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Abstract

The vegetation of the Galapagos Islands (Ecuador) is strongly influenced by climate. El Nifio events,
seasonality, isolation, volcanism, and increasing human activity define the ecosystems of the
archipelago. Given their socio-cultural and economic importance, it is critical to monitor the response
of Galapagos vegetation to changes in climate and assess its vulnerability. This study explores the
potential to use Normalized Difference Vegetation Index (NDVI) as a proxy to describe trends in
primary productivity in the Galapagos (2000-2019) and models the relationship between NDVIand
climate variables including evaporation and atmospheric carbon dioxide concentration.

From numerous possible co-variates compiled from reanalysis and satellites, we identify the
independent variables that most strongly influence NDVT using the least absolute shrinkage and
selection operator (LASSO) method. Significant variables, including carbon dioxide concentration,
evaporation, and autocorrelation (1-month and 12-months lagged NDVT) are then used to model
NDVIin a generalized linear model (GLM) framework. The model predicts NDVI more effectively
where values for NDVI are high (high elevation, lush vegetation), and clearly reflects seasonality.
Validation of the model across pixels produces R values ranging from 0.05 to 0.94, and the mean R” is
0.57 (0.65 for elevation >20 m). This methodology has the potential to continuously and non-
intrusively monitor vegetation changes in sensitive ecological regions, such as the Galapagos.

1. Introduction

The Galapagos Islands, located ~1000 km off the west coast of Ecuador in the equatorial Pacific, are world
famous. According to the United Nations Educational, Scientific and Cultural Organization (UNESCO), these
islands and the surrounding marine reserve are a unique ‘living museum and showcase of evolution’ [1]. Island
ecosystems often boast uniquely diverse biota, due to their isolation and micro-climates, which can drive species
endemism [2]. Even so, the Galapagos have an exceptional scientific legacy. Charles Darwin conducted field
research in the Galapagos in 1835 that helped inform his theory of evolution by natural selection—a theory that
has fundamentally changed scientific understanding of biological diversity [3]. The organisms he studied and
chronicled in On the Origin of Species [4], including tortoises and finches, are legendary; they are textbook
examples of adaptive radiation and provide living evidence of evolution in progress [1]. They also help draw
approximately 170,000 annual visitors to the islands, bestowing considerable economic importance to the
Galapagos [1].

©2021 The Author(s). Published by IOP Publishing Ltd
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Galapagos vegetation, which supports the famous animal life of the archipelago, is influenced by a unique
climate system shaped by ocean-atmosphere dynamics, the El Nifo Southern Oscillation (ENSO), active
volcanic island formation, and—more recently—human activities. The topography of the islands defines their
ecoregions, with the volcanic island peaks receiving the most precipitation and therefore containing the lushest
vegetation. Nevertheless, arid ecosystems at or near sea level dominate the Galapagos, accounting for an
estimated 83% of land area, with humid and transitional zones occurring only at elevations >200 meters above
sealevel (MASL) and littoral zones fringing the islands [5]. New volcanism and island formation provide
continuing opportunities for primary succession, speciation, and the formation of novel colonizer
communities, both through the creation of new land and through the destruction of existing habitat [6].

Despite their dynamism, the Galapagos ecosystems have been resistant to past climate changes, perhaps due
to their continual exposure to ENSO-driven natural climate variability. ENSO creates extreme inter-annual
variability in temperature, humidity, and precipitation, which have acclimatized the ecological communities of
the Galapagos to climate disturbance. A fossil pollen study by Restrepo et al 2012 [7] suggests that plant regimes
in the Galapagos have been remarkably stable over the last 2690 years; researchers found few changes to
ecological community composition as a result of major climate events such as the Little Ice Age (1550—1880 CE)
and the Medieval Warm Period (800-1250 CE). On the other hand, these ecosystems are vulnerable to
anthropogenic disturbance. Humans have known about and regularly used the Galapagos Islands since the 16th
century for piracy, whaling, and sealing, creating permanent settlements in the 1800s [8]. Since the 1960s and
1970s, human activities have intensified; population has increased, fishing has become more lucrative (and thus,
more intense), and land use has changed to accommodate agriculture, urbanization, and tourism [9]. Climate
change and introduced species are additional stressors to the archipelago’s ecosystems.

As aresult, vegetation regimes in the archipelago are now changing in unprecedented ways [2, 10]. Non-
native herbivores, such as goats, have negatively affected net primary productivity (NPP) across the islands
through prolific and indiscriminate grazing. Invasive plant species now dominate the humid highlands, where
favorable growing conditions have enabled them to outcompete native species. Most endemic Galapagos species
are now confined to the xeric lowlands, where conditions are harsher. Rivas-Torres et al 2018 [2] estimate that
40% of vascular plants in the Galapagos are found nowhere else on Earth; of these, 62% are considered to be rare
and/or have vulnerable populations. El Nifio events, which mimic rainy seasons in the Galapagos, are
hypothesized to benefit invasive plant species at the expense of natives [ 7] by easing water scarcity, and recent
research suggests that extreme El Nifio events are becoming more frequent [11]. Moreover, anthropogenic
climate change is expected to cause higher ocean temperatures and increased precipitation in the eastern
equatorial Pacific, analogous to sustained El Nifio conditions [12]. These climate trends point to the possibility
of major plant community shifts in the coming decades. Vegetation is the base of the Galapagos food chain,
meaning changes in species composition, biomass, or productivity have the potential to affect consumers at
higher trophic levels, and ultimately, to change the structure and stability of the overall ecosystem. For these
reasons, it is immensely important to assess, monitor, and understand the Galapagos plant community.

Remote sensing can non-intrusively gather enormous amounts of data and has been employed for
monitoring purposes in many research fields, including ecology, oceanography, and geography [13]. The remote
sensing product Normalized Difference Vegetation Index (NDVI) is a common proxy for vegetation condition/
phenological stage [ 14] and above-ground primary productivity (AGPP).

Despite widespread scientific interest in both climate change and the unique ecology of the Galapagos
Islands, few studies have used NDVI to explore the effect of climate variability on the archipelago’s plant life.
Previous studies using remote sensing to assess the environmental health of the Galapagos Islands have focused
on the impact of herbivory on native vegetation [10, 15] or on specific floral species [2, 16] and land cover
changes [9]. None of these studies used NDVI as their primary dependent variable, and none analyzed the NDVI
of the entire Galapagos archipelago, focusing instead on individual islands or groups of islands relevant to their
given research question. We seek to examine whether NDVI can be used in an island biodiversity hotspot like the
Galapagos to monitor vegetation and measure its response to climate dynamics in an era of anthropogenic global
change, making this study the first to assess the association between NDVIand climate change in the Galapagos
holistically.

We use NDVI calculated from satellite remote sensing to quantify the response of Galapagos vegetation to
climate variability, looking at both decadal trends (that could show signals of anthropogenic climate change) and
cyclical patterns associated with natural variability (e.g., those driven by seasonality and ENSO cycles). We
analyze the NDVI of the Galapagos archipelago using data collected from February 2000 to February 2019 by
MODIS satellites (Terra and Aqua) and compiled on a monthly basis. This study has two principal objectives: 1)
describe any observed trends in NDVI over the 19-year period of the MODIS data, and 2) develop a robust
multiple regression model to explain NDVI variability in the Galapagos, using independent variables related to
climate, geology, and human activities. The list of considered independent variables is presented in section 2.2.3.
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Figure 1. Map of the Galapagos Islands. (Esri, ‘World imagery’. Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/

Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community [20]; and ‘World ocean base’. Sources: Esri, Garmin,
GEBCO, NOAA NGDC, and other contributors [21].)

2. Study region, data, and methods

2.1. Study region

The Galapagos archipelago (figure 1) sits on the Equator and extends for approximately 260 km E-W (90°01’ W
to 89°16’ W) and approximately 200 km N—S (1°40’ S to 1°36/ N) [17], with a total area near 52,000 km?. It is
composed of 128 named islands [6]; four of the islands, including the largest, Isabela, are inhabited, with a
combined population of approximately 30,000 [1, 18]. The archipelago is volcanic in origin and geologically
young; The oldest islands formed 3—6 million years ago (mya) and the youngest formed 0.05-0.5 mya [19]. Lavas
represent ~44% ofland area.

Monthly average daytime/nighttime surface temperatures range from 24—42 °C/14-23 °C, respectively,
with average diurnal temperature swings of 14 °C. Average precipitation varies from 88263 mm//year and is
largely seasonal, driven by the interaction of nearby air and sea currents. From January-May, the Inter-Tropical
Convergence Zone (ITCZ) is to the south of the Islands and the Panama Current brings tropical heat and rain to
the Galapagos. [5]. From June-December, the ITCZ moves north of the Galapagos and the Humboldt Current
keeps the archipelago unusually cool and dry for its latitude [5, 6]. Gartia (misty/drizzly air blown inland and
upslope from the ocean) is characteristic of this period, and rainfall is uncommon [22]. El Nifio events, which
occur every 2—8 years [5, 23], resemble sustained rainy seasons in the Galapagos. Along with volcanism, ENSO is
primarily responsible for interannual climate variability in the archipelago. Of vegetated land in the Galapagos,
~61% is dry forest, which dominates the lowlands. ~21% is evergreen forest and scrubland, which occurs at
higher elevations (>200MASL). A study of the Galapagos National Park found that ~54% had vegetation cover
characteristic of native ecosystems, while ~2% was dominated by invasive species [2]. The dominant species
associated with dry and evergreen forest ecosystems are summarized in table A1-2 in the appendix.

2.2.Data

2.2.1. Normalized difference vegetation index

Many Earth-observing satellites are equipped with sensors designed to measure near-infrared (NIR) and red
reflectances (p). These are converted into NDVI [24] as:

NDVI — PNIR — PRed (1)
PNIR T PRed

NDVI values range from —1.0 and 1.0 [25]. High values indicate a higher density of green vegetation, low
values indicate scarce, moisture-stressed, or dryland vegetation [26, 27], and values close to 0 are likely to
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correspond to non-vegetated surfaces (such as bare soil, urbanized areas, and exposed rock/lava flows). Negative
values correspond primarily to clouds, water, or snow.

Average NDVIin the islands varies from —0.04 to 0.78. Lower values of NDVI are found on Isabela,
Fernandina, Santiago, and Marchena Islands. These values correspond to active volcanic areas near the shore,
which also have lower elevations and predominantly arid climates. Higher NDVI values are mainly associated
with elevations 200-800 MASL. Rivas-Torres et al (2018) [2] classified the mean values of NDVI across the
diverse ecosystems of the Galapagos Islands, and showed that values 0—0.2 corresponded to rocky outcrops and/
or sparse, deciduous vegetation; values from 0.2-0.59 represented deciduous vegetation, and values higher than
0.6 indicated dense and evergreen vegetation. Zones of mixed vegetation (such as transitional zones) had
intermediate mean NDVI values [2]. Section 3.1 gives additional details on the distribution of NDVI across the
archipelago.

2.2.2. Independent variables
The set of independent variables used in this study was divided in 5 categories: air composition, atmospheric
state, soil, ENSO, and topographical.

Variations in the concentration of air molecules and particles, which can potentially affect vegetation, are
both natural and man-made. The concentration of carbon dioxide, a major greenhouse gas, varies due to
anthropogenic emissions, biological activity, and air-sea fluxes. Carbon monoxide is associated with fires, as well
as transport of polluted air from industrial areas. Dust is carried by wind, and can be generated by lofting from
volcanoes or deserts. It can negatively affect plant photosynthesis, or in some cases supply valuable nutrients.
Ozone is another species whose concentration is affected by anthropogenic activity and atmospheric transport
pathways and that in high concentration can negatively affect plant development by oxidizing tissues exposed to
it. These variables are listed in table 2 as variables 1—4.

The atmospheric variables include day and night air and surface temperatures. Excessively high
temperatures stress plants and increase respiration rates. Wind can affect plant water loss rate and physical
integrity, depending on the direction, velocity, and duration. The water cycle is very important in vegetation
growth. The amount of rain (precipitation) is a key component of ecosystem water balance, along with the
amount of water that evaporates from earth or plants. The variables thus considered are listed in table 2 as
variables 5-12.

Water from precipitation can be stored by the soil at different rates depending on the type of soil. This is
known as soil moisture. Along with the temperature of soil at different depths, this influences the amount of
water and nutrients plants can absorb. Soil variables are listed in table 2 as variables 15-18.

The El Nifo-Southern Oscillation (ENSO) includes the warm (El Nifio) and the cool (La Nifia) phases of a
recurrent climate pattern across the tropical Pacific. Affecting the air currents and the ocean temperature, it can
impact the growth of plants. Indices of ENSO are listed in table 2, variables 19-20.

The topographical variable consists of an elevation data set, which allows identifying the elevation ranges
where vegetation is generally more dense. In addition, from the gridded elevation we can calculate aspect (slope
face direction) and slope (change in elevation per unit horizontal distance) over the archipelago, which could
potentially affect light and water fluxes and hence local temperature and moisture status. This is listed in table 2
asvariable 21.

2.2.3. Datasets
Data were obtained from the following sources:

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor on board the Terra and Aqua
satellites, which were launched in 1999 and 2002 respectively. As polar-orbiting satellites, they move around the
Earth in a north-south orientation, with Terra crossing the equator in the morning and Aqua crossing in the
afternoon. Terra and Aqua observe the entire Earth surface every 1-2 days, acquiring data in 36 spectral bands
(ranges of wavelengths) [28]. The MODIS Collection 6 products provide vegetation index (VI) values on a pixel
basis using blue, red, and near-infrared reflectances with a spatial resolution 0f 0.05° latitude /longitude (5,600m
at the equator). These MODIS products are a monthly composite of cloud-free spatial Level 3 products. The
NDVI products, used independently in this study, are MOD13C2 (Terra) and MYD13C2 (Aqua). The new
Enhanced Vegetation Index (EVI) is another product from MYD13C2, and uses the blue band to remove
atmospheric contamination, minimizes canopy variations, and maintains sensitivity over dense vegetation.
NDVIis much more commonly used as a vegetation index in the Galapagos and other tropical research,
compared to EVI[2, 9, 10]. MODIS products also include land surface temperature and emissivity (MOD11C3),
both of which average the corresponding daytime and nighttime observations over each month.

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) incorporates
and synthesizes data gathered since 1980 within a global climate model framework. MERRA-2 incorporates
space-based observations of aerosols to represent their interactions with other physical processes in the climate
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Table 1. List of abbreviations and acronyms used on this manuscript.

Abbreviations Explanation

and Acronyms

AGPP Above-ground primary productivity

AR Autoregression spectrum

ASTER The Advanced Spaceborne Thermal Emission
and Reflection Radiometer

Cco Carbon monoxide

CO, Carbon dioxide

DEM Digital elevation model

E Evaporation rate over land

ENSO ElNifio Southern Oscillation

GDEM V2 Global Digital Elevation Model Version 2

GLM Generalized linear model

GNP Galapagos National Park

IRLS Iteratively reweighted least squares

ITCZ Inter-Tropical Convergence Zone

LASSO The least absolute shrinkage and selection
operator

MASL Meters above sea level

MATLAB Matrix laboratory

MEI Multivariate ENSO Index

MERRA-2 The Modern-Era Retrospective analysis for
Research and Applications, Version 2

MODIS The Moderate Resolution Imaging
Spectroradiometer

NASA The National Aeronautics and Space
Administration

NDVI Normalized difference vegetation index

NIR Near infrared

NPP Net primary productivity

O3 Ozone

ONI Oceanic Nifio Index

R? Coefficient of determination

RMSE Root Mean Square Error

TA Air Temperature

TRMM The Tropical Rainfall Measuring Mission

TS Surface Temperature

UNESCO The United Nations Educational, Scientific and

Cultural Organization
VEI Volcanic explosivity index

system, and has a spatial resolution of 50 km in the latitudinal direction [29]. From the different products that
MERRA-2 produces, we selected 15 products, including meteorological, atmospheric, and geologic variables
that have the potential to affect vegetative phenology (as summarized above, and listed in table 2).

The Tropical Rainfall Measuring Mission (TRMM) (1997-2015) was designed to improve the understanding
of the distribution and variability of precipitation within the tropics [30]. The TRMM-3B43-7 monthly
precipitation product is used, which is based on data from TRMM 3B42 product (3-hours merged microwave
and infrared based precipitation (mm/hr), calibrated to station precipitation gauges).

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation
Model Version 2 (GDEM V2), released on October 2011, has a coverage from 83° N-83° Slatitude, spanning
99% of Earth’s landmass, with a resolution of 30 meters [31].

Monthly CO, dry air mixing ratio from Mauna Loa, Hawaii (20° N) is used to quantify the potential impact
of global carbon dioxide (CO,) concentration on the vegetation of the Galapagos Archipelago.

MEI (Multivariate ENSO Index) and ONI (Oceanic Nifio Index) are used to quantify the effect of ENSO over
the islands. ONI, an index of the National Oceanic and Atmospheric Administration (NOAA), uses the sea
surface anomaly for the Nino 3.4 region in the Equatorial Pacific, with El Nifio defined as when the anomaly
exceeds 4-0.5 °C for three months. MEI is a weighted average of the anomaly of six meteorological variables as
associated with ENSO: sea surface temperature, sea level pressure, surface air temperature, surface wind
(meridional and zonal components), and cloud fraction [32].
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Table 2. List of explanatory independent variables. Each independent variable is numbered, named, and presented with its unit, source,
spatial resolution, and product name. The temporal resolution of NDVI and potential independent variables is monthly, expcet for
topography which is constant in time. The table is divided in sections. The first row is the dependent variable, followed by the numbered
rows of independent variables categorized under air molecules and particles, atmosphere, soil, ENSO, and topography.

# Dataset name Unit Source Resolution Product version

— NDVI — MODIS 0.05° MODI13C2 (Terra) and MYD13C2 (Aqua)

Air molecules and particles

1 Carbon dioxide (CO,) ppm NOAA global Mauna Loa CO2 monthly mean data
2 Carbon monoxide (CO) emission kgm ?s! MERRA-2 0.5 x 0.625° M2TMNXCHM_5_12_4_COEM
3 Dust kg m™ MERRA-2 0.5 x 0.625° M2TMNXAER_5_12_4_DUSMASS
4 Ozone (O3) mix ratio kg/kg MERRA-2 0.5 x 0.625° M2IMNPASM_5_12_4_03-1000hPa
Atmosphere
5 Evaporation from land kgm %5 MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4_EVLAND
6 Precipitation mm hr ! TRMM 0.25° TRMM_3B43_7_precipitation
7 Surface air Temperature K MERRA-2 0.5 x 0.625° M2TMNXFLX_5_12_4_TLML
8 TA (Air Temperature) K MODIS 0.5° M2IMNPANA_5_12_4_T-1000hPa
9 TS day (Surface Temperature) K MERRA-2 0.5 x 0.625° MOD11C3_006_LST_Day_CMG
10 TS night (Surface Temperature) K MERRA-2 0.5 x 0.625° MOD11C3_006_LST_Night CMG
11 Wind Speed ms! MERRA-2 0.5 x 0.625° M2TMNXFLX_5_12_4_SPEED
12 Wind Speed max ms! MERRA-2 0.5 x 0.625° M2TMNXFLX_5_12_4_SPEEDMAX
Soil
13 Soil Moisture m’m™? MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4_GWETTOP
14 Temperature (T) Soil 1 K MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4 TSOIL1
15 T Soil 2 K MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4_TSOIL2
16 T Soil 3 K MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4_TSOIL3
17 T Soil 4 K MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4_TSOIL4
18 T Soil 5 K MERRA-2 0.5 x 0.625° M2TMNXLND_5_12_4_TSOIL5
ENSO
19 MEI (Multivariate ENSO Index) — NOAA global Version 2 (MELv2)
20 ONI (Oceanic Nifio Index) — NOAA global Version 5 (ONI_v5)
Topography
21 Digital elevation model (DEM) m ASTER 30 m ASTERTIF

CO,, MEL and ONI are globally representative time series and were obtained from NOAA sources [33-35].
All other datasets presented in table 2 (below) and NDVI datasets are spatially resolved and were downloaded
from NASA’s Giovanni web interface [36]. All data represent monthly values, except for the digital elevation
model (DEM) which is temporally constant. Data were processed in MATLAB v9.4.

2.3.Methods

The methods used in this paper to model the spatiotemporal patterns in NDVI are the Least Absolute Shrinkage
and Selection Operator (LASSO) regression for selecting predictor variables, followed by the generalized linear
model (GLM) for fitting the selected variables. First, we preprocessed each dataset by filling in missing values
using nearest-neighbor or linear interpolation, as long as the percentage of the missing data did not exceed 5% of
the study period (=11.5 months). Filled data represent 13.6% of the total study area. Then the remaining
selected pixels are used as a mask to eliminate independent variables that have more than 5% of missing data.
Each dataset was spatially regridded from its original resolution (shown in table 2) to match the NDVI resolution
(0.05° = 5.6 km). The regridded method used is the nearest neighbor interpolation. Then, each series was
standardized using the mean and standard deviation for that pixel. In addition to the original set of 20 variables
(table 2, variables 1-20), lags of 1 month, 3 months, 6 months, 9 months, and 12 months was applied to the
NDVI, soil moisture, and precipitation data to consider possible relationships between long-term moisture
accumulation, stress, and vegetation. Finally, all data sets were divided into two parts. The first 183 months of the
data set (80% of the data) was used for calibration of the model, and the most recent 49 months (20% of the data)
was used in validation of the model. The model was additionally tested using two other subsets, 70%—30% and
60%—40% for calibration-validation respectively (table 4).
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Figure 2. Diagram of the overall analysis structure and workflow.

For calibration, we used a regression-based technique known as LASSO [37, 38], to identify the best set of
independent variables that can explain NDVI variability while dealing with multicollinearity between the
possible independent variables for each pixel. The LASSO method assumes a linear relationship between
dependent and independent variables, with Gaussian noise, but constrains the L1 norm of the regression
coefficients in the least-squares optimization. The inclusion of the L1 constraint (o« = 1) results in the shrinkage
of certain coefficients to zero, hence providing a way to obtain the best subset of independent variables. The
variables associated with the coefficients that were shrunk to zero were dropped, giving a final set of 10
independent variables.

Then, we developed a generalized linear regression model, which used maximum likelihood [39] to model
NDVI with independent variables selected from the LASSO analysis along with functions of time to account for
seasonality and interannual variability. The GLM used a Gaussian link function, which makes our model
equivalent to a linear model. Autoregressive (AR) spectrum analysis was used to detect frequencies in the NDVI
and select the peak NDVI cycle amplitudes. Thus, the model took the following form:

g(Y) = Bo + Bixiit ... +BnXni + cqsin(wit)+ ... +a, sin(w,t) + € 2

where i indicate that the values are different for each grid point, (3, is the intercept, 3; (c;) is the independent
variable (frequency) coefficient, x;; is an independent variable, w; is a frequency component, and ¢; is an error
term, assumed to be a Gaussian distributed random variable. Depending on the number of frequencies present
in the data, the model could use up to three sine components.

Different combinations of the ten possible independent variables, including lags, were individually tested,
and p-values were calculated. A series of GLMs with a minimum of one independent variable and a maximum of
ten (including autocorrelation) were constructed and run; the models with higher correlation with the NDVI
trend, using the least number of independent variables and best p-value were selected. Models were compared
using adjusted R (hereafter referred to as R?) and a robust linear regression model. The robust regression model
used iteratively reweighted least squares (IRLS) to assign a weight to each data point. This weight was assigned
equally to each data point in the first iteration and model coefficients were estimated using ordinary least
squares. At following iterations, points further from the model predictions in the previous iteration are given
lower weight, then model coefficients are recomputed using weighted least squares. This process continued until
the values of the coefficient estimates converged within a specified tolerance. This weighting ensured that the
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Figure 3. (a) Spatial distribution of the average normalized difference vegetation index (NDVI) on the Galapagos Archipelago, and (b)
standard deviation of each NDVI pixel. (c) Time series of mean normalized difference vegetation index (NDVTI) for 229 months with
two step changes showing three phases and a linear trend for the whole period, (d) The mean seasonal cycle of NDVI £1 standard

deviation represented with a red line and gray shading on the Galapagos Archipelago.

final model was not much affected by outliers [40] and allowed us to identify a smaller set of independent

variables that robustly improve NDVI prediction.

Finally we compared the model-predicted NDVI with the observed data at each pixel, and we validate the

model using the second part of the data. Figure 2 shows the overall workflow.

3. Results and analysis

3.1. Description of NDVI data

Figure 3(a) shows the spatial distribution of the average NDVI value, and figure 3(b) shows the standard
deviation (SD). The SD values reflect the temporal variability of NDVT at each pixel. The maximum standard
deviation is 0.18 (in NDVI units). Regions with low NDVI values also have low standard deviations, as shown in
figure 3(b). However, higher standard deviations are not necessary indication of higher NDVI values.

To get a general overview of the NDVI trend for the years of this study, NDVI values were averaged spatially,

giving a mean NDVI value for the whole archipelago per month. Figure 3(c) s

hows a linear trend and a two step-

change model for mean NDVTI, along with a clear seasonal cycle. Using a linear regression on the whole period,
mean NDVI shows a 1% annual increase (R* = 0.065, p-value = 5.73E-05, RMSE = 64.1). Two significant

change points were found using Pettitt’s test. In significance order, one occur

red at January 2010 (month = 120,

p-value = 2.36E-08) and the other occurred at June 2003 (month = 41, P-value = 3.50E-03). During the first

period, the NDVI average value was 0.3447 for 3.33 years (40 months). Then,

during the second step, NDVI

decreased, with an average NDVI value of 0.3089 for the next 6.58 years (79 months). Then, for the last step,
NDVlincreased, with an average NDVI value of 0.3673 for the next 9.17 years (110 months) figure 3(d) shows
the seasonal cycle of NDVI. NDVI values are higher from January to June (max: 0.33-0.48 in May [interannual
range]), which is a warm and wet season, and lower from July to December (min: 0.26—0.36 in October), which is
acool and dry season. The dry season has lower interannual variability in NDVI, while the wet season has higher

interannual variability.
In figure 4, topographical features such as aspect, slope, and elevation are

compared with average NDVI to

observe relationships between vegetation and the island topography. Figure 4(a) (left) shows the spatial
distribution of the aspect angle over the whole archipelago, and (right) the radial distribution in degrees of each
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Figure 4. (a) Spatial distribution of aspect across the Galapagos Archipelago and Aspect versus NDVI. (b) Spatial distribution of slope
across the archipelago and Slope versus NDVI. (¢c) Monthly distribution of NDVI by elevation.

pixel. There is not a clear relationship between aspect and NDVI values. R* = 0.1% (p-value = 4.46E-1)
figure 4(b) (left) shows the spatial distribution of the angle of the slope over the whole archipelago, and (right)
the scatter plot of the dependence of NDVT to the slope angle. R* = 5.29% (p-value = 5.01E-6). Elevation has
the clearest relationship with NDVI. There are two marked elevation zones where NDVI values are very high
(over 0.6). One is between 2—16 MASL and the other is between 250-800 MASL (figure 4(c)). Higher variability
of the seasonal trend in NDVT is observed at elevations lower than 20 MASL. Because of this, later analysis is
divided in two elevation ranges. One elevation range includes the pixels with an elevation lower or equal to 20
meters above sea level (MASL) (35% of the area of study) and the other includes pixels with an elevation higher
than 20 MASL (65% of the area of study). Elevation is unevenly distributed, resulting in gaps in NDVI data for
certain elevation ranges; thus, figure 4(c) shows monthly mean NDVI based on a 100 m elevation interval.
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Figure 5. Yearly maximum NDVI mean (red dashed line) and median (red line) values for the whole archipelago, monthly MEI values
(blue bars), and registered volcanic eruption using VEI scale (black asterisks). Negative MEI values indicate La Nifia events and positive
MEI values indicate El Nifio events.
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Figure 6. Spatial representation of the variance decomposition of each independent variable used in the model with elevation in black

Therefore, this figure does not show well trends within the lower elevation range. Even though pixels
representing 2—16mof elevation comprise approximately 10% of the data, they are lost when averaged with the
rest of the pixels in this range because of the decreasing number of pixels with respect to increasing elevation.
Figure 5 shows maximum annual NDVI (mean and median, using dashed and solid red lines, respectively).
Monthly MEI values are presented in blue bars, and volcanic eruptions that registered on the VEI scale are
presented with black asterisks. Negative MEI values indicate La Nifia events, and positive MEI values indicate El
Nifo events. Figure 5 shows that larger magnitude ENSO events tend to correlate with higher average maximum
NDVI values, while minor events (such as those indicated between 2003 and 2008) tend to correlate with lower
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Table 3. List of independent variables used to build the model and the number of pixels that they
influence (expressed as percentage of the study area), RMSE, adjusted R?, and P-value for carbon
dioxide, evaporation, autocorrelation of one-month and 12-months lag in NDVI for the study

period, 2000-2019.

Independent variable Name N (%) RMSE Adj. R? p-value
Carbon dioxide (CO,) 189 (51%) 0.079 0.1597 2.39E-10
Evaporation land (E) 156 (42%) 0.662 0.4000 8.81E-27
Autocorrelation of NDVI(NDVI,_ ;) 251 (68%) 0.306 0.7991 8.83E-77
Autocorrelation of NDVI(NDVI,_;,) 168 (46%) 0.480 0.4772 3.49E-32

overall NDVI values. Higher NDVI values are often found with negative MEI values, suggesting that during these
events vegetation may benefit from extended effects of El Nino, even after it passes.

3.2. Selection of independent variables
After gap filling and standardization, 368 (374) pixels from Terra (Aqua) were available to be used in the
analyses. The ten independent variables selected after lasso regression are CO,, evaporation, precipitation,
surface temperature day, and lags of 1 month for NDVI and soil moisture, 3 months for soil moisture, and 12
months for NDVT, soil moisture and precipitation. The average R* for NDVI was calculated using the
independent variables named previously for each elevation region. For pixels with elevation less than or equal to
20 MASL, R?> = 46.88%, and for elevation higher than 20 MASL, R? = 69.03%. NDVI autocorrelation
(NDVI,_,), CO,, evaporation (E), and NDVI autocorrelation (NDVI,_ ,) were selected as independent variables
to build the final model (table 3); each was the dominant independent variable for 68%, 51%, 42%, and 46% of
the area of study, respectively. Using these 4 independent variables (section 3.3), the R* values changed to
43.28% (AR* = —3.6% from using all the lasso-selected independent variables); for pixels with elevations

<20 MASL, and R* changed to 66.41% (AR* = —2.62% from using all the lasso-selected independent
variables) for elevations higher than 20 MASL.

3.3. Building of the model and calibration
The following results are based in the calibration set. R* values presented on the graphs are based on the mean NDVI,
and modeled mean NDVT for the whole archipelago. Figure 8 shows the spatial distribution of R* for the two elevation
ranges previously mentioned. In the top left panel, shoreline pixels with elevations less than or equal to 20 MASL, are
highly variable in R* values. The number of pixels in this range is 130, representing 35% of the study area. Pixels with
elevations higher than 20 MASL (top right panel) generally have higher R* values. For each range, each pixel shows the
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Figure 8. On the left side R* values for pixel with an elevation lower or equal than 20 MASL, and on the right side R* values for pixel
with an elevation higher than 20 MASL. The first row shows the spatial correlation of the normalized difference vegetation index
(NDVI) R?. Pixels in black represent pixels outside of the area of analysis. The second row shows the time series of the normalized
difference vegetation index (NDVI)(light blue) and its average (blue) and the generalized linear regression model by pixel (mustard)
and its average (red). These results are for the calibration section of the model, and on the third row are the results for the validation
section of the model.

time series of the modeled NDVT, the actual NDVI trend, and their average for the whole archipelago (figure 8, second
row). The peaks of the modeled NDVI have lower amplitude than the real observations, but the periodicity and trends
match precisely.

Figure 9 top panel shows a bar plot of all usable pixels in the archipelago from which R* was calculated. The
lowest R is 4.5% and the highest R is 93.8%. The values of R* range from 4.5%—-89% and 16-93.8% in lower
and higher elevation zones, respectively. The overall mean R* is 58.5%; for pixels with an elevation higher than
20 MASL mean R” is 66.32% and for pixels with an elevation lower than 20 MASL mean R* is 45.4%.

Variance decomposition was used on the independent variables retained in the final model (figure 6). NDVI
autocorrelation of one month lag explained the largest proportion of the modeled NDVI variance (42%),
followed by evaporation (33%), NDVI autocorrelation at twelve months lag (21%), and CO, (5%). After
subtracting the effect of the NDVI autocorrelation, evaporation explained 83% of the NDVI variance, followed
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Figure 9. Bar plot of R® of the calibration section (top) and validation section (bottom) for the whole archipelago, segmented by two
elevation ranges. One segment shows pixels with an elevation lower or equal to 20 MASL in red, and the other segment shows pixels
with an elevation higher than 20 MASL in blue. On the right side of the plot, the total number of pixels corresponding to each R*% is
presented in grey.

by CO,, which explained 17%. CO, was more important as an independent variable in areas with very low NDVI
values, as shown in figure 3 of Rivas Torres et al (2018) [2], corresponding to sites with relatively recent lavas and scarce
or absent vegetation. Fernandina Island and Isabela Island, which have the most active volcanoes of the archipelago
[41] present good examples of low NDVI values associated with recent and active lava flows [42]. Evaporation increases
in importance with the presence of vegetation, but its predictive power is also influenced by the type of vegetation
present, which varies across the archipelago. NDVI on Santa Cruz Island, which is one of the main agricultural zones of
the archipelago, is highly influenced by evaporation. NDVI autocorrelation (lag-1 month) shows higher predictive
power close to shore on Isabela, Fernandina, Santiago, San Cristobal, and Floreana islands. The area with dense
vegetation such as between active volcanoes on Isabela and Fernandina islands, an unusual ecoregion, also corresponds
to higher values of NDVI autocorrelation (lag-12 months).

Different combinations of independent variables and periodic trends were used in an attempt to improve the
predictive power of the model for the entire archipelago. The AR spectrum analysis showed that the peak NDVI
cycle amplitudes (in decreasing order) have periods of 17, 34, and 13 months. After a series of iterations, the best
fit to the NDVI data included periodic trends with 17 and 34-month periods. These timescales are influenced by
ENSO [34]. However, adding these periodic terms to the model only resulted in a slight increase (0.002%) in the
average values of R across pixels. Therefore, they were not included in the final model.

Removing the NDVI autocorrelation resulted in a dramatic decrease in R to a maximum of 27.82% for
pixels with an elevation <20 MASL and 39.04% for pixels with an elevation >20 MASL (appendix, figure A2-2).
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Table 4. List of R? from calibration (higher% data) and validation (lower% data) using different data sets length. Validation values are
compared to NDVI from Aqua data set (last two columns).

Elevation % NDVI data set RMSE R RMSE R
Lower or equal to 20 MASL 60 0.1621 0.3919 — —
Greater to 20 MASL 60 0.2033 0.6257 — —
Lower or equal to 20 MASL 40 0.1558 0.3477 0.1261 0.3417
Greater to 20 MASL 40 0.1839 0.5977 0.2051 0.5231
Lower or equal to 20 MASL 70 0.1761 0.4426 — —
Greater to 20 MASL 70 0.2125 0.6537 — —
Lower or equal to 20 MASL 30 0.1654 0.3725 0.1228 0.3465
Greater to 20 MASL 30 0.2043 0.6068 0.2099 0.5216
Lower or equal to 20 MASL 80 0.1730 0.4540 — —
Greater to 20 MASL 80 0.2707 0.6632 — —
Lower or equal to 20 MASL 20 0.1514 0.3547 0.1134 0.3612
Greater to 20 MASL 20 0.2318 0.6486 0.2407 0.5496

In both elevation regions, the model without autocorrelation does not fit with the observed NDVI trend
during the period of lower NDVIin 2003-2008. The peaks of modeled NDVI have lower amplitude than the
observations, but the periodicity and trends match exactly for pixels with elevations higher than 20 MASL. This
match is weaker for pixels with elevations <20 MASL. Figure A2-3 (appendix) shows a bar plot of all usable
pixels in the archipelago from which R* was calculated. For elevation less than or equal to 20 MASL, R* is
between 0%—71%. The number of pixels with an R greater than 50% is 26. For elevation higher than 20 MASL,
R range is between 0%—75%. The number of pixels with an R* lower than 20% is 41. The different ranges of R?,
0%—70%, have an average number of pixels of 50.

Because NDVIautocorrelation (one month-lag, and 12-months lag) improved the fit of the model,
especially for the period of lower NDVI (2003-2008), NDVT autocorrelation was retained in the model. The final
model was reduced to

NDVI = 3 + 3,CO; + (B2E + B3NDVI,_; + B4NDVI,_y; + € 3)

Residuals were temporally independent, indicating that the method produced an adequate fit to the NDVI
dataset. Kolmogorov-Smirnov (K-S) test was applied to check the fit of the residuals of each pixel to a normal
distribution. Residuals did not follow a standard normal distribution (p-value = 6 x 10~ °). The mean value of
residuals for the whole archipelago is 0.0036; the model very slightly underestimates observed NDVI, which is
most apparent in peak values, but otherwise matches the observed trend well. Ten other normality tests [43]

(o = 0.05) were applied on the residuals. These results are presented in table A1-1.

Figure 7 shows the comparison of R* with elevation, average NDVI, and NDVI skewness. Figure 7(a)
presents the distribution of R> based on pixel elevation and average NDVI value. Pixels with R* values <50% are
generally those with elevation <20 MASL and NDVI values <0.3. These pixels could be representative of
disturbed or arid zones. Those pixels with higher R* values and elevations generally have NDVI values >0.3,
indicating denser vegetation. Figure 7(b) shows R* based on the average NDVI for those pixels that have an
elevation higher than 20 MASL Pixels show an inverted u-pattern where pixels with lower (<0.15) and higher
(>0.7) values of average NDVI tend to have a lower R” value. Figure 7(c) shows the distribution of the NDVI
skewness for the comparison of R* with average NDVI. Pixels that represent extreme average NDVI values
likewise have extreme skewness values (< —1 or >1). Based on these results, NDVI under 20 MASL is more
variable and not as influenced by the independent variables used in the current model.

3.4. Validation

The model was validated using data from January 2016 to January 2018 (the validation subset described in 2.3).
The period of analysis is shorter than the full 4 years because of the need to incorporate NDVI autocorrelation
(12 month lag) in the model. The bottom left panel of figure 8 shows the average R* value for those pixels with
elevation <20 MASL is 35.47%, while the average R” values for higher elevations is 64.86% (bottom right panel).
Athigher elevation, the values of R* are similar to those values obtained from calibration processes with
differences (A) <5%. On the other hand, <20 MASL, A may be up to 10%. RMSE values are low for all
elevations, and lower for elevations <20 MASL at any percentage of the data set. Table 4 shows RMSE and R* for
three sets of calibration and validation data. Additionally, the model was run with NDVI from the Aqua data set
for the same validation period tested using data from Terra (table 4, last two columns). Results for lower
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elevation are similar in both data sets. For higher elevation, R* associated with the Aqua data set are lower (up to
10%). Values are stable with different lengths of data for validation.

In the bottom panel of figure 9, a large number of pixels with elevation lower or equal to 20 MASL have an R*
value that range between 0 to 20% while at higher elevation, many pixels have R* values between 70 to 90%.
Overall, the maximum R? is 75%.

4. Discussion

4.1. Interpretation of results

Climate change is expected to trigger changes to temperature and precipitation patterns across the globe. In the
Galapagos, climate change is expected to create warmer and wetter conditions with stronger E1 Nifio events; all
of these are conditions that enhance plant growth and greenness, which can be measured through NDVI. Our
results show a statistically significant increase in NDVI of 1% per year over the 19 years of study, which could be
asignal of anthropogenic climate change (e.g. changes in temperature, precipitation, or CO, concentration),
although a change-point detection (step change) analysis shows a decrease in NDVI values from 2003 to 2010,
which could be related to ENSO events and volcanic eruptions at that time. Furthermore, small peaks in
average/median annual maximum NDVI (2002, 2008, 2011, 2015, and 2017) could reflect the multi-year
periodicity associated with ENSO [34]. Importantly, not all the above years correspond to El Nifio events, e.g.
2008, but this year is noted as having been unusually warm and rainy in the Galapagos [5]).

Our results show that, out of over 20 potential predictors considered, temporal autocorrelation at 1-month
and 12-months lag, evaporation, and carbon dioxide levels are the most important independent variables for
modeling NDVT in the Galapagos Islands, yielding values of R* for the GLM that range from 5%—-93%. Prior
research supports the importance of considering temporal autocorrelation in explanatory NDVI models [44];
given the uniquely stable character of Galapagos ecosystems, it is unsurprising that intrinsic variables and /or
system memory are important for modeling vegetative dynamics.

We offer conjectural interpretations of some of the spatial patterns seen in the coefficients of our model for
NDVl variability. These interpretations are subject to refinement as longer and finer-resolution data sets become
available.

Evaporation appears to be an important proxy of NDVIin the ecosystems that exhibit strong seasonality, as
shown in figure 6. This is particularly true of the deciduous forests and shrublands across the archipelago (see
Rivas-Torres et al (2018) [2], figure 3). In Santiago, Santa Cruz, San Cristobal, Genovesa, and Pinzon, the
dominant ecosystem is dry forest, where primary productivity is limited by moisture availability and dependent
on seasonal rainfall [45]; importantly, precipitation is extremely variable in the Galapagos (spatially, inter-
annually, and intra-annually) [45] and its relationship to NDVI is not direct—especially in the xeric ecosystems
that dominate the archipelago [2, 45]. On the other hand, increased evaporation—even at a coarse scale—can
indicate overall conditions that are favorable for plant growth, including increased moisture availability, higher
temperatures, and increased solar irradiation [5, 45, 46]. Evaporation and leafiness are positively associated in
seasonal forests, because plants only produce larger leaves with larger surface areas when they can afford to lose
water (figure A2—1). The inverse is also true; leaf shedding is a phenological response of deciduous organisms to
water stress. Indeed, other studies of vegetative response to atmospheric and climate variables have shown
evaporation to be more strongly correlated with above ground primary productivity (AGPP) than precipitation
[46—48]. Chen et al (2019) [46] offer a compelling explanation for this phenomenon, arguing that evaporation
provides a more accurate estimation of NDVI by considering the interaction of moisture availability with
available solar energy—both of which are limiting factors for plant growth [46]. A CO, fertilization effect has
been observed in the tropics as well as, more famously, in the northern hemisphere; Krakauer et al [49] showed
that for Nepal, global CO, concentration was better at modeling NDVI intrannually than climate variables,
(which were more important interannually). Moreover, we suggest that in volcanic zones of the Galapagos,
pioneer species make global CO, concentration a better indicator of NDVI than local climatic variables. Fast
growing plants (such as pioneers) are more sensitive to elevated CO, than slow growers [50-52]. On primary
lava, temperature and moisture are highly variable due to the lack of surface vegetation and soils, yet early
successional species are adapted to full sun conditions and photosynthesize more rapidly than later successional
species. Idealized curves for photosynthesis rates from Bazzaz (1979) [53] show that in full sun, early
successional species achieve photosynthesis rates of ~25mg CO,dm *h™"', compared to ~15 mg CO,dm *

h ™! for mid successional species, and ~2—-5 mg CO,dm > h ™' for late successional species. Pioneer species in
the Galapagos include numerous representatives of the fast growing ‘weeds’ of the Poaceae family (including
Aristida repens and Eragrostis mexicana (lovegrass)) and Asteraceae family (including Sornchus oleraceus L., a
dandelion relative, and Baccharis gnidifolia). Just outside of the ashy barren zones, pioneer communities also
include members of the Solanacae family (e.g. Solanum erianthum, the potato tree,Lycopersicon (tomato),
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Exedeconus miersii (shore petunia), and numerous vines. Solanaceae are C3 photosynthesizers, which have been
shown to respond to elevated CO, levels with higher levels of photosynthesis, compared to C4 species [54]. The
predictive power of CO, for NDVIin areas that correspond to recent lava flows suggests a quickly colonizing,
resilient pioneer community that is adapted to local climate variation and geologic disturbance. At the same
time, sensitivity to CO; levels suggests that global CO, increase may have the capacity to drive successional
dynamics and pioneer community composition in the future [55].

In the same way as volcanic zones, shoreline areas have a very dynamic and challenging environment that
promotes pioneer communities. In these areas, the importance of previous-month NDVT as a predictor of
current-month NDVI speaks to the sustainability of these communities within seasons in these harsh
environments. Finally, previous-year NDVI as a predictor represents the adaptability of vegetation to slower
changes in climate factors on the region. This is especially visible for dense vegetation where NDVI values are
higher.

Since our model works best to explain NDVT at higher elevations (>20 MASL), and works especially well for
sites with elevation >200 MASL, low elevation areas and littoral zones may represent unique plant communities
(endemic Galapagos dry forest, shrub land, and/or Mangrove forests), whose overall productivity responds
most strongly to variables not considered in this study. The model works best to explain NDVI in the dry season
(June-December), with higher variability during rainy periods, including El Nifio events, a trend also observed
by Kalisa et al (2019) [56]. Seasonally anomalous NDVI values could be representative of a nearly universal
greening response to water availability during these periods.

4.2. Potential implications for management

Trueman et al (2011) [5] present a detailed description of how a changing climate might affect the phenology of
theislands’ varied vegetation. Increased El Nifo, temperatures, and precipitation are generally expected to
enhance greenness across the islands, by stimulating growth and producing larger flowers, leaves, and bushes, as
well as through longer growing seasons and leaf retention periods. Although climate change is broadly expected
to benefit Galapagos flora, it is the non-native species that are expected to benefit most [5]. Among endemic
species, sustained wet conditions can be detrimental. Opunita echios (prickly-pear cactus) Jasminocerus thouarsii
(candelabra cactus), and Bursera graveolens (palo santo tree) can become waterlogged, lose large proportions of
seedlings, and even break or collapse under the weight of rapidly growing vines and herbaceous species, which
proliferate under wet conditions[2, 57].

In the highlands, Scalesia pedunculata (daisy tree) is also speculated to be vulnerable to climate change
because historically, it has been shown to die back in response to El1 Nifio events [5, 57]. In addition to direct
mortality, dramatic die offs of Scalesia could fundamentally alter the ecosystem by ceding valuable growing
territory in the humid highlands to opportunistic non-native species that have been shown to respond to El Nifio
conditions with increased growth [5].

Opver the last several decades, there has been a concerted effort in the Galapagos to remedy direct
anthropogenic disturbances to the ecosystem, including creation of the Galapagos National Park (GNP) Service
and delineation of the official Park boundaries, the establishment of the Galapagos Biosphere Reserve and Whale
Sanctuary, and concentrated eradication campaigns directed at large non-native herbivores such as goats and
pigs [10, 58]. Watson et al (2010) [58] attempted to quantify the proportion of the archipelago that had been
severely degraded by direct human activities (defined as active and abandoned agricultural areas and urban
centers). The team arrived at an overall estimate of ~5%, which varied across the five inhabited islands from a
maximum of 17% and 14% degraded land area on San Cristobal and Santa Cruz Islands respectively, to 8%, 5%,
and 0.1% of total land area on Floreana, Isabela, Santiago, respectively. The team highlighted that the humid
highlands are significantly more degraded than the lowlands, because growing conditions are more favorable for
agriculture and invasive colonizers [58]. The Galapagos National Park currently occupies over 96% of the land
area of the Galapagos Islands, and is protected from direct anthropogenic stressors such as land conversion and
agricultural development [2]. Accordingly, anthropogenic impacts on the ecosystems of the archipelago are
primary indirect for the period of our study, related to the dynamics of invasive species and—we argue—the
early signals of a changing global climate.

The variability of our model’s predictability across the Galapagos highlights the diversity of the flora that
NDVTis designed to assess. Although climate is fundamentally important to vegetative activity and phenology,
the variables that most strongly influence NDVT have been shown to vary, both by ecosystem and by plant type
[56, 59]. The Galapagos has a unique climate and a stable biological community that has existed for thousands—
perhaps tens of thousands—of years [22], sorted into unique ecosystems across the archipelago. Many of the
ecosystems that flourish in the Galapagos are poorly quantified by NDVI because they are adapted to aridity and
characterized by low levels of greenness; indeed, the evolutionary advantage of many endemic Galapagos plants
comes from their toughness and ability to withstand extreme environmental conditions. Wetter summers and
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more frequent El Nifio events, which are expected over the next century, could benefit non-native plants whose
life strategy is to grow fast and die young, at the expense of natives that evolved over millennia to survive
extremes and poor growing conditions, and rely on seed banks that are similarly adapted to the severity of the
environmental context.

Due to the lack of public local information from the different islands, it was not possible to corroborate the
different remote sensing datasets used in the manuscript. Resolution of the different sets plays a significant role
in exploring and understanding the vegetation on the Galapagos Islands. Since the finest resolution on this study
is ~5.6 km from the NDVI dataset, a large number of small islands were not taken into account in the analysis. It
is also worth mentioning that sparse vegetation, such as that common in dryland systems, is underestimated by
the spatial resolution of MODIS (~5.6 km). This effect would be dominant at elevations lower than 20 MASL
where vegetation is primarily deciduous grass, shrubland, and dry forest. Moreover, the 50 km resolution of the
MERRA-2 reanalysis does not capture topographic variability across the archipelago well, which could be
hindering our effort to model the factors driving variability in NDVI. In addition, global data such as
atmospheric CO, concentrations can affect the credibility of the results since they are based on observations
from higher latitude than the Galapagos Islands. We consider that those measurements give us a general idea of
how atmospheric CO, affects vegetation in the archipelago, although they may not fully represent site-specific
interactions between atmospheric CO, and flora at the different islands.

5. Conclusions

Our study demonstrates that NDVI can quantify the effect of changing climate variables on vegetation (NDVI >
0.3) in the Galapagos Archipelago. This is significant, given the cultural, economic, educational, and scientific
importance of these islands. Their capacity to serve as a museum and evolutionary laboratory for future
generations will depend on the resiliency of the ecosystem and of its anchor vegetation in the face of global
change, as well as on its responsible management. Remote sensing products and models such as ours should help
scientists and conservationists develop tools to monitor the ecosystem continually and non-intrusively,
especially in the highlands where our model works well to explain NDVI variability, and where species invasion
is active and change in community composition is likely.

Studies of vegetation regime shifts on volcanic islands and in the tropics using remote sensing are still sparse,
so there is much research to be done. It remains to be seen whether remote sensing products such as NDVI might
develop the resolution to detect fine scale community dynamics or species invasions, or whether additional data
and non-linear approaches [60] can clearly distinguish NDVI responses to various components of climate
change, such as natural versus anthropogenic. Such studies will be useful to the global community as we monitor
the responses of our natural systems to a changing climate.
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Climate Parameters of the Galapagos Islands
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Figure A1-1. (a) Spatial distribution of the average surface temperature during the day (left) and at night (right) in Celsius (C). (b)
Georeferenced Precipitation in mm yr~ ' over the Galapagos Archipelago. (c) Georeferenced evaporation from land inmm s~ over
the Galapagos Archipelago.
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Figure A1-2. Digital elevation Model of the Galapagos Island in meters and a resolution of 0.05°from ASTER v2.
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Figure A1-3. A combined map of the Galapagos Islands geology and land cover. The background map shows the Galapagos and
surrounding bathymetry (figure 1 from Harpp et al (2018) [61]) which let us observe the Galapagos transform fault (GTF) north of the
archipelago; Names and geological Ages (in million years) [19] of the islands are shown in black and red font, respectively, and
volcanoes are shown in white. Land cover layer is presented as in Rivas-Torres et al (2018), figure 3 [2] with its respective legend.

Table A1-1. List of volcanic eruptions [42] for

the archipelago.

Volcano name Year of eruption VEI
Fernandina 2018 1
Sierra Negra 2015 2
Fernandina 2009 2
Cerro Azul 2008 1
Fernandina 2005 2
Sierra Negra 2005 3
Wolf 2005 4
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Table A1-2. List of dominant species associated with dry and evergreen forest ecosystem.

E Herrera Estrella et al

Vegetation zone

Common species

Dry Forest (lowlands, ~61% of vegetated area)

Evergreen Forest and Shrubland (transitional zones and
highlands, ~21% of vegetated area)

Species of cacti (e.g. Brachycereus nesioticus (lava cactus), Opunita echios

(prickly-pear cactus), and Jasminocerus thouarsii (candelabra cactus)), as well

as trees (Scalesia heller (daisy) and Hippomane mancinella (poison apple))

and shrubs (Cordia lutea (glue bush), Gossypium darwinii (Galapagos cot-

ton), and Lantana peduncularis (Galapagos lantern)) [8].

Natives: woody species such as Scalesia pedunculata (daisy tree) and Miconia
robinsoniana (cacaotillo), as well as numerous ferns, epiphytes, mosses, and

liverworts [5]. Invasives: Psidium guajava (guava), Syzigium jambos (rose

apple), Pennisetum purpureum (Napier grass), Lantana camara (verbena),

Ricinus communis (castor oil), Cinchona pubescens (red cinchona), Rubus

niveus (raspberry sp.) and Caesalpinia bonduc (yellow nicker) [5].

A.2. Appendix A2

Calibration of the model
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Figure A2-1. Standardized mean NDVI trend of the Galapagos Islands, Carbon dioxide, and Evaporation for period 2000-2019.
Because the primary purpose of this analysis was to identify cyclical trends, all variables were standardized and linear trends (e.g.
increasing CO, were removed prior to graphing).

Table A2-1. List of Normality tests [43] applied on residuals of the calibration set. The table showed the number of pixels (and it percentage
of area) that follows normality (& = 0.05) in the archipelago, the mean p-value and median p-value for the whole archipelago.

Test Name Number of pixels that follow Normality (%) p-value (mean) p-value (median)
KS Limiting Form 216(58.70) 0.2023 0.0926
KS Marsaglia Method 65(17.66) 0.0333 0.0100
KS Lilliefors Modification 212(57.61) 0.1942 0.0865
KS Stephens Modification 65(17.66) 0.0332 0.0007
Cramer- Von Mises Test 37(10.05) 0.0305 0.0002
Anderson-Darling Test 49(13.32) 0.0394 0.0001
D’Agostino & Pearson Test 47(12.77) 0.0282 0.0002
Jarque-Bera Test 49(13.32) 0.0313 0.0004
Shapiro-Wilk Test 81(22.01) 0.0575 0.0002
Shapiro-Francia Test 69(18.75) 0.0482 0.0002

20



I0OP Publishing Environ. Res. Commun. 3 (2021) 065003 E Herrera Estrella et al

Calibration: Model without lags (vars=2)
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Figure A2-2. Calibration of the model without lags. On the left side, spatial correlation of the normalized difference vegetation index
(NDVT) R? with respect to the generalized linear regression model for pixel with an elevation lower or equal than 20 MASL (top), and
higher than 20 MASL (bottom). Pixels in black represent pixels outside of the area of analysis. On the right side, time series of the
normalized difference vegetation index (NDVI)(light blue) and its average (blue) and the generalized linear regression model by pixel
(mustard) and its average (red) with an elevation lower or equal than 20 MASL (top), and higher than 20 MASL (bottom).
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Figure A2-3. Calibration of the model without lags. Bar plot of R for the whole archipelago, segmented by two elevation ranges. One
segment shows pixels with an elevation lower or equal to 20 MASL in red, and the other segment shows pixels with an elevation higher
than 20 MASL in blue. On the right side of the plot, the total number of pixels corresponding to each R*% is presented in grey.
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