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INTRODUCTION

Flooding represents a serious hydrologi-
cal hazard worldwide, posing significant risks 
to infrastructure, ecosystems, and human lives 
(Dolchinkov, 2024; Sayers et al., 2015). As ur-
banization expands and climate change exac-
erbates extreme weather events, understanding 
flood-prone areas and improving flood suscepti-
bility modeling (FSM) are essential for effective 
disaster preparedness and mitigation. Tradition-
ally, flood risk management has incorporated 
a combination of land-use planning, structural 
flood control measures, and early warning sys-
tems. However, recent advances in ML have in-
troduced new opportunities to model flood sus-
ceptibility with greater precision, enabling the 

creation of detailed flood risk maps that aid in 
identifying and preemptively addressing high-
risk zones (Pham et al., 2021; Saha et al., 2021).

While deterministic and statistical approaches, 
such as the analytic hierarchy process (AHP) inte-
grated with geographic information systems (GIS), 
have been widely used to assess flood susceptibil-
ity (Khaldi et al., 2023), these methods are often 
constrained by subjectivity and inherent uncertain-
ties in factor weight assignments. Such limitations 
can affect model robustness and the reliability of 
susceptibility predictions. For instance, outcomes 
from AHP-based flood models may vary due to 
subjective assessments, as noted (Mudashiru et 
al., 2022), and prior research has advocated for the 
incorporation of sensitivity and uncertainty analy-
ses to minimize biases in AHP results. Moreover, 
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recent studies have suggested augmenting AHP 
with statistical techniques like correlation and re-
gression analyses to validate results and enhance 
model robustness (Mousavi et al., 2022)

In response to these challenges, ML ap-
proaches such as RF, artificial neural networks 
(ANN), decision trees, and support vector ma-
chines (SVM) have gained traction for FSM 
due to their flexibility in handling complex, 
nonlinear relationships among variables (Chapi 
et al., 2017a; Chen et al., 2019), ANN (Bui et 
al., 2019; Kia et al., 2012).These models have 
demonstrated strong predictive performance in 
FSM, yet they exhibit varying degrees of reli-
ability depending on regional and data-specific 
conditions (Davoudi Moghaddam et al., 2019; 
Khosravi et al., 2019). Consequently, this un-
derscores the importance of comparing these 
models’ performance and adaptability within 
different environmental contexts.

A critical limitation of many high-perform-
ing ML models, however, is their “black-box” 
nature, which often obscures the specific influ-
ence of input variables on flood predictions. 
The interpretability of ML models is crucial 
for FSM, as stakeholders need to understand 
not only where flood risks are high but also 
which factors contribute most significantly to 
these risks. Local interpretable model-agnostic 
explanations (LIME) (Mishra et al., 2017) and 
partial dependence plots (PDP) (Friedman, 
2001; Holzinger et al., 2022)are two interpre-
tive techniques that have emerged as powerful 
tools for elucidating ML models. LIME enables 
localized explanations by examining feature 
importance for individual predictions, while 
PDP provides a global view of variable influ-
ence by plotting marginal effects across the 
feature space. Together, these techniques offer 
a transparent framework for interpreting com-
plex models, thereby enhancing their utility in 
practical flood risk management applications.

The Fez-Meknes region of Morocco, pre-
dominantly characterized by rain-fed agricul-
ture, has witnessed frequent and disruptive 
flood events. Despite these recurring hazards, 
FSM studies using advanced ML models re-
main scarce for this area. The lack of region-
specific FSM models presents a significant gap 
in the literature, particularly as the region faces 
heightened flood risks associated with climate 
variability. This study addresses this gap by em-
ploying five ML algorithms – SVM, RF, KNN, 

LR, and Recursive partitioning and regression 
trees (Rpart)—to model flood susceptibility in 
Fez-Meknes. Notably, we incorporate LIME and 
PDP for a comprehensive interpretation of mod-
el outputs, thus bridging the gap between predic-
tive accuracy and interpretability.

In this study, we aim to produce a transparent 
and scientifically robust flood susceptibility map 
for the Fez-Meknes region. By using LIME and 
PDP, we provide detailed insights into the role of 
environmental, hydrological, and topographical 
variables in flood susceptibility. This approach 
not only enhances model interpretability but also 
provides critical information for urban planners 
and decision-makers to better allocate resources, 
plan infrastructure, and mitigate flood risks. To 
the best of our knowledge, this study represents 
the first application of explainable machine learn-
ing models, combined with interpretative tech-
niques, for flood susceptibility mapping in this 
region. This innovative approach significantly 
advances the field of flood susceptibility model-
ing (FSM) and regional flood management.

MATERIALS AND METHODS

Study area 

The region of Fez-Meknes is located in the 
north-central part of Morocco, covering an area 
of 47.705 square kilometers. It includes the pre-
fectures of Fez and Meknes, as the well as seven 
provinces, and is located between 33° 02′ 00′′ and 
35° 02′ 00′′ north latitude and 4 ° 00′00′ and 6 ° 
00′00′ longitude (Figure 1). 

The climate exhibits a Mediterranean char-
acter in the northern region, characterized by hot 
summers and cool winters, while it tends to be 
cooler in the southern mountainous areas. Rain-
fall varies across the region, with wetter areas in 
the south receiving an average of 800 mm and 
drier areas in the north and northeast receiving an 
average of 479 mm between 1988 and 2017. The 
region has several natural rivers and lakes, in-
cluding the Fez River, Guigou River, Boufekrane 
River, Tizguit River, Agay River, and DayetIfrah 
Lake, which have experienced severe flooding in 
the past. In 2020, it is estimated that the useful 
agricultural area is about 13356.39 km², or about 
15% of the total useful agricultural area of Mo-
rocco. The region, including the notable cedar 
forests of the Middle Atlas and other areas like 
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Ifrane-Azrou, Ain Alleuh, Taza, and the Rif, holds 
significant national importance due to its forests’ 
role in landscape aesthetics and economic poten-
tial. With an estimated population of around 4 
million and an urbanization rate expected to reach 
67% by 2036, the region faces growing challenges.

Methods 

The evaluation of flood susceptibility in this 
study employed various ML algorithms, such as 
RF, SVM, KNN, Rpart, and LR. To elucidate the 
methodology used in this research (Figure 2), 
serves as an illustrative framework.

Preparation of data set

Table 1 summarizes the datasets employed 
in this study. The process commenced with the 
use of a 1:10,000 scale topographic map to de-
velop a high-resolution digital elevation model 
(DEM) with a 30-meter spatial resolution. This 
DEM served as the foundation for calculat-
ing several topographic attributes, including 
slope, flow accumulation, curvature, elevation, 
the topographic wetness index (TWI), terrain 
roughness index (TRI), and stream power in-
dex (SPI), which were derived using ArcGIS 
software. LULC and NDVI data were acquired 

Figure 1. Study area location

Figure 2. Methodological flow chart
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from Landsat OLI imagery from 2020, available 
through the EarthExplorer platform (https://
earthexplorer.usgs.gov). Additionally, to con-
struct the precipitation map, annual precipita-
tion data covering the period from 1965 to 2020 
were collected from 15 monitoring stations 
managed by the Watershed Agency and the Di-
rectorate of Water and Forestry.

Flood inventory

For this study, an inventory map spanning 
the period from 2000 to 2019 was developed by 
compiling GPS data from field surveys, annual 
flood reports, and satellite imagery from Google 
Earth. This data enabled the identification and 
precise mapping of locations impacted by flood-
ing.Some of the data were obtained from the Se-
bou River Basin Agency (ABHS) and the Fez 
Water and Forests and Meteorology administra-
tion. For binary analysis, an equivalent num-
ber of non-flooded sites were chosen through 
reference to historical records and on-site as-
sessments. These 150 flood-prone and 150 non-
flood locations were randomly partitioned into 
two groups: (70%) for training and (30%) for 
validation in order to construct and assess the 
flood susceptibility map. Both the training and 
validation datasets were transformed into raster 
format, with flood-prone and non-flood loca-
tions represented as 1 and 0, respectively.

Multi-collinearity analysis

The selected conditioning factors (FCFs) un-
derwent a multicollinearity assessment by ana-
lyzing the tolerance (TOL) and variance inflation 
factor (VIF) values. This assessment helps de-
tect high correlations among FCFs, which could 
compromise the model’s accuracy. A TOL value 
below 0.1 combined with a VIF value exceeding 
5 indicates potential multicollinearity issues, as 
noted by (Khosravi et al., 2019).These metrics 
were calculated using Equations 1 and 2.

	 TOL = 1 - Rj
2	 (1)
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where:	R²j denotes the regression value associ-
ated with the j variable when considered 
alongside the other explanatory variables.

Machine learning models

Support vector machine

The support vector machine (SVM) is a widely 
used nonparametric training technique in remote 
sensing (Mountrakis et al., 2011). The algorithm 
operates by discerning the optimal hyperplane 
that maximizes the separation between two data 
classes, which are separated by the hyperplane 
using a set of support vectors (Cracknell and 
Reading, 2014). SVM aims to classify items into 

Table 1. Sourcesfor databases
Category Data source Resolution Recording time Data output type

DEM (elevation) USGS website 30 × 30 m 2019 Raster

Slope Extracted from DEM 30 × 30 m 2019 Raster

Curvature Extracted from DEM 30 × 30 m 2019 Raster

Ruggedness of the terrain index (TRI) Extracted from DEM 30 × 30 m Raster

Topographic weightiness index (TWI) Extracted from DEM 30 × 30 m 2019 Raster

Drainage density Extracted from DEM 30 × 30 m 2019 Raster

Rainfall Krigin method 30 × 30 m 2019 Raster

Soil From the geology map 30 × 30 m 1985 Raster

Distance from the river Extracted from DEM 30 × 30 m 2019 Raster

Land use and land cover (LULC) Extracted from
Satellite image 30 × 30 m 2019 Raster

Aspect Extracted from DEM 30 × 30 m 2019 Raster
Normalized difference vegetation 
index (NDVI) Landsat 2019 Raster

Geology Geology map of Morocco 1.100,000 1985 Raster

Stream power index (SPI) Extracted from DEM 30 × 30 m 2019 Raster

Flood extent Field survey and
historical flood data Randomly 1980-2019 vector
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specific classes based on their location relative to 
the optimal hyperplane (Maxwell et al., 2018). 
There are four main types of kernel function used 
in SVM algorithms, including linear, polynomial, 
radial basis function (RBF) and sigmoid kernels, 
with each having its own advantages and disad-
vantages (Kavzoglu and Colkesen, 2009).

Random forest (RF)

The RF is a popular ensemble learning al-
gorithm in remote sensing research due to its 
high classification accuracy (Belgiu and Dra, 
2016). In RF, multiple decision trees (ntrees) 
are created using a bagging procedure with ran-
domly selected training data subsets. Each tree 
grows independently to its maximum size, di-
viding each node using the best input variable 
from a random subset of size mtry without any 
adjustments (Breiman, 2001).The predicted 
classification is then determined by the class 
receiving the most votes from each tree predic-
tor. Therefore, ntree and mtry are important pa-
rameters that need to be defined. For this, tun-
ing these parameters through cross-validation 
and experimentation is crucial to finding the 
right balance between model performance and 
computational efficiency.

K-Nearest neighbor (KNN)

The KNN is a nonparametric approach 
that assumes that items in the same category 
are clustered together. The distance between 
the target point and its k nearest neighbors is 
usually calculated using the Euclidean dis-
tance method. After finding the k neighbors of 
each considered point, it is assigned the class 
with the most neighbors. KNN is considered a 
“lazy learner” because it needs to calculate the 
distances between every point in its neighbor-
hood. Compared to other ML models, it takes 
longer to train (Guo et al., 2003).

Logistic regression (LR)

LR stands as a widely adopted methodol-
ogy for examining various variables that have 
the potential to impact the probability of flood-
ing. This method was originally introduced by 
(Mc Fadden, 1974) when he devised a formula 
to construct conditioning factors for evaluating 
the likelihood of a disaster occurring within a 

specific geographical area. A notable advantage 
of this approach is its lack of reliance on data 
adhering to a normal distribution. Additionally, 
these conditioning factors can take on various 
forms, including continuous, discrete, or a com-
bination of both, offering a high degree of flex-
ibility in the analysis (Lee and Sambath, 2006). 
This technique empowers researchers to scruti-
nize the relationship between binary dependent 
variables, utilizing scalar and nominal values as 
conditioning factors.

Recursive partitioning and regression trees 
(Rpart)

The Rpart model is a popular decision tree 
technique in image-based classification due to 
its non-parametric nature and ease of interpreta-
tion. It is capable of handling both regression and 
classification trees through recursive partitioning. 
The model can perform a regression tree if the re-
sponse variable is numeric or a classification tree 
if it is a categorical value or factor.

Evaluation of model performance

In this study, we evaluated the effectiveness 
of the model using several statistical indicators, 
including specificity, sensitivity, Kappa index, 
and accuracy, following the methodology pro-
posed by (Pham et al., 2021). These metrics were 
calculated using Equations 3, 4, 5, and 6.
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True positives (TP), signifies the count of pix-
els accurately identified as positive predictions 
(indicating flooding), while true negatives (TN) 
denotes the count of pixels correctly identified as 
negative predictions (indicating non-flooding). 
Meanwhile, false positives (FP) and false nega-
tives (FN) refer to the number of pixels incorrect-
ly classified as positive (indicating flooding) or 
negative (indicating non-flooding), respectively. 
To gauge the agreement between observed and 
predicted flooding locations, the Kappa coeffi-
cient or Kappa index is employed, where L0 repre-
sents observed agreement, Le represents projected 
agreement, and Lt represents total agreement.
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Furthermore, we employed the receiver oper-
ating characteristic (ROC) curve to evaluate flood 
susceptibility models, a method commonly used 
in similar studies (Chen et al., 2020; Gudiyanga-
da Nachappa et al., 2020; Tehrany et al., 2013). 
The AUC derived from the ROC curve, ranging 
from 0 to 1, offers a key performance metric, in-
dicating the model’s ability to distinguish flooded 
and non-flooded areas. The AUC was calculated 
using Equation 7.
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where:	P represents total number of flooding lo-
cations, N total number of non-flooding 
locations.

Additionally, mean absolute error (MAE), 
root mean squared error (RMSE), percent bias 
(PBIAS), Nash-Sutcliffe efficiency (NSE), cor-
relation coefficient (r), and coefficient of deter-
mination (R²) were utilized to provide insights 
into the accuracy, reliability, and overall perfor-
mance of each machine learning method in pre-
dicting flood susceptibility.

Interpretability of machine learning 

Partial dependency plots

Partial dependency plots (PDPs) illustrate 
the incremental impact of a specific feature. 
The essence of PDPs lies in their ability to alter 
the feature under scrutiny within a ML model 

while keeping all other features constant. This 
allows for a comprehensive assessment of how 
the chosen feature influences the model’s pre-
dictions. One notable advantage of PDPs com-
pared to certain other interpretability methods 
is their capacity to reveal the functional rela-
tionship between one or two features and the 
predicted outcomes. 

Local interpretable model-agnostic explanations 

Local interpretable model-agnostic explana-
tions (LIME) is a specific technique in the realm 
of ML interpretability. LIME is designed to pro-
vide explanations for individual predictions made 
by ML models. It focuses on explaining the pre-
dictions of a model for a particular data point 
rather than providing a global explanation for the 
entire model. The key idea behind LIME is to ap-
proximate the behavior of the complex ML model 
being explained by training a simpler, interpre-
table model on a locally generated dataset.

RESULTS

Multicollinearity test

Based on a previous study, 15 factors were 
selected to study flood susceptibility in the Fez 
Meknes region using AHP (Khaldi et al., 2023). 
Table 2 presents the results of the multicollinear-
ity assessment among the 15 flood conditioning 

Table 2. The evolution of the influencing factors using VIF and tolerance
Parameter 15 factors 14 factors

Factor Tolerance VIF Tolerance VIF

NDVI 0.687 1.502 0.667 1.500

LULC 0.792 1.295 0.776 1.289

Curvature 0.756 1.338 0.749 1.336

Elevation 0.592 1.673 0.598 1.672

Aspect 0.919 1.095 0.913 1.095

Density 0.843 1.201 0.847 1.181

Distance 0.922 1.097 0.912 1.096

Geology 0.596 1.669 0.600 1.668

Sol 0.823 1.213 0.825 1.212

TRI 0.876 1.237 0.814 1.228

TWI 0.563 1.629 0.383 2.609

Rainfall 0.804 1.3 0.777 1.287

Slope 0.559 2.005 0.499 2.004

SPI 0.003 334.397 0.622 1.608

Accumulation 0.003 338.690 –
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factors. The observed TOL and VIF values reveal 
significant intercorrelations between two factors, 
suggesting possible multicollinearity issues within 
the dataset. TheToL and VIF values showed that 
13 of the flood factors ranged from 1.08 to 1.79 
and 0.559 and 0.919 respectively. However, the 
calculation of VIF for SPI and accumulation re-
sulted in values 334 and 338, respectively. Since 
the VIF values for SPI and accumulation exceeded 
5 and the ToL values were less than 0.1, a variable 
should be removed from the final model. When the 
accumulation factor was excluded, the findings re-
vealed that there is no collinearity among the 14 
selected variables, as the VIF and TOL values re-
mained within acceptable thresholds.

Model comparison

Table 3 shows the performance evaluation 
of five FSMs in both the validation and training 

datasets based on TP, TN, FP, FN, kappa and AUC. 
AUC values exceeding 80% are considered high-
performing models, while an AUC of 80–90% is 
considered very good, and an AUC above 90% 
is considered excellent. Based on the results pre-
sented in Figure 3 and Table 3, the RF, SVM, and 
Rpart models showed high prediction accuracy 
(AUC) of 96%, 89%, and 87%, respectively, in-
dicating that they are high-performance models. 

The RF model displays the highest sensitivity, 
reaching 0.97 during training and 0.79 in testing, 
which highlights its effectiveness in accurately de-
tecting positive cases. Conversely, the KNN model 
exhibits the lowest sensitivity, with values of 0.60 
in training and 0.29 in testing. The specificity met-
ric, which measures the ability to correctly identify 
negative cases, demonstrates that the SVM model 
has the highest values of 0.87 in training and 0.95 
in testing. The KNN model shows the lowest speci-
ficity values in both training and testing. When 

Table 3. Performance metrics of different classification models
Parameter Training Testing

Metrics KNN RF Rpart LR SVM KNN RF Rpart LR SVM

TP 45 73 64 60 62 7 19 19 16 16

TN 48 60 56 40 65 20 20 17 14 20

FP 27 15 19 35 10 1 1 4 7 1

FN 30 2 11 15 13 17 5 5 8 8

Sensitivity 0.60 0.97 0.85 0.80 0.83 0.29 0.79 0.79 0.67 0.67

Specificity 0.64 0.80 0.75 0.53 0.87 0.95 0.95 0.81 0.67 0.95

PPV () 62.50 82.95 77.11 63.16 86.11 87.50 95.00 82.61 69.57 94.12

NPV () 61.54 96.77 83.58 72.73 83.33 54.05 80.00 77.27 63.64 71.43

Kappa 0.240 0.773 0.600 0.49 0.69 0.23 0.73 0.59 0.33 0.60

AUC 0.69 0.96 0.87 0.75 0.89 0.73 0.97 0.86 0.76 0.90

Figure 3. Area under curve of different classification models
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considering the positive predictive value (PPV), the 
RF model performs well with 82.95% in training 
and 95.00% in testing. The negative predictive val-
ue (NPV) highlights the RF model’s strength again, 
achieving high values of 96.77% in training and 
80.00% in testing. The Kappa coefficient, which 
measures agreement between predicted and actual 
values, indicates that the RF model has the highest 
value of 0.773 in training and 0.735 in testing, sug-
gesting substantial agreement. The RF model dem-
onstrated robust performance, as confirmed by the 
area under the ROC curve (AUC) values of 0.96 in 
the training dataset and 0.976 in the testing dataset, 
signifying its exceptional discriminatory capability.

Analyzing the uncertainty of ML models based 
on the provided Table 4 involves understanding 
the variability and reliability of model predictions 
across different metrics. 

The results show, RF exhibits relatively lower 
MAE (0.26) and RMSE (0.31) values compared 
to other models, suggesting higher precision and 
accuracy in predicting flood susceptibility levels. 
Conversely, LR shows higher error rates, implying 
greater uncertainty in its predictions. The PBIAS 
values reveal insights into potential biases in the 

models’ predictions, with RF and recursive parti-
tioning and regression trees (RPART) demonstrate 
negative biases, while KNN and SVM models ex-
hibit positive biases, indicating potential overesti-
mation issues.

Furthermore, the Nash-Sutcliffe efficiency, 
correlation coefficient, and coefficient of deter-
mination metrics provide insights into the mod-
els’ ability to capture and reproduce observed 
flood susceptibility patterns. RF consistently 
demonstrates higher NSE (0.63), r (0.83), and 
R² (0.69) values compared to other models, in-
dicating better agreement between predicted 
and observed values and lower uncertainty in its 
predictions.

Moreover, the outcomes of both the Friedman 
and Wilcoxon rank tests indicated the presence of 
statistically significant distinctions among all the 
models, as demonstrated in Table 5 and Table 6. 
The mean rank values spanned from 2.55 to 3.37. 
Additionally, the Friedman test results yielded a 
p-value below 0.05, signifying the rejection of the 
null hypothesis and the acceptance of the alterna-
tive hypothesis with a 95% confidence level.

Table 4. Model performances and uncertainties during the validation process
Parameter LR RPART RF KNN SVM

MAE 0.39 0.2 0.26 0.45 0.29

RMSE 0.45 0.38 0.31 0.47 0.37

PBIAS -3.1 -0.6 -2.1 15 16.3

NSE 0.2 0.42 0.63 0.11 0.44

r 0.45 0.68 0.83 0.38 0.69

R² 0.2 0.46 0.69 0.15 0.47

Table 5. Models comparison utilizing the Wilcoxon signed-rank test (two-tailed)
Test statistics

LR - RF SVM - RF RPART - RF KNN – RF

Z -1.964 -2.862 -.803 -2.299

P-value 0.05 0.004 0.422 0.022

Significance Yes Yes no Yes

Table 6. The Friedman’s test average rank of flood susceptibility ML models
Parameter Mean rank Chi square Asymp. Sig.

LR 2.55

22.313 0.000

SVM 3.37

RPART 2.92

RF 2.99

KNN 3.17
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The z-scores for the KNN-RF, SVM-RF and 
LR-RF models surpassed the critical threshold of 
-1.96 and +1.96. Hence, it is evident that there was 
significant performance variations among the five 
models employed in flood susceptibility mapping.

Figure 4 instead the five flood susceptibility 
maps generated from the SVM, RF, Rpart, LR, 
and KNN models for the purpose of compara-
tive analysis. Each model classified the area into 
five susceptibility classes using the natural breaks 
method: very low, low, moderate, high, and very 
high. The proportion of each class for each model 
was then calculated and depicted in Figure 5.

It is evident from Figure 4 that the use of ML 
models significantly alters the distribution of sus-
ceptibility zones in the FSM. The models’ highest 
sensitivity in the high and very high classes was 
observed in urban areas near rivers.The models 
exhibited the highest sensitivity in urban zones 

situated near rivers, specifically within areas clas-
sified as high and very high risk.

The distribution of flood-prone area classes 
predicted by different ML models is illustrated 
in Figure 5. The outcomes highlight the models’ 
diverse tendencies in categorizing areas into vari-
ous levels of flood-prone classifications.

SVM and RF models showcase relatively bal-
anced outcomes, capturing the low, medium, high 
and very high flood-prone classes.

Conversely, the greatest disparity between 
models was observed in estimating the very 
high-risk class, with the highest and lowest es-
timates obtained with KNN (42.16%) and Rpart 
(2.76%), respectively.

Figure 4. Flood-prone map for each model



210

Ecological Engineering & Environmental Technology 2025, 26(1), 201–215

Interpretability of the RF model

The flood susceptibility map generated using 
the Random Forest model was analyzed using 
the PDP and LIME approaches to investigate the 
global explanations of ML models. Figure 6 illus-
trates the PDP results, where the x-axis represents 
the value of the input conditioning factor, and the 
y-axis shows the change in the predicted value.

Figure 6 indicates that all factors signifi-
cantly impact flood susceptibility prediction. 
Specifically, the flood probability increases with 
the NDVI value up to a certain point, and it de-
creases significantly with an increase in TWI. 
The flood prediction probability is positively 

correlated with land use/land cover LULC class-
es and geology, while it is negatively correlated 
with drainage density and TRI.

Additionally, the LIME bar chart presented 
in (Figure 7) was used to select and partially in-
terpret the influence of each factor on the flood 
prediction result. This analysis provided a basic 
understanding of why the models predict specific 
areas as flooded or non-flooded. 

Hence, it can be concluded that the key fac-
tors influencing the flood susceptibility predic-
tions in the Random Forest model are distance to 
river, drainage density, slope, NDVI, TWI, and 
LULC. These variables play a significant role in 
shaping the model’s output.

Figure 5. The distribution of the flood prone areas class for each model (%)

Figure 6. PDP analysis for RF model
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Figure 7. LIME analysis for RF model

DISCUSSION 

The use of ML methods for flood suscepti-
bility mapping has gained popularity in recent 
years (Munawar et al., 2021). However, inter-
preting the models and understanding the factors 
contributing to flood susceptibility has remained 
challenging (Mudashiru et al., 2021). Integrating 

partial dependence plots (PDP) and local inter-
pretable model-agnostic explanations (LIME) in 
flood susceptibility mapping is a novel approach 
that enhances the interpretation of Random For-
est models and factors influencing flood suscep-
tibility, a technique not previously used in flood 
modeling studies. These approaches enables vi-
sualizing the relationship between input variables 
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and model output, explaining the contribution 
of each variable to predictions (Friedman, 2001; 
Mishra et al., 2017). Hence, incorporating PDP 
and LIME in flood susceptibility mapping signi-
fies a significant progress in interpreting and ex-
plaining ML models, resulting in more accurate 
and reliable flood susceptibility maps.

The results of the multicollinearity analysis 
presented in Table 2 indicate a high intercorre-
lation between two flood conditioning factors, 
namely SPI and flow accumulation. To mitigate 
this issue, one of the variables was removed from 
the final model, resulting in reduced collinear-
ity among the remaining 14 variables. This step 
is crucial for developing an accurate model to 
predict flood susceptibility (Bastiaan et al., 2022; 
Mahdizadeh Gharakhanlou and Perez, 2022). 
Indeed, previous studies emphasized the sig-
nificance of addressing multicollinearity issues 
in flood susceptibility modeling (Chapi et al., 
2017b; Dormann et al., 2013).

Notable differences in performance were ob-
served among the various ML models used for 
flood susceptibility mapping, consistent with 
previous research comparing ML model perfor-
mances (Althuwaynee et al., 2020). The RF mod-
el demonstrated superior performance in flood 
susceptibility mapping in the Fez-Meknes region, 
as evidenced by its high AUC and other metrics. 
This finding is consistent with previous studies 
that have emphasized the effectiveness of RF in 
flood susceptibility mapping across various geo-
graphic areas (Gocic and Trajkovic, 2013).

The uncertainty in flood susceptibility mapping 
associated with machine learning arises from vari-
ous factors. Firstly, the complexity and non-linearity 
of flood dynamics introduce inherent uncertainty 
into the modeling process. Additionally, environ-
mental processes like rainfall patterns, land cover 
changes, and topographic characteristics contribute 
to uncertainty in flood susceptibility predictions. 
Furthermore, individual characteristics and behav-
iors of each ML algorithm, along with the complex-
ities of feature selection and interpretation, play a 
significant role. ML algorithm operates on unique 
assumptions, mechanisms, and sensitivities to da-
taset features, resulting in variability in predictions. 
Differences in learning algorithms, optimization 
techniques, and decision boundaries further contrib-
ute to uncertainty by influencing how models ana-
lyze and interpret input data. Varying priorities and 
interpretations of features among ML algorithm lead 
to divergent predictions and levels of uncertainty.

The superior reliability of RF model results 
suggests that ML models can proficiently conduct 
flood susceptibility mapping in the Fez-Meknes re-
gion. Generally, Q-values from geodetector tools 
offer a statistical measure of the relative impor-
tance of factors in flooding (Zhang et al., 2022), 
they do not offer a comprehensive and interpre-
table analysis of the contribution of each factor. 
Therefore, the use of PDP and LIME techniques 
in interpreting RF model results in this study pro-
vides deeper insights into flood prediction.

The findings from the PDP analysis revealed 
that all 14 flood-conditioning factors significantly 
influenced flood susceptibility prediction, with 
some factors exerting a positive effect while others 
had a negative impact. These results align with pre-
vious studies that have identified various factors, 
including land use/land cover, topography, and soil 
characteristics, as key variables in flood suscepti-
bility mapping (Al-Areeq et al., 2024; Bouamrane 
et al., 2022; Menuka et al., 2022; Tehrany et al., 
2019). Additionally, the LIME bar chart analysis 
offered further insights into the influence of each 
factor on flood prediction outcomes. This method 
randomly selected factors and partially interpreted 
their impact on flood prediction, aiding in identify-
ing the primary causative factors behind flood sus-
ceptibility maps generated by the Random Forest 
model in specific areas. Key factors affecting flood 
susceptibility include proximity to rivers, drain-
age density, slope, NDVI, TRI, and LULC. Prox-
imity to rivers plays a critical role as areas near 
rivers are more prone to flooding due to potential 
overflow and rising water levels (Rahman et al., 
2021). Drainage density influences water convey-
ance, with higher density areas better equipped to 
handle excess runoff, reducing the risk of water 
accumulation and localized flooding(Ogden et 
al., 2011). Slope affects water flow, with steeper 
slopes contributing to rapid surface runoff and 
increased flood risk(Mohammadi et al., 2021). 
TRI provides insights into terrain roughness, in-
fluencing flow resistance and potentially prolong-
ing flood duration in areas with rougher surfaces 
(Avand et al., 2021). Finally, LULC types impact 
flood risk by affecting surface runoff and infiltra-
tion (Tehrany et al., 2019). By considering these 
factors collectively, flood susceptibility models 
offer valuable insights for effective flood manage-
ment and tailored mitigation strategies suited to 
specific regions and conditions.

PDP and LIME approaches offer more insight-
ful and interpretable analyses of the relationship 
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between input factors and flooding prediction. 
While PDP shows the marginal effect of each in-
put variable on predicted outcomes, LIME pro-
vides local interpretations of model predictions 
for specific instances. This information aids de-
cision-makers in understanding the specific driv-
ers of flooding, essential for developing effective 
mitigation strategies.

CONCLUSIONS 

This study explored the utilization of ML 
methods in flood susceptibility mapping and the 
interpretation of factors contributing to flood 
susceptibility. Initially, a multicollinearity test 
was conducted to select the most relevant flood 
conditioning parameters. Results suggested that 
accumulation should be excluded from the final 
model due to collinearity issues. Subsequently, 
five ML algorithms were compared based on 
their performance evaluation, with the RF model 
demonstrating the highest predictive accuracy. 
Both Friedman and Wilcoxon rank tests con-
firmed significant distinctions among the models. 
Flood susceptibility maps produced by the mod-
els showed significant differences in the distribu-
tion of susceptibility zones, particularly observ-
ing high and very high susceptibility classes in 
urban areas near rivers. Lastly, interpretability of 
the RF model was assessed using PDP and LIME 
approaches, revealing significant impacts of dis-
tance to river, drainage density, slope, NDVI, 
TWI, and LULC on flood susceptibility predic-
tion in the Fes-Meknes region.
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