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Water limitation regulates positive feedback 
of increased ecosystem respiration

Qin Zhang    1,2, Chuixiang Yi    3,4,5 , Georgia Destouni    2,6, 
Georg Wohlfahrt    3, Yakov Kuzyakov7,8, Runze Li    9, Eric Kutter10, 
Deliang Chen    11, Max Rietkerk12, Stefano Manzoni    2, Zhenkun Tian    13, 
George Hendrey4,5, Wei Fang14, Nir Krakauer    5,15, Gustaf Hugelius    2,16, 
Jerker Jarsjo    2, Jianxu Han1,2 & Shiguo Xu1

Terrestrial ecosystem respiration increases exponentially with temperature, 
constituting a positive feedback loop accelerating global warming. 
However, the response of ecosystem respiration to temperature strongly 
depends on water availability, yet where and when the water effects are 
important, is presently poorly constrained, introducing uncertainties 
in climate–carbon cycle feedback projections. Here, we disentangle the 
effects of temperature and precipitation (a proxy for water availability) on 
ecosystem respiration by analysing eddy covariance CO2 flux measurements 
across 212 globally distributed sites. We reveal a threshold precipitation 
function, determined by the balance between precipitation and ecosystem 
water demand, which separates temperature-limited and water-limited 
respiration. Respiration is temperature limited for precipitation above 
that threshold function, whereas in drier areas water limitation reduces the 
temperature sensitivity of respiration and its positive feedback to global 
warming. If the trend of expansion of water-limited areas with warming 
climate over the last decades continues, the positive feedback of ecosystem 
respiration is likely to be weakened and counteracted by the increasing 
water limitation.

At present ecosystem respiration (Re) produces about one order of 
magnitude higher CO2 than do anthropogenic emissions1, although 
Re emissions are offset by plant primary production. The Re increases 
exponentially with temperature, as typically described by Q10 (the factor 
by which respiration increases per 10 °C increase in temperature) and 
Arrhenius models2–4. These formulations are widely accepted in Earth 
system models (ESM) and suggest that the carbon transfer rate from 
soils and plants to the atmosphere will increase with warming, causing 
positive feedback that further accelerates warming5,6.

Recent observations, however, have led to debates7–20 on the extent 
to which Re may increase with warming. Uncertainty in the temperature 
sensitivity of Re has been attributed mainly to a confounding effect 
of precipitation21,22. At the ecosystem level, respiration responds to 
temperature and precipitation through several mechanisms occurring 

simultaneously and whose relative importance depends on biomes and 
climates7,20,23. Models solely driven by temperature can predict Re well 
only over a limited temperature range8,23,24 and in the absence of water 
limitation7. Recent field studies indicate that precipitation (a proxy for 
water availability) and supply of accessible substrates (photosynthates 
for plants or organic matter for decomposers) are confounding factors 
for the actual feedback of Re to global warming that may unexpectedly 
lower the positive feedback in real-world scenarios, depending on local 
to regional conditions7,8,10,23–26.

Field experiments14,19, modelling studies27 and meta-analyses7,8,20 
have suggested that Re responds in different ways to changing hydro-
thermal conditions depending on latitude and ecosystem type. The Q10 
may decrease with increasing temperature4,7,8,23,26, often regulated by 
water availability10. However, the temporal and geographic influence 
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This analysis shows that the grouping was effective in separating eco-
systems that are predominantly limited by precipitation (where Re(P) 
performs well) or temperature (where Re(T) performs well). However, 
these empirical relations do not inform on the combinations of P and 
T where the transition from P to T limitation occurs, which we need to 
assess the temperature dependence of Re under future climates.

Empirical threshold function
We hypothesized that a threshold function exists that separates the 
biome climate space (T, P) (Fig. 2a) into two distinct regions with: (1) 
Re more limited by T; and (2) Re more limited by P.

We also expected the B group to straddle the boundary between 
the T and P groups, with Re affected by both T and P. As a first step to 
test this and estimate the conditions under which Re switches from T 
control to P control or vice versa, we used the climate data from the B 
group sites to obtain an empirical threshold precipitation function P̃  
of T,

P̃ (T) = 446×100.042T (1)

where P̃  is mean annual precipitation (mm per year) and T is mean 
annual temperature (°C) (Extended Data Fig. 1).

Theoretical basis of the threshold function
To investigate the theoretical basis of the empirical threshold pre-
cipitation function P̃ (T), we note that the surface net radiation Rn 
(MJ m−2 per year) is the sum of the sensible heat flux H (MJ m−2 per year) 
used to heat the air and the latent heat flux λET used to evaporate water 
from the soil and transpire water from plants. Here ET (mm per year) 
is evapotranspiration and λ (2.5 MJ kg−1) is the latent heat coefficient. 
Considering the theoretical limits H → 0, Rn → λ ET we can find a the-
oretical maximum potential evapotranspiration PET = Rn/λ assuming 
the available energy Rn to be completely used for evapotranspiration 
without being constrained by water supply or atmospheric saturation. 
Budyko defined a dryness index DI = PET/P, providing essential 

of water availability on the temperature sensitivity of Re remains to 
be determined. Moreover, the Q10 may change under future climate 
change scenarios7. This introduces more—and still poorly understood— 
complexity to terrestrial carbon budget estimates.

Disentangling the effects of temperature and precipitation on 
ecosystem Re is a central challenge for reducing uncertainties in model-
ling of climate–carbon cycle feedbacks. There is therefore a pressing 
need to determine where and when the precipitation effects on Re are 
important, which is the main research question addressed in this study.

Results
Statistical disentangling
We used statistical models on FLUXNET2015 data28 to examine the effect 
of mean annual temperature (T) and precipitation (P) on Re. Despite 
measurement challenges, FLUXNET2015 provides unique insights. 
Using a normal mixture regression model, we first identified 32 of the 
212 sites of eddy covariance CO2 flux measurement as temperature 
limited (prototype T group, with >95% probability of temperature con-
trol) and 23 sites as precipitation limited (prototype P group, with >95% 
probability of precipitation control). Subsequent analyses allowed us 
to further classify sites into a T group, a P group and a group influenced 
by both temperature and precipitation (B group), based on relative 
residuals (Methods and Supplementary Information)

We used an existing empirical temperature-dependent respi-
ration model Re(T) (equation (10))29 and a precipitation-dependent 
respiration model Re(P) (equation (12))30,31 to separately fit the data of 
the T group, P group and B group sites and further verify the effects 
of temperature and precipitation on Re obtained from this statistical 
grouping (Methods and Supplementary Information). Owing to effect 
combinations, each of the empirical models Re(T) and Re(P) could partly 
explain the observed variability across all data (Fig. 1a,b). However, 
Re(T) performed excellently for the T group (Fig. 1c) but poorly for 
the P group (Fig. 1e), while Re(P) did poorly for the T group (Fig. 1d) 
but excellently for the P group (Fig. 1f). The Re in the B group emerged 
as dependent on both temperature and precipitation (Fig. 1g,h).  
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Fig. 1 | The statistical performance of models of ecosystem respiration (Re) 
as a function of mean annual temperature (T) and precipitation (P), Re(T) 
and Re(P). a–h, Models were constructed using: all data for Re(T) (a); all data for 
Re(P) (b); T group for Re(T) (c); T group for Re(P) (d); P group for Re(T) (e); P group 
for Re(P) (f); B group for Re(T) (g); and B group for Re(P) (h). Here, the empirical 
temperature-dependent respiration model Re(T) refers to equation (11), while 

precipitation-dependent respiration model Re(P) refers to equation (12). We first 
calculated site-year average of temperature (T), precipitation (P) and ecosystem 
respiration Re across 212 FLUXNET sites. Then we used a mixture regression 
model (Methods) to statistically classify them into three groups: T group,  
P group and B group. Finally, we calculated statistics of both empirical models  
for each group.
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climatological water/energy limitation information in a straightforward 
way: DI < 1 indicates wet (energy-limited) and DI > 1 dry (water-limited) 
conditions32.

This framework can be illustrated in a two-dimensional space 
spanned by the dryness index DI and evapotranspiration index 
EI = AET/P, where AET is actual evapotranspiration32. In wet (DI < 1, 
P > PET) regions, AET is limited by the available energy (Rn) and hence 
EI is expected to be at or below the line EI = DI (AET = PET; Fig. 2b). In 
dry (DI > 1, P < PET) regions, AET is limited by the available water, so EI 
is expected to be at or below the line EI = 1 (AET = P; Fig. 2b).

The transition from temperature (energy) to precipitation (water) 
limitation of Re is expected to occur at conditions that are neither too 
wet nor too dry. Therefore, we hypothesized the theoretical threshold 
function corresponding to the empirical function in equation (1) to 
be given by

P∗ = PET (T ) , corresponding to DI = 1 (2)

Thus, P∗ is suggested to depend on temperature because  
the PET is solely determined by Rn. This threshold precipitation func-
tion can be estimated, for example, by the Langbein function33,34 
P* = PET = 325 + 21T + 0.9T2, originally derived from data for the eastern 
United States during 1921–1945 and further used, for example, for 
global water budget estimation35. Direct comparison finally shows that 
the empirical threshold precipitation function P̃ (T) derived from 
FLUXNET2015 data closely agrees with the hypothesized theoretical 
threshold function P∗ determined by DI = 1 (Fig. 2c). To summarize, our 
analysis shows that ecosystem respiration is limited by energy (and 
thus temperature dependent) when the climate is wet (P > PET) and is 
limited by water (and thus precipitation dependent) when the climate 
is dry (P < PET).

Discussion
The effects of temperature and precipitation on Re can be disentangled 
empirically and mechanistically (Fig. 2). The condition DI = 1 provides 
function P∗ = PET (T) above which Re is sensitive to T. As DI increases, 
respiration shifts from shifts from being temperature limited to being 
water limited (Fig. 2b). We used the FLUXNET2015 data of Re to fit the 
Q10 model for the DI conditions of the different sites (Methods) and 
obtained apparent Q10 at the ecosystem level (Extended Data Figs. 2–4). 
In wet conditions, the apparent Q10 is high and decreases linearly with 
increasing dryness index (DI < 1), while it is low and near-constant in 
water-limited conditions (DI > 1) (Extended Data Fig. 2). The slope of 
the linear decrease of Q10 with temperature (the T sensitivity of Q10) is 
3.7 times steeper when DI < 1 than when DI > 1 (Extended Data Fig. 3). 
Under the latter, dry conditions, the low substrate supply associated 
with the water (precipitation) limitation, reduces the biomass of both 
primary producers and consumers and thereby also reduces enzyme 
activities and capacity36. In fact, there is direct evidence of reduced 
carbon flux exchange between soil or canopy and the atmosphere 
under dry conditions, as the substrate supply to soil microorganisms 

and the CO2 supply to the leaves are then reduced and both supply 
processes ultimately reduce Re (refs. 37,38).

Interannual and intersite variations in Re are confounded by a range 
of interlinked environmental factors with varying strengths39. Climatic 
variation and some non-climatic factors, such as topography, soil type, 
substrate availability and species composition, may account for those 
unexplained spatial variations in Re of the three groups. They may also 
influence our grouping algorithm and explain why sites with similar 
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Fig. 2 | Comparative threshold functions for mean temperature (T) or mean 
precipitation (P) regulation of ecosystem respiration (Re). a, A threshold 
precipitation function P̃ (T) emerging empirically from grouping of the 
observational eddy covariance flux data (Methods). b, A hypothesized 
comparative threshold precipitation function P∗ (T) = PET (T) determined from 
the Budyko dryness condition DI = 1. c, Budyko theoretical threshold and 
empirical threshold. The empirical function P̃ (T) in a was obtained from P and T 
values at sites belonging to the B group, which are colimited by temperature and 
precipitation. Then we linked this empirical result to the Budyko framework by 
assuming that Budyko dryness DI = 1 provides the condition to determine a 
threshold relationship between precipitation with temperature. Thus, the space 
(T, P) is divided by the threshold curve into two regions—one where Re is 
dominated by temperature and one where it is dominated by precipitation.
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temperatures and precipitation went to different groups. For instance, 
tropical rainforests may have been grouped into the P group owing to 
their low seasonal temperature variability (Fig. 2a). In addition, the 
correlation between Re and gross primary production (GPP) is notably 
higher in the P group than in the T group (Supplementary Fig. 1). This 
is consistent with studies suggesting that substrate limitation leads to 
reduced temperature sensitivity.

Recent theoretical studies21,40–43 indicate that temperature effects 
on metabolic fluxes at the ecosystem level can be obtained by integrat-
ing the kinetic effects of temperature on the rates of photosynthesis 
and respiration of individual organisms in the ecosystem. Temperature 
effects on metabolism at organism level can be described by an expres-
sion mathematically equivalent to Arrhenius equation (∼ exp (−Ea/kT)). 
These effects can be then scaled up to the whole ecosystem by consider-
ing the biomass of consumers and primary producers. Many modelling 
and observational studies have further shown that precipitation is a 
critical driver for site productivity44–47 and many previous studies have 
reported that Q10 is not constant but decreases with increasing tem-
perature7,8,23,26,27,48. In view of these studies, we here introduce and test 
DI (= Rn/λP)32,49, expressing the ratio of available energy to precipita-
tion, as a further quantitative explanatory parameter for both under-
standing and predicting under which conditions Re is sensitive to 
temperature. For instance, precipitation in high-latitude ecosystems 
can be low, ranging from 150 to 250 mm per year, while the DI is also 
low because the available energy Rn is even more limited. Therefore, 
DI is a more informative predictor than T and P alone.

Our conclusions are drawn from broad patterns captured over long 
timescales across biomes and continents. We acknowledge a potential 
asymmetric effect of precipitation on Re, particularly notable in arid 
and semi-arid ecosystems as a result of seasonal dynamics or spikes 
in soil respiration triggered by precipitation pulses after prolonged 
seasonal droughts30,50. Details on the assessment of such second-order 
effects at subannual timescales are discussed in Extended Data Figs. 5 
and 6 and Supplementary Methods 2, while the main focus here is on 
the first-order effects at the annual timescale.

The temperature insensitivity of Re under dry conditions indicates 
a water-availability control and regulation of the positive feedback of 
Re to global warming. Expansion of arid areas and contraction of lake 
and wetland areas have been reported around the world51–55. Output 
data from climate models also indicate drying of land areas with mean 
annual temperature >16 °C (ref. 51), while greenhouse gas emissions are 
expected to continue raising temperatures55 with land-surface tem-
perature reported to warm faster (0.27 °C per decade) than sea-surface 
temperature (0.11 °C per decade) since the 1970s56. Continuation of 
such drying trends under warming can be expected to reduce the 
positive feedback of Re to future global warming.

More specifically, our findings indicate that this hydroclimatic 
trend will change the two main ecosystem carbon fluxes, Re and GPP, 
and the balance of CO2 exchanges between biosphere and atmos-
phere to weaker associated feedbacks to global warming. By analys-
ing nine ESM outputs from Coupled Model Intercomparison Project 
Phase 6 (CMIP6), we also found that most models (seven out of nine) 
failed to reproduce the declining temperature sensitivity of Re for 
drier conditions (Supplementary Fig. 3). The observation-based and 
theoretically/mechanistically supported threshold function between 
temperature- and precipitation-driven control on respiration rates 
represents an opportunity to assess if ESMs and land-surface models 
capture water versus energy limitations correctly and suggest ways 
to reduce associated model uncertainties in prediction of future 
climate change.

Methods
FLUXNET2015 data
The FLUXNET2015 dataset (https://fluxnet.org/data/fluxnet2015-dataset/) 
comes from 212 globally distributed eddy covariance sites (over 1,500 

site-years) and provides CO2, water and energy exchange data between 
terrestrial ecosystem and atmosphere as well as meteorological obser-
vations28. This study used annual ecosystem respiration (Re) from the 
daytime partitioning method (RECO_DT_VUT_REF, gC m−2 per year), annual 
air temperature (TA_F, °C) and annual precipitation (P_F, mm per year) of 
all the 212 sites. Air temperature (T) is consolidated from data gap-filled 
using marginal fistribution dampling method (TA_F_MDS) and downscaled 
from ERA-Interim reanalysis data product (TA_ERA). Precipitation (P) is 
consolidated from data measured and downscaled from ERA (P_ERA). 
Site-average Re, T and P were averaged using the measurement period 
of each site. Site-average data rather than site-year data were used for 
the analyses in this study. In other words, each site contributed only one 
data point.

Mixture regression model
The grouping method used in this paper is based on mixture regression, 
which uses the regression function of a response (Re) on covariates  
(T and P) to cluster observations57,58. Mixture regression models are 
thus different from mixture models, which use the population mean 
to cluster observations59–61. Let m1 (T) and m2 (P) be the regression func-
tions of Re on T and P, respectively. That is, m1 (T) = E (R, |,T)  and 
m2 (P) = E (R, |,P). In other words, m1 (T) is used to model the regression 
function of the T group, while m2 (P) is used to model the regression 
function of the P group. Since most functions can be approximated 
well by polynomials, we use cubic polynomials to model both m1 (T) 
and m2 (P),

m1 (T) = a0 + a1T + a2T2 + a3T3 (3)

and

m2 (P) = b0 + b1P + b2P2 + b3P3 (4)

Formally, we can describe the mixture regression model in statis-
tical terminology as follows. Let G be a latent group variable and the 
regression function of Re on T, P and G,

E (Re|T,P,G) = mG (T,P) (5)

with G = 1 indicating the T group and G = 2 indicating the P group and 
m1 (T,P) = m1 (T) and m2 (T,P) = m2 (P). Since G is a latent group variable, 
it is not observed. Denote π1 = p (G = 1) and π2 = p (G = 2), the probabili-
ties of an observation belonging to the T and G groups, respectively 
(with π1 + π2 = 1). Thus, this probability quantifies the likelihood that 
an observation belongs to a particular group. As a result, the probability 
may provide us a criterion to cluster observations. Further assume the 
random error ε in the regression model of Re over T, P and G follows a 
normal distribution with mean 0 and variance σ2. That is,

Re = mG (T,P) + ε (6)

where ε ∼ N (0,σ2) . This enables deriving the likelihood function of the 
mixture regression models based on a set of observations and finding 
maximum likeli hood values of the model parameters, 
a0,a1,a2,a3,b0,b1,b2,b3,π1,π2 and σ2. Unlike with simple linear regres-
sion, there is no closed-form solution for these values and finding the 
maximum likelihood is in general challenging. In the literature of mix-
ture regression model62,63, expectation maximization (EM)64 algorithm 
is used to maximize the likelihood function. During the course of an 
iteration of the EM algorithm, we also obtain the probability 
p (Gi = 2, |,Ti,Pi) for the observation (Rei ,Ti,Pi) for ith site, k = 1, 2. This 
probability can be used to group observations and is also referred to 
as posterior probability, although there are no specifically Bayesian 
statistical concepts in this model. Sites whose probabilities do not meet 
this threshold are clustered into the B group.

http://www.nature.com/natecolevol
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Grouping method
The first step in our data analysis is to identify sites in T and P groups 
with high confidence from the 212 eddy covariance sites. We apply the 
mixture regression model for the data collected from sites and obtain 
the posterior probability p (Gi = 1, |,Ti,Pi)  for the ith site, i = 1,⋯ , 212   
and k = 1, 2. We determine the sites with >95% probability of belonging 
to T group or P group as two prototype subgroups. That is, if 
p (Gi = 1, |,Ti,Pi) > 95%,  then the ith site belongs to the T group and if 
p (Gi = 2, |,Ti,Pi) > 95%, then the ith site belongs to the P group. On the 
basis of this criterion, 32 highly temperature-limited sites (>95% con-
fidence) and 23 highly precipitation-limited sites (>95% confidence) 
were selected. Then the two prototype equations predict the annual 
Re of any sites:

RT
e (T ) = m1 (T ) = −0.20T3 + 5.58T2 + 22.3T + 538 (7)

and

RP
e (P) = m2 (P) = − (2.34 × 10−7)P3 + (7.26 × 10−4)P2 + 1.16P − 183 (8)

The second step in our analysis is to cluster the sites on the basis 
of the dimensionless residual index65. The residual index is defined as:

Residual index = εP − εT
εP + εT

(9)

where εP = ||(RP
e − RECe ) /RECe || × 100% is a percentage error in Re prediction 

by equation (8) for a site and RECe  is the semimeasured annual mean Re 
of the site. Similarly, εT = ||(RT

e − RECe ) /RECe || × 100% is a percentage error 
in Re prediction by equation (7) for a site. Intuitively, a large positive 
residual index value of indicates that temperature controls the Re 
while a large negative residual index value means that precipitation 
controls Re of the site. A residual index value of around zero indicates 
that equations (7) and (8) have similar predictive ability. The Re of the 
sites with a residual index near zero appear to be controlled by both 
temperature and precipitation. On the basis of equations (7), (8) and 
(9), we calculate the residual index for each site. We further group the 
212 global distributed eddy covariance sites into three groups on the 
basis of their residual index values: temperature-limited group  
(T group, residual index > 30%); Precipitation-limited group (P group, 
residual index < −30%); both-limited by temperature and precipita-
tion group (B group, −30% < residual index < 30%). There were a few 
sites (five) that we discovered were limited by neither temperature 
nor precipitation. We chose to leave those unusual sites in the B group. 
While these sites may demonstrate substantial deviations from the 
threshold function (Extended Data Fig. 1), most sites in the B group 
exhibit influences from both temperature and precipitation on eco-
system respiration.

We also calculated the residual index using datasets obtained from 
the daytime partitioning method; the results showed residual index val-
ues derived from night time and daytime partitioning methods show a 
robust agreement, closely following the 1:1 line (Supplementary Fig. 3).

Empirical Re models
Equations (7) and (8) in polynomial form are essential for our grouping 
method and we aim for the purely mathematical fitting to be supported 
by observational evidence. We used the following model29:

Re (T) = aebT+cT2 (10)

as an empirical temperature-control model of ecosystem respiration. 
For convenience, we rewrote the equation (10) into a quadratic expres-
sion after log-transformation,

lnRe (T) = a′ + b × T + c × T2 (11)

The statistical performances of Re(T) with temperature for all data, 
T group, P group and B group are shown in Fig. 2a,c,e,g, respectively. 
The Re–precipitation relationship is often described by a linear model 
with long-term site-based data30,31,

Re (P) = a1 × P − b1 (12)

We used equation (12) as an empirical precipitation-control  
model of ecosystem respiration. The regression results of Re(P) with 
precipitation in different data groups are shown in Fig. 2b,d,f,h, 
respectively.

Apparent Q10

We divided the 212 FLUXNET2015 sites into five groups according to 
their site-annual mean DI, 0 < DI < 0.4 (9 sites); 0.4 < DI < 0.7 (61 sites); 
0.7 < DI < 1.0 (58 sites); 1.0 < DI < 1.4 (38 sites); 1.4 < DI < 2.2 (23 sites); 
and DI > 2.2 (23 sites). The DI is defined as,

DI = P∗ (T)
P (13)

where P∗ (T) is the threshold precipitation defined by equation (2) 
(Fig. 2c) and P is site mean annual precipitation (mm per year).

We estimated the apparent Q10 for each of the five groups through 
the van’t Hoff Q10 model3,

Re = αeβT,Q10 = eβ10 (14)

where Re is site-annual ecosystem respiration, T is site mean annual 
temperature in °C, α and β are regression parameters. Q10 (temperature 
sensitivity) is the factor of 10 °C increase in temperature multiplied  
by the Re.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used for this study are publicly accessible and download-
able and all results of this study can be reproduced according to the 
methods provided. The FLUXNET2015 dataset used here are pub-
licly available at https://fluxnet.org/data/fluxnet2015-dataset/. The 
CMIP6 data are publicly available at https://esgf-node.llnl.gov/pro-
jects/cmip6/. Information on the 212 sites used in this paper and their 
groupings are available on GitHub (https://github.com/chuixiangyi/
Water-limitation).

Code availability
The Matlab code used for the analysis is available on GitHub (https://
github.com/chuixiangyi/).
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Extended Data Fig. 1 | The statistics of the empirical threshold model ̃P(T). The blue filled circles are the data of mean annual temperature and mean annual 
precipitation in B-group. The threshold curve (black line) is the exponential regression line with 95% confidence interval (shaded area), R2 = 0.53 and p < 0.01 for 
One-Tailed Test.
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Extended Data Fig. 2 | Differential sensitivity of Q10 to Dryness (DI). 212 sites of FLUXNET2015 were divided into six groups with six DI intervals: 0 < DI < 0.4 (9 sites); 
0.4 < DI < 0.7 (61 sites); 0.7 < DI < 1.0 (58 sites); 1.0 < DI < 1.4 (38 sites); 1.4 < DI < 2.2 (23 sites); and DI > 2.2 (23 sites). The apparent group average Q10 were estimated by 
Q10 models (see Methods).
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Extended Data Fig. 3 | Differential sensitivity of Q10 to temperature revealed 
by Dryness (DI). 212 sites of FLUXNET2015 were divided into six groups with six 
DI intervals: 0 < DI < 0.4 (9 sites); 0.4 < DI < 0.7 (61 sites); 0.7 < DI < 1.0 (58 sites); 
1.0 < DI < 1.4 (38 sites); 1.4 < DI < 2.2 (23 sites); and DI > 2.2 (23 sites). The filled 

circles and error bars represent DI-group means and their standard deviations, 
respectively. The blue line is the regression (y = -0.1719x + 3.2197, R2 = 0.63 for the 
data DI < 1, while the red line is the regression (y = -0.047x + 1.97, R2 = 0.93) for the 
data DI > 1.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02501-w

Extended Data Fig. 4 | The distribution and statistics of Q10 for each DI group. 
212 sites of FLUXNET2015 were divided into six groups with six DI intervals:  
(a) 0 < DI < 0.4 (9 sites); (b) 0.4 < DI < 0.7 (61 sites); (c) 0.7 < DI < 1.0 (58 sites);  

(d) 1.0 < DI < 1.4 (38 sites); (e) 1.4 < DI < 2.2 (23 sites); and (f ) DI > 2.2 (23 sites).  
Q10 was calculated with Q10 model (equation (14)) based on FLUXNET2015 
ecosystem respiration REC

e  data and temperature data (see Methods).
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Extended Data Fig. 5 | The impact of precipitation (P) on ecosystem respiration (Re) across various time scales based on the data of Re and P from the same  
P-group sites. (a) half-hourly; (b) daily; (c) weekly; (d) monthly; and (e) yearly. n is the number of scatter points.
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Extended Data Fig. 6 | The asymmetric effect of precipitation (P) on ecosystem respiration (Re). (a) all sites; (b) T-group; (c) P-group; and (d) B-group. The y-axis 
represents the residuals of model Re(P) (equation(12)). The x-axis is coefficient of variation of monthly precipitation.
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