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Abstract 

Anthropogenic actions such as groundwater pumping, agricultural practices, 
industrialization, and waste disposal can greatly affect groundwater resources 
which would eventually drive changes in vulnerable ecosystems. Therefore, it is 
clear that there is a need to identify the locations of groundwater dependent 
ecosystems (GDEs) to enable the development of policies that adequately address 
their protection. The purpose of this study is to propose a method based on 
geospatial data sets and random forest algorithm to map the distribution of GDEs 
in the United States at 1 km spatial resolution. This paper presents the results in 
Nevada. The method is based on the principle that ecosystems will use water in 
proportion to its availability and the dependence on that resource will be expected 
to increase with higher aridity of the environment. Results show that random forest 
is a promising technique for the identification and characterization of GDEs using 
geospatial data sets as predictor variables. 
Keywords: groundwater dependent ecosystems, random forest, overlay analysis, 
water table depth, aridity. 

1 Introduction 

Groundwater Dependent Ecosystems (GDEs) are plants, animals, and other 
organisms that depend on groundwater to maintain their structure and 
composition, as well as to sustain their life processes. There are several types of 
GDEs, but they all depend on the surface or subsurface expression of groundwater. 
The main categories of GDEs include the following [1–3]. Terrestrial vegetation 
(phreatophytes) and fauna, baseflow in river systems, ecosystems in streams and 
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lakes fed by groundwater, springs and seeps, wetlands, aquifers, karst, and cave 
ecosystems. The degree of dependence on groundwater is variable and ecosystems 
might be completely reliant or they might require groundwater only a few months 
of the year [3]. GDEs are of crucial importance for a variety of ecological 
resources such as terrestrial vegetation, wetlands, wildlife, sensitive fish, and other 
organisms that are highly vulnerable to be affected by variations in groundwater 
[1]. 
     In the current conditions, it is clear that there is a need to place restrictions in 
the amount of groundwater that can be extracted from an aquifer. The first step in 
the conservation of GDEs is to map their distribution, and then characterize the 
degree of dependence to be able to predict the ecological response to changes in 
water supply. Information about the location of GDEs is not readily available in 
the United States and only a few efforts to map the location and extent of GDEs at 
a national scale have been undertaken in countries like Australia and South Africa. 
The purpose of this study is to propose a method based on geospatial data sets and 
Random Forest (RF) algorithm to map the distribution of GDEs in the United 
States at 1 km spatial resolution. This paper presents the results of the application 
of this method in Nevada. The method is based on the principle that ecosystems 
will use water if the resource is available, and if that resource is limited, the 
ecosystem will create a functional dependence based on the spatiotemporal 
availability of the resource [4]. That dependence is expected to increase with 
greater aridity of the associated environment [5]. Water table position serves the 
purpose of ecological filter by regulating moisture [6]. For this reason, this 
parameter will be used as a proxy for the defining the location of GDEs. 
 

2 Background 

Previous efforts worldwide have focused in the development of feasible, 
consistent, and cost-effective techniques to map GDEs at a local, regional, and 
even national scale. In Australia, it was not until the early 1970s that the approach 
to manage water resources by solely considering human needs was questioned. 
The consequences of groundwater overdraft on ecosystems were documented and 
the need to mitigate environmental impacts arising from these practices became 
obvious. In 1994 the Australian Government established a set of reforms to strive 
for a sustainable water industry [7]. Several efforts to map the location of GDEs 
in Australia have been undertaken. The most relevant to this study is the 
development of a GDE Atlas as part of a National Water Commission project 
which consists in a spatially based tool depicting the location of potential GDEs 
in the country [8]. Governmental agencies in the United States have been investing 
more resources into the development of strategies to identify the location. An 
inventory field guide was created with the purpose of providing a national protocol 
for collecting ground-based data that can serve as the basis for defining the 
location, extent, and characteristics of springs and wetlands on a local scale. 

90  Water Resources Management VIII

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 196, © 2015 WIT Press



3 Methods 

3.1 Study area 

The study site for this project is Nevada, a state located in the south western region 
of the United States. Nevada is mainly formed by desert and semiarid climate 
regions and it is characterized by sudden changes in elevation, with the presence 
of both narrow mountains and flat arid valleys. Nevada was selected as the study 
area because of its unique geomorphological features and wide range of climatic 
conditions that have led to the presence of a great variety of vegetation types. 

3.2 Water table depth 

From the many factors influencing GDEs, depth to water table is probably the 
most important one. In ecosystems that are dependent on the subsurface expression 
of groundwater, the depth that roots must reach to access groundwater is a major 
limitation concerning their capacity to use the resource [9]. Schenk and Jackson 
[10] found that the vast majority of plant species develop about 95% of their root 
biomass in the shallower 2.0 m of soil. Water table depth was selected as the single 
most important indication of groundwater availability, and therefore areas where 
water table depth is shallow have a greater potential to develop an interaction with 
terrestrial ecosystems. In this study, depth to groundwater (measured in feet) was 
obtained from the National Water Information System (NWIS) [11], which  
contains records from 1960 to 2000 in 8210 different points in Nevada. These 
observations may represent one observation at a time or a mean value obtained 
from a time series of groundwater level measurements (see Figure 1). 

Figure 1: Depth to groundwater records obtained from the National Water 
Information System (NWIS) for the state of Nevada, USA. 
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3.3 Random forest regression 

The method that will be used to predict water table depth using climate, 
topography, and vegetation as predictors is random forest. RF is an ensemble 
learning algorithm developed by Breiman [12] that fits many classification or 
regression trees (CART) models to random subsets of the input data and uses the 
combined decision trees (forest) for prediction. Important features of the RF are:  
 RF estimates the importance of the predictor variables when modelling the 

response variable using permutation accuracy. 
 RF has the ability to identify the proximity between pairs of data points which 

can be useful for understanding the structure of the data, clustering, and 
locating outliers [13]. 

 RF does not suffer from overfitting because the amount of trees that are grown 
is large, resulting in a limited generalization error (true population error) [14]. 

     The algorithm for RF consists in building a forest of uncorrelated trees. This is 
accomplished by using bootstrap aggregation in which given a training data set, 
random samples with replacement are selected and trained using decision or 
regression trees. Each individual tree is grown using a randomized subset of 
predictor variables. The trees are grown to the largest extent possible without 
pruning, and they are aggregated by averaging them. Out-of-bag (OOB) samples 
are used to calculate variable importance and to get an unbiased estimate of the 
test set error which is one of the advantages of RF because there is no need for 
cross-validation. In this study, the implementation of the RF algorithm within a 
GIS interface was performed using the Marine Geospatial Ecology Tools (MGET) 
[15]. MGET implements the classic RF algorithm using the RF package available 
in the environment for statistical computing known as R [12]. The number of trees 
that are used is 500. More trees have the ability yield models with greater stability 
and covariate importance estimates. However, computer resources required also 
increase. It is suggested that 500 trees or more are used for large datasets [15]. In 
this case, the number of predictor variables is low, therefore 500 trees are 
considered sufficient. On the other hand, the number of variables tried at each split 
is 2, since this value is suggested to be set equal to a third of the number of 
predictor variables [16]. 

3.3.1 Predictors 
These are the data sets to which the model is fitted. In this study, all predictor 
variables selected are treated as continuous variables. 

3.3.1.1 Topography  It is clear that GDEs are typically found in locations where 
groundwater is known or expected to be shallow (e.g. topographically low areas 
and major breaks of topographic slope) [17]. Several authors have documented the 
ecosystem response to landforms and how the composition and structure of 
vegetation is determined by geomorphic events [18, 19]. Landforms, usually 
characterized by topography and geology, deeply influence spatial variations in 
ecological variables such as water availability and exposure to radiant solar 
energy. Topography is linked with climate through varying heights and degree of 
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ground-surface inclination, controlling the intensity of key factors (such as 
hydrology) that are important to plants and to the soil-forming processes [20]. 
Land surface form is assessed with variables such as elevation, slope, and aspect. 
Slope is a measure of the steepness of the surface at a particular location. On the 
other hand, the aspect is a measure of the direction of steepest slope for a location 
on the surface. It is typically measured in degrees and it is estimated by assigning 
a number, between 0 and 360, to each cell in the grid depending on the direction 
that the cell faces. Characteristics such as ground moisture, snow retention, 
vegetation, and surface temperature are all deeply influenced by aspect. Elevation 
was obtained from the National Elevation Dataset (NED) developed by the US 
Geological Survey at 30 m spatial resolution. This Digital Elevation Model (DEM) 
was also used as the basis for the calculation of slope and aspect. 

3.3.1.2 Climate  Water table depth fluctuates in response to precipitation events 
because groundwater is recharged by precipitation that percolates through soils. 
Fan et al. [6] found that at the regional scale, climate is the dominant driver for 
water table position simulation, whereas at more local scales the primary driver is 
topography. They also emphasized the fact that when solar radiation is not 
limiting, the distribution of vegetation is associated with moisture gradients given 
by rainfall patterns. On the other hand, groundwater dependency by terrestrial 
vegetation is directly linked with the water budget. If the total amount of water 
that is being used by terrestrial vegetation in a given site for a specific time period 
can be demonstrated to be considerably larger than the total precipitation for the 
site, and there is no significant lateral flow, it can be concluded that this ecosystem 
depends to a certain degree on groundwater [3]. For the above reasons, climatic 
variables such as mean daily Precipitation in cm (PRECIP), mean daily maximum 
Temperature in degrees Celsius (TEMP), and mean daily Shortwave Radiation in 
MJ/m2/day (S_RAD) were considered predictors of the water table depth. These 
parameters were obtained from Daymet. These are model-produced estimates, at 
1 km resolution, of daily weather parameters (temperature, precipitation, 
humidity, and radiation) based on daily meteorological observations. The required 
model inputs include a DEM and ground-based observations of temperature and 
precipitation [21]. The datasets used in this study represent daily climatological 
summaries produced on a 1 km grid for the period of record of 1980 to 1997. 

3.4 Definition of aridity 

The Aridity Index (AI) is a numerical value that indicates the degree of dryness of 
the climate in a given place. This indicator is used to estimate availability of 
precipitation over atmospheric water demand. The United Nations Environment 
Programme (UNEP) adopted an index defined as Mean Annual Precipitation 
(MAP) divided over the Mean Annual Potential Evapotranspiration (PET). In this 
study, AI is obtained from the Global Aridity Index geodatabase [22] (see Figure 
2). This data set is provided at 30 arc seconds (~ 1 km at the equator) and includes 
year 1950 to 2000. It was produced using MAP values obtained from the 
WorldClim Global Climate Data and monthly PET (modelled using Hargreaves 
method) aggregated to annual average values. The AI categories are defined as 
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follows: AI <0.03 – Hyper arid; AI between 0.03 and 0.2 – Arid; AI between 0.2 
and 0.5 – Semi-arid; AI between 0.5 and 0.65 – Dry sub-humid; AI>0.65 – Humid. 
 

 

Figure 2: AI map for Nevada, USA. Low values indicate high aridity whereas 
high values indicate humid climate. 

3.5 Weighted overlay analysis 

In order to determine the potential of an ecosystem to be groundwater dependent, 
the depth to water table and aridity index maps are combined into an integrated 
model using an overlay analysis. For this study, the weighted overlay analysis 
technique available in ArcGIS Spatial Analyst extension is used. The technique 
has the advantage of providing means to prioritize the factors in the analysis. In 
this study, input layer importance is defined as being equal for the water table 
depth and the AI, since they are both considered equally relevant for determining 
groundwater dependence. The weighted overlay function combines the two raster 
layers multiplying each by their weight and adding them together. 

4 Results 

4.1 Variable importance 

The machine learning algorithm used to predict water table depth is RF which 
estimates the variable importance using two methods, based in Mean Squared 
Error (MSE) or the total reduction in sum squares. For this analysis, the importance 
of each predictor variable was estimated using MSE and it is performed by 
calculating the difference between the MSE of the whole model and the MSE that 
represents the prediction accuracy of the OOB part of the data after permuting 
each predictor variable [14]. The resulting plot is shown in Figure 3. IncMSE 
represents the percentage increase in accuracy (calculated using mean square 
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errors). The greater the value the more important the predictor variable is. Mean 
daily maximum air temperature is the most important predictor of water table 
depth. This can be considered a relevant finding because air temperature has a 
direct effect on the thermal regime of a given location, and therefore in the actual 
evapotranspiration and distribution of the precipitation, which in turn influence 
water table position. If this variable was omitted, the quality of the model could 
be reduced. Elevation was also found to be a relevant predictor of water table 
depth, followed by daily shortwave radiation and precipitation. Slope and aspect 
have the smallest influence on the quality of the model. Therefore, it can be 
concluded that the distribution of water table position is more strongly driven by 
climate as compared to topography. 
 

 

Figure 3: Variable importance plots for predictor variables from RF regression. 

4.2 Partial dependence 

Partial dependence plots are also used to comprehend the relationships between 
the individual predictor variables and the response variable (water table depth 
observations) obtained by implementing RF. In Figure 4 the influence of each 
predictor on water table (vertical axis) is estimated when the remaining predictors 
are kept constant. The partial dependence plot for TEMP resembles what was 
expected. Because it is an important predictor of the response variable, the 
predictor variable TEMP shows partial dependence over its entire range (0 to 30 
degrees Celsius) and a wide range of water table depth values (0 to 450 ft). The 
partial dependence of ELEVATION varies randomly around 200 ft over its entire 
range. On the other hand, predictor variable SOLAR_RAD displays partial 
dependence only in a portion of its range (between 15 and 20 MJ/m2/day). As it 
was expected, the partial dependence plots for the least important variables are 
almost horizontal lines around the mean of water table depth (see Figure 4). 
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Figure 4: Partial dependence plots for the six selected predictor variables of 
water table depth using RF regression. 

4.3 Predicted water table depth 

After implementing the RF algorithm, the output model is used to compute water 
table depth continuously in the state of Nevada. The input data are the raster layers 
depicting the predictor variables. Before implementing the model, the topography 
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input layers (ELEVATION, SLOPE, ASPECT) are upscaled from 30 m to 1 km 
spatial resolution, which is the desired resolution for the predicted water table 
depth as well as the resolution for the climate layers. After the analysis is 
performed, the resulting map shows water table position (in feet) at all points at 1 
km spatial resolution (see Figure 5). 

Figure 5: Water table depth (ft) for the state of Nevada as predicted by RF 
algorithm. 

4.4 Groundwater dependence potential map 

Weighted overlay analysis is used for the purpose of producing a map that depicts 
the potential of an ecosystem to be groundwater dependent. This analysis is based 
on the fact that ecosystems will use resources in proportion to their availability, 
and if the resource (in this case groundwater) is available, the degree of this 
reliance will depend on the aridity. Hence, a low value of AI (hyper arid climate) 
and a low value of predicted WTD (shallow water table) will result in a low value 
in the output of the overlay analysis, which will indicate high potential of an 
ecosystem to be groundwater dependent (see Figure 6). A more humid climate, in 
which the ecosystems’ water requirements are met by precipitation in addition to 
a deep water table, will indicate that there is a low likelihood of the ecosystem to 
be groundwater dependent (as depicted in green in Figure 6). 
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Figure 6: Map of groundwater dependence potential estimated using integrated 
water table depth and aridity index using overlay analysis. 

5 Conclusions 

This large scale analysis represents the first attempt to determine the distribution 
of GDEs at such resolution. The model proposed here can also be applied to other 
areas where information of GDEs or the link between groundwater and ecosystems 
wants to be understood and characterized. This type of information is crucial in 
the conservation of biodiversity that could be potentially affected by global-
change type droughts. It is also significant in the development of environmental 
policies or regulations that address ecosystems and groundwater sustainability 
issues as well as an information tool to depict the extensive distribution of GDEs 
throughout the country. The use of geospatial datasets is relevant in an endeavour 
like identifying the location of GDEs at a large scale because ground-based 
methods can be expensive, time consuming, and labour intensive. RF is a 
promising technique in the process of mapping GDEs because of their ability to 
provide meaningful analysis of nonlinear and complex variables such as the ones 
found in hydro-ecological studies. Future work will include the use of remote 
sensing datasets such as Normalized Difference Vegetation Index (NDVI) and 

98  Water Resources Management VIII

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 196, © 2015 WIT Press



Land Surface Temperature (LST) as additional predictor variables, as well as the 
validation of the resulting groundwater dependence potential map using datasets 
that depict groundwater discharge areas and regions where GDEs have been 
previously identified. 
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