its anchor vegetation in the face of global
change, as well as on its responsiblemanagement. Remote sensing products andmodels such as ours should help
scientists and conservationists develop tools tomonitor the ecosystem continually and non-intrusively,
especially in the highlandswhere ourmodel workswell to explainNDVI variability, andwhere species invasion
is active and change in community composition is likely.

Studies of vegetation regime shifts on volcanic islands and in the tropics using remote sensing are still sparse,
so there ismuch research to be done. It remains to be seenwhether remote sensing products such asNDVImight
develop the resolution to detectfine scale community dynamics or species invasions, or whether additional data
and non-linear approaches [60] can clearly distinguishNDVI responses to various components of climate
change, such as natural versus anthropogenic. Such studies will be useful to the global community aswemonitor
the responses of our natural systems to a changing climate.
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Appendix

A.1. AppendixA1
Climate Parameters of theGalapagos Islands

Figure A1-1. (a) Spatial distribution of the average surface temperature during the day (left) and at night (right) in Celsius (C). (b)
Georeferenced Precipitation inmm yr−1 over theGalapagos Archipelago. (c)Georeferenced evaporation from land inmm s−1 over
theGalapagos Archipelago.

Figure A1-2.Digital elevationModel of theGalapagos Island inmeters and a resolution of 0.05°fromASTER v2.
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Figure A1-3.A combinedmap of theGalapagos Islands geology and land cover. The backgroundmap shows theGalapagos and
surrounding bathymetry (figure 1 fromHarpp et al (2018) [61])which let us observe theGalapagos transform fault (GTF)north of the
archipelago; Names and geological Ages (inmillion years) [19] of the islands are shown in black and red font, respectively, and
volcanoes are shown inwhite. Land cover layer is presented as in Rivas-Torres et al (2018),figure 3 [2]with its respective legend.

Table A1-1. List of volcanic eruptions [42] for
the archipelago.

Volcano name Year of eruption VEI

Fernandina 2018 1

SierraNegra 2015 2

Fernandina 2009 2

Cerro Azul 2008 1

Fernandina 2005 2

SierraNegra 2005 3

Wolf 2005 4
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A.2. AppendixA2
Calibration of themodel

Figure A2-1. StandardizedmeanNDVI trend of theGalapagos Islands, Carbon dioxide, and Evaporation for period 2000–2019.
Because the primary purpose of this analysis was to identify cyclical trends, all variables were standardized and linear trends (e.g.
increasing CO2were removed prior to graphing).

Table A1-2. List of dominant species associatedwith dry and evergreen forest ecosystem.

Vegetation zone Common species

Dry Forest (lowlands,∼61%of vegetated area) Species of cacti (e.g.Brachycereus nesioticus (lava cactus),Opunita echios
(prickly-pear cactus), and Jasminocerus thouarsii (candelabra cactus)), as well
as trees (Scalesia heller (daisy) andHippomanemancinella (poison apple))
and shrubs (Cordia lutea (glue bush),Gossypiumdarwinii (Galapagos cot-
ton), and Lantana peduncularis (Galapagos lantern)) [8].

Evergreen Forest and Shrubland (transitional zones and
highlands,∼21%of vegetated area)

Natives: woody species such as Scalesia pedunculata (daisy tree) andMiconia

robinsoniana (cacaotillo), as well as numerous ferns, epiphytes,mosses, and

liverworts [5]. Invasives: Psidium guajava (guava), Syzigium jambos (rose
apple),Pennisetum purpureum (Napier grass), Lantana camara (verbena),
Ricinus communis (castor oil),Cinchona pubescens (red cinchona),Rubus
niveus (raspberry sp.) andCaesalpinia bonduc (yellow nicker) [5].

TableA2-1. List ofNormality tests [43] applied on residuals of the calibration set. The table showed the number of pixels (and it percentage
of area) that follows normality (α=0.05) in the archipelago, themean p-value andmedian p-value for the whole archipelago.

TestName Number of pixels that followNormality (%) p-value (mean) p-value (median)

KSLimiting Form 216(58.70) 0.2023 0.0926

KSMarsagliaMethod 65(17.66) 0.0333 0.0100

KS LillieforsModification 212(57.61) 0.1942 0.0865

KS StephensModification 65(17.66) 0.0332 0.0007

Cramer- VonMises Test 37(10.05) 0.0305 0.0002

Anderson-Darling Test 49(13.32) 0.0394 0.0001

D’Agostino&Pearson Test 47(12.77) 0.0282 0.0002

Jarque-Bera Test 49(13.32) 0.0313 0.0004

Shapiro-Wilk Test 81(22.01) 0.0575 0.0002

Shapiro-Francia Test 69(18.75) 0.0482 0.0002
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Figure A2-3.Calibration of themodel without lags. Bar plot ofR2 for the whole archipelago, segmented by two elevation ranges. One
segment shows pixels with an elevation lower or equal to 20 MASL in red, and the other segment shows pixels with an elevation higher
than 20 MASL in blue.On the right side of the plot, the total number of pixels corresponding to eachR2% is presented in grey.

Figure A2-2.Calibration of themodel without lags. On the left side, spatial correlation of the normalized difference vegetation index
(NDVI)R2 with respect to the generalized linear regressionmodel for pixel with an elevation lower or equal than 20 MASL (top), and
higher than 20 MASL (bottom). Pixels in black represent pixels outside of the area of analysis. On the right side, time series of the
normalized difference vegetation index (NDVI)(light blue) and its average (blue) and the generalized linear regressionmodel by pixel
(mustard) and its average (red)with an elevation lower or equal than 20 MASL (top), and higher than 20 MASL (bottom).
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