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Terrestrial ecosystem respiration increases exponentially with temperature,
constituting a positive feedback loop accelerating global warming.
However, the response of ecosystem respiration to temperature strongly
depends on water availability, yet where and when the water effects are
important, is presently poorly constrained, introducing uncertainties

in climate-carbon cycle feedback projections. Here, we disentangle the
effects of temperature and precipitation (a proxy for water availability) on
ecosystem respiration by analysing eddy covariance CO, flux measurements
across 212 globally distributed sites. We reveal a threshold precipitation
function, determined by the balance between precipitation and ecosystem
water demand, which separates temperature-limited and water-limited
respiration. Respiration is temperature limited for precipitation above

that threshold function, whereas in drier areas water limitation reduces the
temperature sensitivity of respiration and its positive feedback to global
warming. If the trend of expansion of water-limited areas with warming
climate over the last decades continues, the positive feedback of ecosystem
respirationis likely to be weakened and counteracted by the increasing

water limitation.

At present ecosystem respiration (R.) produces about one order of
magnitude higher CO, than do anthropogenic emissions', although
R. emissions are offset by plant primary production. The R, increases
exponentially with temperature, as typically described by Q,, (the factor
by whichrespirationincreases per10 °Cincreaseintemperature) and
Arrhenius models®™*. These formulations are widely accepted in Earth
system models (ESM) and suggest that the carbon transfer rate from
soilsand plantsto the atmosphere will increase with warming, causing
positive feedback that further accelerates warming>®.
Recentobservations, however, have led to debates”*° on the extent
towhichR.may increase with warming. Uncertainty in the temperature
sensitivity of R, has been attributed mainly to a confounding effect
of precipitation®?*, At the ecosystem level, respiration responds to
temperature and precipitation through several mechanisms occurring

simultaneously and whose relativeimportance depends onbiomes and
climates”***. Models solely driven by temperature can predict R, well
only overalimited temperature range®*** and in the absence of water
limitation’. Recent field studies indicate that precipitation (a proxy for
water availability) and supply of accessible substrates (photosynthates
for plants or organic matter for decomposers) are confounding factors
for the actual feedback of R, to global warming that may unexpectedly
lower the positive feedback in real-world scenarios, depending onlocal
toregional conditions”%'%372¢,

Field experiments''’, modelling studies”” and meta-analyses™**°
have suggested that R, responds in different ways to changing hydro-
thermal conditions depending onlatitude and ecosystemtype. The Q;,
may decrease with increasing temperature*”%*?¢, often regulated by
water availability'®. However, the temporal and geographic influence
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Fig.1| The statistical performance of models of ecosystem respiration (R,)
as afunction of mean annual temperature (7) and precipitation (P), R.(T)
and R.(P). a-h, Models were constructed using: all data for R.(7) (a); all data for
R.(P) (b); T group for R.(T) (c); T group for R.(P) (d); P group for R.(T) (e); P group
for R.(P) (f); Bgroup for R.(T) (g); and Bgroup for R.(P) (h). Here, the empirical
temperature-dependent respiration model R.(T) refers to equation (11), while

precipitation-dependent respiration model R.(P) refers to equation (12). We first
calculated site-year average of temperature (T), precipitation (P) and ecosystem
respiration R, across 212 FLUXNET sites. Then we used a mixture regression
model (Methods) to statistically classify them into three groups: T group,

P group and B group. Finally, we calculated statistics of both empirical models
foreach group.

of water availability on the temperature sensitivity of R, remains to
be determined. Moreover, the Q,, may change under future climate
change scenarios’. This introduces more—and still poorly understood—
complexity to terrestrial carbon budget estimates.

Disentangling the effects of temperature and precipitation on
ecosystem R, isacentral challenge for reducing uncertaintiesin model-
ling of climate-carbon cycle feedbacks. There is therefore a pressing
need to determine where and when the precipitation effectson R, are
important, whichis the mainresearch question addressed in this study.

Results

Statistical disentangling

We used statistical models on FLUXNET2015 data* to examine the effect
of mean annual temperature (T) and precipitation (P) on R.. Despite
measurement challenges, FLUXNET2015 provides unique insights.
Using anormal mixture regression model, we first identified 32 of the
212 sites of eddy covariance CO, flux measurement as temperature
limited (prototype T group, with >95% probability of temperature con-
trol) and 23 sites as precipitation limited (prototype P group, with >95%
probability of precipitation control). Subsequent analyses allowed us
tofurther classify sitesintoa T group, aP group and agroup influenced
by both temperature and precipitation (B group), based on relative
residuals (Methods and Supplementary Information)

We used an existing empirical temperature-dependent respi-
ration model R.(7) (equation (10))* and a precipitation-dependent
respiration model R.(P) (equation (12))***' to separately fit the data of
the T group, P group and B group sites and further verify the effects
of temperature and precipitation on R, obtained from this statistical
grouping (Methods and Supplementary Information). Owing to effect
combinations, each of the empirical models R.(7T) and R.(P) could partly
explain the observed variability across all data (Fig. 1a,b). However,
R.(T) performed excellently for the T group (Fig. 1c) but poorly for
the P group (Fig. 1e), while R.(P) did poorly for the T group (Fig. 1d)
butexcellently for the P group (Fig. 1f). The R.in the B group emerged
as dependent on both temperature and precipitation (Fig. 1g,h).

This analysis shows that the grouping was effective in separating eco-
systems that are predominantly limited by precipitation (where R.(P)
performs well) or temperature (where R.(T) performs well). However,
these empirical relations do not inform on the combinations of Pand
Twhere the transition from Pto T limitation occurs, which we need to
assess the temperature dependence of R, under future climates.

Empirical threshold function

We hypothesized that a threshold function exists that separates the
biome climate space (7, P) (Fig. 2a) into two distinct regions with: (1)
R, more limited by T; and (2) R, more limited by P.

We also expected the B group to straddle the boundary between
the T and P groups, with R, affected by both Tand P. As a first step to
test this and estimate the conditions under which R, switches from T
control to Pcontrol or vice versa, we used the climate data from the B
group sites to obtain an empirical threshold precipitation function P
of T,

P(T) = 446x100047 @
where P is mean annual precipitation (mm per year) and Tis mean
annual temperature (°C) (Extended Data Fig. 1).

Theoretical basis of the threshold function

To investigate the theoretical basis of the empirical threshold pre-
cipitation function P(T), we note that the surface net radiation R,
(M) m~ peryear) is the sum of the sensible heat flux H (M) m™ per year)
used to heatthe air and the latent heat flux AET used to evaporate water
from the soil and transpire water from plants. Here ET (mm per year)
is evapotranspiration and A (2.5 MJ kg™) is the latent heat coefficient.
Considering the theoretical limits H — 0,R, - AET we canfind a the-
oretical maximum potential evapotranspiration PET = R,/A assuming
the available energy R, to be completely used for evapotranspiration
without being constrained by water supply or atmospheric saturation.
Budyko defined a dryness index DI = PET/P, providing essential
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climatological water/energy limitationinformationinastraightforward
way: DI <lindicates wet (energy-limited) and DI > 1dry (water-limited)
conditions®.

This framework can be illustrated in a two-dimensional space
spanned by the dryness index DI and evapotranspiration index
El = AET/P, where AET is actual evapotranspiration®”. In wet (DI <1,
P>PET)regions, AET is limited by the available energy (R,) and hence
Elis expected to be at or below the line EI = DI (AET = PET; Fig. 2b). In
dry (DI>1, P<PET)regions, AET is limited by the available water, so EI
isexpectedtobeatorbelow theline EI =1(AET = P; Fig. 2b).

The transition from temperature (energy) to precipitation (water)
limitation of R, is expected to occur at conditions that are neither too
wet nor toodry. Therefore, we hypothesized the theoretical threshold
function corresponding to the empirical function in equation (1) to
begiven by

P* =PET (T ), corresponding to DI = 1 )

Thus, P* is suggested to depend on temperature because
the PET is solely determined by R,.. This threshold precipitation func-
tion can be estimated, for example, by the Langbein function®?*
P =PET =325+21T+0.97 originally derived from data for the eastern
United States during 1921-1945 and further used, for example, for
global water budget estimation®. Direct comparison finally shows that
the empirical threshold precipitation function P(T) derived from
FLUXNET2015 data closely agrees with the hypothesized theoretical
threshold function P*determined by DI =1 (Fig. 2c). To summarize, our
analysis shows that ecosystem respiration is limited by energy (and
thus temperature dependent) when the climateis wet (P>PET) and is
limited by water (and thus precipitation dependent) when the climate
isdry (P<PET).

Discussion

The effects of temperature and precipitation on R, can be disentangled
empirically and mechanistically (Fig. 2). The condition DI =1 provides
function P* = PET (T) above which R, is sensitive to T. As Dl increases,
respiration shifts from shifts from being temperature limited to being
water limited (Fig. 2b). We used the FLUXNET2015 data of R, to fit the
Q,, model for the DI conditions of the different sites (Methods) and
obtained apparent Q,, at the ecosystem level (Extended Data Figs. 2-4).
Inwet conditions, the apparent Q,, is high and decreases linearly with
increasing dryness index (DI < 1), while it is low and near-constant in
water-limited conditions (DI > 1) (Extended Data Fig. 2). The slope of
thelinear decrease of Q,, with temperature (the T sensitivity of Qo) is
3.7 times steeper when DI <1than when DI > 1 (Extended Data Fig. 3).
Under the latter, dry conditions, the low substrate supply associated
with the water (precipitation) limitation, reduces the biomass of both
primary producers and consumers and thereby also reduces enzyme
activities and capacity®. In fact, there is direct evidence of reduced
carbon flux exchange between soil or canopy and the atmosphere
under dry conditions, as the substrate supply to soil microorganisms

Fig.2| Comparative threshold functions for mean temperature (7) or mean
precipitation (P) regulation of ecosystem respiration (R,). a, A threshold
precipitation function P(T) emerging empirically from grouping of the
observational eddy covariance flux data (Methods). b, A hypothesized
comparative threshold precipitation function P* (T) = PET (T) determined from
the Budyko dryness condition DI =1. ¢, Budyko theoretical threshold and
empirical threshold. The empirical function P(7)inawas obtained fromPand T
values at sites belonging to the B group, which are colimited by temperature and
precipitation. Then we linked this empirical result to the Budyko framework by
assuming that Budyko dryness DI =1provides the condition to determine a
threshold relationship between precipitation with temperature. Thus, the space
(T, P)is divided by the threshold curve into two regions—one where R, is
dominated by temperature and one where it is dominated by precipitation.

and the CO, supply to the leaves are then reduced and both supply
processes ultimately reduce R, (refs. 37,38).

Interannual and intersite variationsin R, are confounded by arange
of interlinked environmental factors with varying strengths®. Climatic
variation and some non-climatic factors, such as topography, soil type,
substrate availability and species composition, may account for those
unexplained spatial variations in R, of the three groups. They may also
influence our grouping algorithm and explain why sites with similar
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temperatures and precipitation went to different groups. For instance,
tropical rainforests may have been grouped into the P group owing to
their low seasonal temperature variability (Fig. 2a). In addition, the
correlation between R, and gross primary production (GPP) isnotably
higherin the P group thanin the T group (Supplementary Fig. 1). This
is consistent with studies suggesting that substrate limitation leads to
reduced temperature sensitivity.

Recent theoretical studies”*°* indicate that temperature effects
onmetabolic fluxes at the ecosystemlevel canbe obtained by integrat-
ing the kinetic effects of temperature on the rates of photosynthesis
andrespiration ofindividual organisms in the ecosystem. Temperature
effects on metabolism at organismlevel can be described by an expres-
sionmathematically equivalentto Arrheniusequation (~ exp (—£,/kT).
These effects can be then scaled up to the whole ecosystem by consider-
ing the biomass of consumers and primary producers. Many modelling
and observational studies have further shown that precipitationis a
critical driver for site productivity***” and many previous studies have
reported that Q,, is not constant but decreases with increasing tem-
perature”®?***?7*8 Inview of these studies, we here introduce and test
DI (= R,/AP)***°, expressing the ratio of available energy to precipita-
tion, as a further quantitative explanatory parameter for both under-
standing and predicting under which conditions R, is sensitive to
temperature. For instance, precipitation in high-latitude ecosystems
can be low, ranging from 150 to 250 mm per year, while the DI is also
low because the available energy R, is even more limited. Therefore,
Dlis amore informative predictor than Tand Palone.

Our conclusions are drawn frombroad patterns captured over long
timescales across biomes and continents. We acknowledge a potential
asymmetric effect of precipitation on R,, particularly notable in arid
and semi-arid ecosystems as a result of seasonal dynamics or spikes
in soil respiration triggered by precipitation pulses after prolonged
seasonal droughts®>*. Details on the assessment of such second-order
effects at subannual timescales are discussed in Extended Data Figs. 5
and 6 and Supplementary Methods 2, while the main focus here is on
the first-order effects at the annual timescale.

Thetemperatureinsensitivity of R, under dry conditionsindicates
awater-availability control and regulation of the positive feedback of
R.to global warming. Expansion of arid areas and contraction of lake
and wetland areas have been reported around the world® . Output
datafromclimate models also indicate drying of land areas with mean
annual temperature >16 °C (ref. 51), while greenhouse gas emissions are
expected to continue raising temperatures® with land-surface tem-
peraturereported towarm faster (0.27 °C per decade) than sea-surface
temperature (0.11 °C per decade) since the 1970s. Continuation of
such drying trends under warming can be expected to reduce the
positive feedback of R, to future global warming.

More specifically, our findings indicate that this hydroclimatic
trend will change the two main ecosystem carbon fluxes, R, and GPP,
and the balance of CO, exchanges between biosphere and atmos-
phere to weaker associated feedbacks to global warming. By analys-
ing nine ESM outputs from Coupled Model Intercomparison Project
Phase 6 (CMIP6), we also found that most models (seven out of nine)
failed to reproduce the declining temperature sensitivity of R, for
drier conditions (Supplementary Fig. 3). The observation-based and
theoretically/mechanistically supported threshold function between
temperature- and precipitation-driven control on respiration rates
represents an opportunity to assess if ESMs and land-surface models
capture water versus energy limitations correctly and suggest ways
to reduce associated model uncertainties in prediction of future
climate change.

Methods

FLUXNET2015 data

The FLUXNET2015dataset (https://fluxnet.org/data/fluxnet2015-dataset/)
comes from 212 globally distributed eddy covariance sites (over 1,500

site-years) and provides CO,, water and energy exchange data between
terrestrial ecosystem and atmosphere as well as meteorological obser-
vations®. This study used annual ecosystem respiration (R,) from the
daytime partitioning method (RECO_DT VUT REF,gC m™ peryear),annual
airtemperature (TA_F, °C) and annual precipitation (P_F, mm per year) of
all the 212 sites. Air temperature (7) is consolidated from data gap-filled
using marginalfistribution dampling method (TA_F_MDS) and downscaled
from ERA-Interim reanalysis data product (TA_ERA). Precipitation (P) is
consolidated from data measured and downscaled from ERA (P_ERA).
Site-average R., T and P were averaged using the measurement period
of each site. Site-average data rather than site-year data were used for
the analyses in this study. In other words, each site contributed only one
datapoint.

Mixture regression model

The grouping method used in this paper is based on mixture regression,
which uses the regression function of a response (R,) on covariates
(Tand P) to cluster observations®”, Mixture regression models are
thus different from mixture models, which use the population mean
to cluster observations™ . Let m; (T)and m, (P)be the regression func-
tions of R, on T and P, respectively. That is, m; (1) =E(R,|,T) and
m, (P) = E(R, |, P).Inother words, m; (T)is used to model the regression
function of the T group, while m, (P) is used to model the regression
function of the P group. Since most functions can be approximated
well by polynomials, we use cubic polynomials to model both m, (T)
and m, (P),

my (T =ag+aT+aT? +a3T 3)

and

my (P) = bo + biP + b,P* + b3P? 4)

Formally, we can describe the mixture regression model in statis-
tical terminology as follows. Let G be a latent group variable and the
regression functionof R,on 7, Pand G,

E(Re|T,P,G) = mg(T.P) 5

with G=1indicating the T group and G =2 indicating the P group and
my (T,P) = my (T)and m, (T, P) = m, (P).Since Gis alatent group variable,
itisnotobserved. Denote m; = p (G = 1)and m, = p (G = 2),the probabili-
ties of an observation belonging to the T and G groups, respectively
(with m; + m, = 1). Thus, this probability quantifies the likelihood that
anobservationbelongstoaparticular group. As aresult, the probability
may provide usacriterion to cluster observations. Further assume the
random error ¢ in the regression model of R, over T, Pand G follows a
normal distribution with mean 0 and variance ¢2. That is,

R.=mg(T,P)+¢€ (6)

where € ~ N(0,0%).This enables deriving the likelihood function of the
mixture regression models based on aset of observations and finding
maximum likelihood values of the model parameters,
g, ay, ay,as, by, by, by, by, m, m, and o2, Unlike with simple linear regres-
sion, there is no closed-form solution for these values and finding the
maximum likelihood isingeneral challenging. In the literature of mix-
ture regression model®®*, expectation maximization (EM)®* algorithm
is used to maximize the likelihood function. During the course of an
iteration of the EM algorithm, we also obtain the probability
p(G; =2,|,T;,P) for the observation (R.,, T;, P;) for ith site, k = 1,2. This
probability can be used to group observations and is also referred to
as posterior probability, although there are no specifically Bayesian
statistical conceptsinthis model. Sites whose probabilities do not meet
this threshold are clustered into the B group.
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Grouping method

The first step in our data analysis is to identify sites in T and P groups
with high confidence fromthe 212 eddy covariance sites. We apply the
mixture regression model for the data collected from sites and obtain
the posterior probability p (G; = 1,|, T;, P, for the ith site, i = 1,---, 212
and k = 1,2. We determine the sites with >95% probability of belonging
to T group or P group as two prototype subgroups. That is, if
p(G; =1,|,T;,P,) > 95%, then the ith site belongs to the T group and if
p(G; = 2,|,T;,P) > 95%, then the ith site belongs to the P group. On the
basis of this criterion, 32 highly temperature-limited sites (>95% con-
fidence) and 23 highly precipitation-limited sites (>95% confidence)
were selected. Then the two prototype equations predict the annual
R.of any sites:

RI(T)=my(T)=—-020T3 + 55872 + 22.3T + 538 @)

and

RE(P)=m, (P) = — (2.34 x 10‘7)P3 + (7.26 x 10“‘) P2 +116P—183 (8)

The second step in our analysis is to cluster the sites on the basis
ofthe dimensionlessresidualindex®. The residual index is defined as:

=t )
ep+Er

Residual index =

where g, = |(Rf — REC) /REC| x 100%is a percentage error in R prediction
by equation (8) for asite and RECis the semimeasured annual mean R,
ofthesite. Similarly, e = |(R] — RE®) /REC| x 100% is a percentage error
in R, prediction by equation (7) for a site. Intuitively, a large positive
residual index value of indicates that temperature controls the R,
while alarge negative residual index value means that precipitation
controls R, of thesite. Aresidualindex value of around zero indicates
thatequations (7) and (8) have similar predictive ability. The R, of the
sites with aresidual index near zero appear to be controlled by both
temperature and precipitation. Onthe basis of equations (7), (8) and
(9), we calculate the residualindex for each site. We further group the
212 global distributed eddy covariance sitesinto three groups onthe
basis of their residual index values: temperature-limited group
(Tgroup, residualindex > 30%); Precipitation-limited group (P group,
residual index < -30%); both-limited by temperature and precipita-
tion group (B group, -30% < residual index <30%). There were a few
sites (five) that we discovered were limited by neither temperature
nor precipitation. We chose to leave those unusual sitesin the B group.
While these sites may demonstrate substantial deviations from the
threshold function (Extended Data Fig. 1), most sites in the B group
exhibitinfluences from both temperature and precipitation on eco-
system respiration.

Wealso calculated the residual index using datasets obtained from
the daytime partitioning method; the results showed residual index val-
ues derived from night time and daytime partitioning methods show a
robust agreement, closely following the 1:1line (Supplementary Fig. 3).

Empirical R, models

Equations (7) and (8) in polynomial form are essential for our grouping
method and we aim for the purely mathematical fitting to be supported
by observational evidence. We used the following model*’:

Re (7) — aebT+CT1 (10)

asanempirical temperature-control model of ecosystemrespiration.
For convenience, we rewrote the equation (10) into aquadratic expres-
sion after log-transformation,

InR. (N =a +bxT+cxT? (11

The statistical performances of R.(T) with temperature for all data,
T group, P group and B group are shown in Fig. 2a,c,e,g, respectively.
The R —precipitationrelationshipis often described by alinear model

with long-term site-based data®*”,

R.(P)=a; xP—-b, 12)

We used equation (12) as an empirical precipitation-control
model of ecosystem respiration. The regression results of R.(P) with
precipitation in different data groups are shown in Fig. 2b,d,f,h,
respectively.

Apparent Q,,

We divided the 212 FLUXNET2015 sites into five groups according to
their site-annual mean DI, 0 < DI < 0.4 (9 sites); 0.4 < DI < 0.7 (61sites);
0.7 <DI<1.0 (58 sites); 1.0 < DI <1.4 (38 sites); 1.4 < DI < 2.2 (23 sites);
and DI > 2.2 (23 sites). The Dl is defined as,

_Prm

DI P

13)

where P*(T) is the threshold precipitation defined by equation (2)
(Fig.2c) and Pis site mean annual precipitation (mm per year).

We estimated the apparent Q,, for each of the five groups through
the van’t Hoff Q,, model®,

R, = aefT,Q,y = ef10 (14)

where R, is site-annual ecosystem respiration, 7T is site mean annual
temperaturein°C, a and Bare regression parameters. Q,, (temperature
sensitivity) is the factor of 10 °C increase in temperature multiplied
bytheR..

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used for this study are publicly accessible and download-
able and all results of this study can be reproduced according to the
methods provided. The FLUXNET2015 dataset used here are pub-
licly available at https://fluxnet.org/data/fluxnet2015-dataset/. The
CMIP6 data are publicly available at https://esgf-node.lInl.gov/pro-
jects/cmipé6/.Information on the 212 sites used in this paper and their
groupings are available on GitHub (https://github.com/chuixiangyi/
Water-limitation).

Code availability
The Matlab code used for the analysis is available on GitHub (https://
github.com/chuixiangyi/).
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Extended Data Fig. 1| The statistics of the empirical threshold model F’(T). Theblue filled circles are the data of mean annual temperature and mean annual
precipitation in B-group. The threshold curve (black line) is the exponential regression line with 95% confidence interval (shaded area), R? = 0.53 and p < 0.01 for
One-Tailed Test.
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Extended Data Fig. 2| Differential sensitivity of Q,, to Dryness (DI). 212 sites of FLUXNET2015 were divided into six groups with six Dl intervals: 0 < DI < 0.4 (9 sites);

0.4 <DI<0.7 (61sites); 0.7 < DI <1.0 (58ssites); 1.0 < DI < 1.4 (38 sites); 1.4 < DI < 2.2 (23 sites); and D/ > 2.2 (23 sites). The apparent group average Q,, were estimated by
Q,omodels (see Methods).
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