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Abstract

Decadal prediction using climate models faces long-standing challenges. While global

climate models may reproduce long-term shifts in climate due to external forcing, in

the near term, they often fail to accurately simulate interannual climate variability, as

well as seasonal variability, wet and dry spells, and persistence, which are essential

for water resources management. We developed a new climate-informed K-nearest

neighbour (K-NN)-based stochastic modelling approach to capture the long-term

trend and variability while replicating intra-annual statistics. The climate-informed

K-NN stochastic model utilizes historical data along with climate state information

to provide improved simulations of weather for near-term regional projections. Daily

precipitation and temperature simulations are based on analogue weather days that

belong to years similar to the current year's climate state. The climate-informed

K-NN stochastic model is tested using 53 weather stations in the Northeast United

States with an evident monotonic trend in annual precipitation. The model is also

compared to the original K-NN weather generator and ISIMIP-2b GFDL general cir-

culation model bias-corrected output in a cross-validation mode. Results indicate that

the climate-informed K-NN model provides improved simulations for dry and wet

regimes, and better uncertainty bounds for annual average precipitation. The model

also replicates the within-year rainfall statistics. For the 1961–1970 dry regime, the

model captures annual average precipitation and the intra-annual coefficient of varia-

tion. For the 2005–2014 wet regime, the model replicates the monotonic trend and

daily persistence in precipitation. These improved modelled precipitation time series

can be used for accurately simulating near-term streamflow, which in turn can be

used for short-term water resources planning and management.
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1 | INTRODUCTION

Stationarity of a hydroclimate time series is defined as the invariance

of its statistics with time (Shaw, 2010). Any time variation in the prop-

erties can indicate non-stationarity, including shifts in the mean

(Alexander et al., 2006; Aziz & Burn, 2006; Fischer & Knutti, 2014;

Villarini, Serinaldi, Smith, & Krajewski, 2009; Westra, Alexander, &

Zwiers, 2013), variance (Coulibaly & Burn, 2004; Lewis & King, 2017),

and the autocorrelation structure (Razavi, Elshorbagy, Wheater, &

Sauchyn, 2015). In their much-acknowledged work, Milly and co-

authors (Milly et al., 2008) urge the water resources community to

reconsider stationarity as a central assumption of risk assessment and
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planning analysis. They suggest that in the wake of substantial anthro-

pogenic change of Earth's climate, stationarity is dead as a viable

assumption. However, Jain and Lall (Jain & Lall, 2001) argue that the

presence of quasi-cyclical modes of natural climate variability render

the traditional assumption of stationarity void in any case. Essentially,

even in a stationary climate, one might observe statistically significant

trends in hydro-climatic systems over time due to natural variability

(Armal, Devineni, & Khanbilvardi, 2018; Cohn & Lins, 2005; National

Research Council, 1999) or processes with long-term persistence

(Villarini et al., 2009). Also, given short observation periods, part of a

long-timescale oscillation can be wrongly extrapolated as a monotonic

trend (Armal et al., 2018; Blöschl & Montanari, 2010). Lin and co-

authors (Lins & Cohn, 2011) also show that non-stationarity is not

always discriminable from stationarity. They argue that this question

is highly dependent on which signals are sampled and the length of

the period under investigation.

Many researchers have adopted the use of general circulation

models (GCMs) as a means for the planning and risk assessment of

hydro-systems under changing and uncertain future climates. Scenar-

ios of future climate are often based on long-term GCM simulations

forced by different emission pathways, with bias correction for sys-

tematic errors based on historic data (Steinschneider, Wi, &

Brown, 2015; Taner, Ray, & Brown, 2017; Trzaska & Schnarr, 2014;

Wilks & Wilby, 1999). However, even when GCMs correctly represent

the long-term secular trend, they may fail to capture internal variabil-

ity (Cassou et al., 2018; Frederick, 2011; Hempel, Frieler, Warszawski,

Schewe, & Piontek, 2013) and in simulating extremes (Katiraie-

Boroujerdy, Akbari Asanjan, Chavoshian, Hsu, & Sorooshian, 2019).

This can lead to substantial bias in representing climate, particularly

for near-term projections at the regional scale (Krakauer &

Fekete, 2014; van Oldenborgh, Reyes, Drijfhout, & Hawkins, 2013).

Moreover, bias correction does not provide any reliable solution to fix

this disparity because it assumes that the bias statistics calculated

over the historical period can be extrapolated to the future (Kerkhoff,

Künsch, & Schär, 2014). Given the uncertainties involved in GCMs,

the question arises to what extent their application is reliable in differ-

ent regions. Are GCM simulations sufficient for future hydro-systems

planning and management? Or, should we rely on the assumption of

stationarity for robust decision-making, until current models are

improved (Stakhiv, 2011)? We explored answers to these questions

using the Northeast United States climate region as a case study. The

Northeast climate region has significant observed trends in climate

and is one of the wettest parts of the United States. Over the last cen-

tury, the long-term increasing trends in annual precipitation have been

9.5 ± 2 mm/decade, mainly in the spring, summer, and fall seasons

(Hayhoe et al., 2007). Substantial upward trends are also noted in

extreme precipitation, based on the recent analyses of the Northeast

climate (Easterling et al., 2017; González et al., 2019; Hoerling

et al., 2016; Huang, Winter, Osterberg, Horton, & Beckage, 2017).

Furthermore, drought frequency in the Northeast shows a declining

trend, although the intensity and duration of the droughts that do

occur have not changed significantly (Krakauer, Lakhankar, &

Hudson, 2019). The overall increase of the total amount of

precipitation and frequency of heavy precipitation events raises con-

cerns about flooding and its effects on aging infrastructure in the

Northeast (Horton et al., 2014).

Figure 1 summarizes different statistics of daily precipitation for a

bias-corrected historical GCM simulation (here GFDL model with bias

correction from ISIMIP2-b dataset (Frieler et al., 2017; Warszawski

et al., 2014)) and contrasts them with in-situ observations in

53 selected weather stations over the Northeast climate region (the

in-situ data are described in the next section: Data and Methodology).

The climate model simulations are obtained from the grid cells

corresponding to the 53 weather stations to enable comparison

across datasets. The median of average precipitation in the model sim-

ulation is much higher than that of the corresponding stations. This

deviation is more prominent in the 1960s, which was a historical

drought period in the region. We note that the above climate model is

not forced with observed sea surface temperatures (SSTs); hence,

accurate representation of the precipitation variability correlated with

specific SSTs may not fully be possible. The range of the observations,

representing the across station variation for each year, is greater than

that found in the bias-corrected climate model, indicating that the

GCM simulations fail to replicate the spatial variability. As well,

Figure 1c (comparison of the intra-annual coefficient of variation

[CV]) confirms that the observed intra-annual (i.e., within the year)

variability is not well captured in the model. Other statistics including

annual skewness, trends in average annual rainfall (using Mann-

Kendall tau values), and annual lag-1 auto-correlation also show signif-

icant biases. The model simulates the length of dry spell relatively well

but cannot capture the extremes (exceeding 95 percentile of non-zero

daily precipitation computed for each dataset independently) and wet

spell length. These limitations were seen in other bias-adjusted GCM

outputs as well, including HadGEM2-ES, IPSL-CM5A-LR, and

MIROC5 (see Supplementary Material, Data S1). Owing to these

shortcomings, GCMs are less effective in their application for water

resources planning and management. Here, we suggest that the utili-

zation of long historical data in conjunction with climate state infor-

mation provides a more reliable tool to simulate daily weather

variables in the near term, and our study explores the evidence for

this assertion by applying a climate-informed statistical weather gen-

erator (WG) to simulate precipitation over the Northeast.

WGs are intended to produce synthetic weather sequences that

mimic the statistical properties of observed meteorological records

(Wilks & Wilby, 1999). Different parametric and semi-parametric

WGs are available. WGs may use an autoregressive modelling frame-

work (Aiyesimoju, 2010) or pre-clustering of rainfall cells/points to

simulate the storm arrival in a generalized linear process (Mannshardt-

Shamseldin, Smith, Sain, Mearns, & Cooley, 2010; Onof et al., 2000).

They may also employ a hierarchical framework, in which conditions

the local meteorology on large-scale synoptic climatological patterns

and weather types or regimes (Ailliot, Allard, Monbet, & Naveau,

2015; Benestad, 2016; Pierce, Cayan, & Thrasher, 2014). Non-

parametric methods for WGs often use resampling techniques to simu-

late synthetic data from the observations (Oriani, Straubhaar, Renard, &

Mariethoz, 2014; Pierce et al., 2014; Yiou, 2014). A well-established

2 ARMAL ET AL.



method among the non-parametric methods for WGs is the K-nearest

neighbours (K-NNs) method. The idea of K-NN can be traced back to

the concept of “discriminant space” developed originally by Young

(Young, 1994). He used an orthogonalized multi-dimension space as a

predictor to choose past days that most resembled current weather

conditions. Similarly, Lall and Sharma applied discrete kernel weighing

to select the nearest neighbours in historical data (Lall & Sharma,

1996; Sharma, Tarboton, & Lall, 1997). Their work was extended by

the inclusion of a large set of weather variables (Rajagopalan & Lall,

1999); modified by using Mahalanobis distance in the weighing func-

tion (Yates, Gangopadhyay, Rajagopalan, & Strzepek, 2003); and

improved by considering inter-station correlation (King, McLeod, &

Simonovic, 2015; Sharif & Burn, 2007). However, WGs commonly

rely on the assumption of stationarity in weather generation pro-

cesses and, therefore, cannot capture shifts in the statistics of hydro-

logic variables (Benoit, Vrac, & Mariethoz, 2018). A few studies

addressed this limitation by adding simulated standardized anomalies

to cyclo-stationary mean (Smith, Strong, & Rassoul-Agha, 2017), or

F IGURE 1 GFDL-ESM2M versus observation. (a, b) Boxplots represent the average annual precipitation in historical data over 1900–2005,
across all the stations. The shaded area is the boundary obtained from GFDL-ESM2M model over the same period; while the long-term secular
trend is preserved in the model, the internal variability is not captured. Several parameters show relatively high bias in the (c) coefficient of
variation (CV) obtained from grids corresponding to selected stations, (d) annual skewness, (e) trends, (f) 95% extremes, annual (e) wet-spell and
(g) dry-spell length with 1 mm threshold, and (h) annual lag-1 autocorrelation
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by incorporating non-stationary weather generation parameters

(Chandler, 2005; Lima, Lall, Troy, & Devineni, 2015).

In this study, we develop and present a new climate-informed

K-NN algorithm to simulate future weather. The methodology we

employ is exploratory, where we examine and incorporate the

assumption of non-stationarity with different training and validation

periods. Moreover, we evaluate and compare the skill of the proposed

climate-informed resampling scheme with the outputs from the origi-

nal K-NN method and with the ISIMIP-GFDL model outputs. We look

at the ability of the model to simulate the 1960s drought and the

recent wet climate in the Northeast United States, and argue that uti-

lization of historical data along with information from climate may

more reliably replicate both secular trends and internal variability in

the data for short-term hydrologic planning purposes.

2 | DATA AND METHODS

Our recent analysis of extreme rainfall in the United States character-

izes the Northeast region as one with a significant shift in the fre-

quency of extreme rainfall events (Armal et al., 2018). The

meteorological data used in this study is taken from 53 stations with

an identified monotonic trend in this analysis. This dataset was

derived from the Global Historical Climatology Network–Daily data-

base (https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). The 53

selected stations have at least 92 years of complete precipitation data

during 1900–2014 (115 years). The fraction of missing data is less

than 20%. Figure 2 presents the spatial distribution of these stations.

The number of years of available data is shown using the colour bar,

and the monotonic trend in the annual total precipitation measured

using Mann-Kendall tau is displayed using the size of the circle. For

applying our algorithm, we also acquired the maximum and minimum

daily temperatures (Tmax and Tmin) from the same stations. Since the

filtering process was only based on having a trend in precipitation, the

daily temperature data for many stations were not fully available. As

the focus of the study is to analyse the daily precipitation, in our simu-

lation, we used the spatial average of the maximum and minimum

temperature as the Tmax and Tmin data for all the stations. In other

words, we assumed that the temperature is spatially homogeneous

and adopted a single time series (averaged over the 53 stations) for

daily Tmax and Tmin. We believe this is a reasonable compromise due

to the lack of data, and also considering the fact that the studied sta-

tions are all within the same Climate Region identified based on

monthly temperature similarity analysis for the 89 years from 1895

through 1983 (Karl & Koss, 1984). We validated this similarity using

pairwise bias and correlation analysis between these stations and

found that in most seasons a bias greater than 25% occurs in only

2–3% of the station pairs.

The proposed climate-informed K-NN resampling model is an

extension of the K-NN WG. In the next sections, we briefly describe

the original K-NN algorithm and then introduce the proposed climate-

informed resampling scheme.

2.1 | The K-NN WG

The K-NN WG (originally developed by Rajagopalan and Lall;

Rajagopalan & Lall, 1999) is a data-driven approach that simulates

future weather variables conditional on the current weather state and

its relation to historical weather. It has the following steps.

1. The feature vector comprising the current weather variables is first

defined. We call it the conditioning vector. In our case, the feature

vector or the current conditioning vector is Vi = [Pi, Tmax, Tmin] for

each weather station, for the current day i.

2. For this conditioning vector (Vi), we compute its distance, in the

state space, to the historical weather vectors using the

Mahalanobis distance metric.

dij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi−V j

� �TΣ−1 Vi−V j

� �q

where Σ is the covariance matrix of weather variables in the

corresponding season. Vj is the historical weather vector for a

day j.

3. The historical weather vectors Vj are ordered/ranked according to

the distance dij, and the K nearest neighbours are identified.

Weather vectors that have smaller (larger) distances indicate simi-

larity (difference) in terms of the weather conditions. For each of

these K nearest neighbours, we identify the successor vector that

comprises the next day's values of the weather.

4. A discrete kernel probability (Lall & Sharma, 1996) is defined for

each of the K neighbours using the following function.

K j ið Þ½ �= 1=jð Þ
Pk
j=1

1=jð Þ

where K[j(i)] is the probability with which Vj, when ranked by simi-

larity to Vi, is resampled for the current day i. Closer neighbours

have more probability of being resampled. This resampling kernel

is the same for any day i.

5. As the final step, one of these K nearest vectors is resampled

according to the kernel probability, and its successor vector is

taken as the weather for the next day.

6. With the immediately generated weather as the current feature

vector, this process is then repeated to simulate the weather for

the following day.

7. We prescribed K = 45 since that choice gave us the lowest abso-

lute error in simulating annual precipitation. Generally, it is

suggested, based on the asymptotic argument, that K should be

proportional to nd/(d + 4), n being the total number of neighbour

vectors in the space, and d being the dimension of the feature vec-

tor (Fukunaga, 1990). We investigated the sensitivity of our simu-

lation results to the number of neighbours, and found that the

number of neighbours did not considerably alter the absolute
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error. The optimal neighbours we used are mostly conforming to

the ones recommended in the literature.

2.2 | Climate-informed K-NN resampling

As presented in section 2.1, the original K-NN scheme is based on the

nearest neighbours of the historical daily weather variables. We mod-

ify this scheme by incorporating large-scale meteorological informa-

tion in the choice of neighbours and the resampling process using

the premise that this large-scale meteorological information drives the

variability (secular and cyclical). We use two climate variables in the

model: the annual average of 500-hPa geopotential height anomaly

(GPH) and the North Atlantic Oscillation (NAO) index. Among the

general climate indices, it is known that for the Northeast, NAO is one

of the dominant modes (Armal et al., 2018; Armal &

Khanbilvardi, 2019), which impacts the regional pressure anomalies

(Seager, Pederson, Kushnir, Nakamura, & Jurburg, 2012). In our model,

NAO index captures the large-scale effect of climate, while GPH rep-

resents the local or regional climate effect.

We extracted the long-term mean of GPH over the weather sta-

tions from NOAA-CIRES Twentieth Century Reanalysis-V2c dataset

(provided by the NOAA/OAR/ESRL PSD, Boulder, CO) available from

NOAA/ESRL website (https://www.esrl.noaa.gov/psd/). This dataset

F IGURE 2 The spatial distribution of stations across Northeast, the colour scheme indicates the number of available years of data (the years
with lower than 20% missing information). The size of the bubbles present the Mann Kendall tau values in percentage. The white lines represent
the borders of states in the region (i.e., Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, New York,
Pennsylvania, Delaware, Maryland, and District of Columbia)
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is the result of assimilation of observations into a numerical weather

prediction model with an ensemble Kalman filter (Compo et al., 2011).

It is available on a global grid, with a spatial resolution of about

200 km. The NAO index, aggregated from monthly to yearly averages,

is obtained from NOAA Climate Prediction Center (http://www.cpc.

ncep.noaa.gov/data/teledoc/nao.shtml). Studies confirm the potential

of applying NAO to predict eastern United States' climate and its

association with the 1960s drought and the following wet period

(Bradbury, Dingman, & Keim, 2002; Coleman & Budikova, 2013;

Seager et al., 2012). Our recent studies also demonstrated that varia-

tion in NAO partly explains the frequency of precipitation extremes in

the Northeast (Armal et al., 2018; Armal & Khanbilvardi, 2019).

In the vector of climate variables (C = (NAO, GPH)), Mahalanobis

distance provides a metric to identify climate similarity. We now have

two distance measures: one is identifying weather similarity (d) from

the days, and one is identifying climate similarity (dc) from the years.

We use these two in conjunction to reorder the weather neighbours

in accordance with their climate similarity. Weather neighbours that

belong to climate similar to the current year's climate will be ranked

ahead of the weather neighbours that are further away from the cur-

rent climate. The kernel density function and resampling is now

applied to the reordered neighbours to choose the weather neigh-

bours that belong to the most analogous years (i.e., most similar cli-

matic years).

Figure 3a depicts the main steps of the climate-informed model.

The model consists of three key steps, which are explained here using

an illustration shown in Figure 3b.

1. The algorithm identifies the current state and applies Mahalanobis

distance to obtain the closest members of historical weather vec-

tor to the current condition and stores their time indices (xi,m). In

the illustration, we show 14 nearest neighbours for the current

weather variable [2.0, 28.8, 14.2] under the R, Tmax, and Tmin

columns.

2. The algorithm applies Mahalanobis distance on yearly climate vec-

tor to find the most analogous climate years (Cm). The closest

members (to the current condition) from the historical weather

vector that are also close in terms of the similar climate index

values are then prioritized. From the illustration, the current cli-

mate vector is [GPH, NAO] = [0.91, 0.71]. This is in the year 1982,

and the closest neighbours to this climate state are years 1946,

1920, 1953, 1914, and so forth. These rows are highlighted to

show climatically similar weather vectors. They are prioritized, that

is, they move up in order as shown in the table on the right. Notice

how the 12th neighbour by weather distance d now becomes the

3rd closest neighbour after re-ordering by the climate distance (dc).

There is now a greater probability that this neighbour will be

sampled.

3. The algorithm applies a discrete kernel estimator K[j(i)] on the rela-

tive frequency of the data lying in the local neighbourhood and

resamples one of xi,m from climate-rearranged set of nearest neigh-

bours. The successor vector of the selected neighbour is used as

the weather of the next step.

2.3 | Model training

Similar to other memory-based algorithms, providing more training

data to the K-NN model reduces the chance of misclassification in the

selection of neighbours (Friedman, Hastie, & Tibshirani, 2001). As the

size of training data increases, there are examples to generalize to

the unknown sample and generate a good local approximation. If

the properties of the current state and near-term projections are simi-

lar to the properties of the training data (historical data in this case),

the algorithm yields a more reliable result. By contrast, when the pro-

cess is not stationary, and the simulation period is not represented in

the training dataset, the model predicts different statistics than

observed. We experiment with this idea and evaluate the model's per-

formance using a range of out-of-sample analysis windows.

We train both the original and climate-informed K-NN

resampling models over expanding window sizes that begin in 1900

and end in years ranging from 1940 to 2004. For each training win-

dow, the model simulates daily weather for the succeeding 10 years;

that is, we simulate weather data from 1941 to 1950 using the his-

torical data from 1900 to 1940 as the training set; likewise, we simu-

late weather data from 1942 to 1951 using the historical data from

1900 to 1941 as the training set. We do this in moving windows that

end with generating weather data for 2005 to 2015 using training

data from 1900 to 2004. As we move from 1941 to 2005, the size of

the historical data (training set) increases 1 year at a time. We repeat

this exercise 30 times to get an ensemble of synthetic weather.

Hence, in a series of simulations, we increase the size of training

data and consequently evaluate the skill of the model in generating

precipitation. The stepwise training provides a systematic inspection

of the power of the algorithm over different segments of data, with

and without climate conditioning. All the variables were first de-

seasoned by removing the calendar day's mean. In the next section,

we discuss the results by pooling the outputs from all the weather

stations.

3 | RESULTS

Figure 4 shows the annual distribution of average precipitation as sim-

ulated using the stepwise training approach. The shaded areas in

Figure 4a,b indicate the range of decadal simulation runs across all the

stations from the original K-NN and the climate-informed K-NN

models, respectively. These boundaries are smoothed over the

decadal periods using a locally weighted smoothing approach

(LOWESS) (Loader, 1999). The red and the blue lines represent the

LOWESS applied to the median of the annual distribution. The

boxplots represent the annual average observed precipitation over

each of the 10-year simulated blocks.

For the original K-NN scheme (Figure 4a), the decadal simulations

exhibit a positive bias and do not accurately represent rainfall deficits,

especially in the periods up to the early 1970s. The increase in the

size of the training data certainly reduces the bias, as seen in the simu-

lations of recent decades. A larger training size improves the choice of
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neighbours and the generation of the annual average daily precipita-

tion. Nevertheless, K-NN simulation depicts a relatively high bias

around and after the 1960s. The shift in the characteristic rainfall

distribution due to a severe drought that occurred in the early to mid-

1960s explains this bias. This abrupt drought was followed by a wet-

ter climate in the region that began around the early 1970s and has

F IGURE 3 The overview of climate-informed K-NN model. Blocks ① and③ represent the original steps of the well-known K-NN model
(Rajagopalan & Lall, 1999). The modification introduced by climate-informed algorithm is shown in Block ②, where the model rearranges the
closest neighbours of weather vectors based on climate similarity. The tables in Figure 3b apply a sample to illustrate the rearrangement process.
The yellow label shows the neighbours that matches the climate similarity vector. K-NN, K-nearest neighbour
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continued since then (Seager et al., 2012) with mild interspersed

droughts in between. The simulation blocks that start in the wet

period after the 1960s show a more reliable outcome.

Figure 4b shows the outcome of the climate-informed model.

Adding climate information generates a larger spread of average

annual daily precipitation and broadens the envelope of the range of

values. Compared to the original K-NN algorithm, the climate-

informed K-NN model covers the observed data in low precipitation

events and simulates the 1960s annual precipitation well. The findings

of Seager et al. (Seager et al., 2012) suggest that the temporary

drought is a result of the oscillatory nature of NAO and the seesaw in

the pressure and GPH anomalies between the subpolar and subtropi-

cal Atlantic Oceans. The improved simulations of the 1960s drought

decade illustrate that including these components of the climate state

is beneficial in projecting dry (or wet) decades reliably. The climate-

informed model makes use of analogous years, in this case, ones with

dry conditions that are available in the training dataset but are not

necessarily used in the K-NN resampling. However, it is apparent from

Figure 4b that the drying condition in climate-informed simulation

continues longer than observation—until circa 1970. At each step of

training, the window expands 1 year, and the updated historical data

overlaps with low precipitation years in the 1960s. This will affect the

simulation and prolong the dry condition in the outcome for a few

more simulation windows.

To evaluate the performance of the developed models, we com-

pare the skill of the original and the climate-informed K-NN scheme

over a range of statistics that may be of interest to water managers.

These properties are calculated for 10 year periods, succeeding two

different training periods: (a) the training period ending in 1960

(1900–1960), to address the ability of the models to simulate the

1960s drought (1961–1970), and (b) the entire period of the dataset,

excluding the last 10 years of data (1900–2004), to simulate the con-

tinued contemporary wet period (2005–2014). Figure 5 shows the

outcome of 1961–1970 precipitation simulations using 1900–1960 as

the training data. Figure 6 compares the same statistics for the

2005–2014 simulation period that uses 1900–2004 for training. The

variation in these statistics across the 30 iterations and the 53 stations

is shown in the boxplots. Outliers are excluded. The statistics are

F IGURE 4 Boxplots in (a) and
(b) represent the average
precipitation over each set of
10 years observation data,
shaded area is showing the
boundary of resampling
simulation in (a) original K-NN
scheme and (b) climate-informed
K-NN scheme. The blue and red

lines are the locally weighted
scatter-plot smoother (LOWESS)
for the median of simulations and
observation, respectively. K-NN,
K-nearest neighbour
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obtained yearly from daily precipitation and include the average intra-

annual CV, skewness, trends in annual average precipitation (Mann-

Kendall tau), extreme values above the 9fifth percentile, wet spell and

dry spell length with 1-mm threshold, and lag-1 autocorrelation. The

application of K-NN resampling previously showed its ability to repro-

duce such statistics over historical simulations (Rajagopalan & Lall,

1999). Here, it is worth mentioning that GCM runs are driven by radi-

ative forcing such as greenhouse gas concentrations and volcanic

eruptions but are not expected to capture the timing of decadal cli-

mate variability that is largely internal to the atmosphere/ocean

(Fernandes, Giannini, Verchot, Baethgen, & Pinedo-Vasquez, 2015;

Trenberth, Covey, Dai, & Fasullo, 2018; Wang, Li, Sun, & Liu, 2017).

Furthermore, the current work does not intend to assess the ability of

the climate models based on a set of time-dependent statistics.

Rather, it aims to study the skill of the proposed WG model, using

the GCM output with trend-preserving bias-correction (Hempel et al.,

2013) as an additional baseline.

TheGFDL statistics for the period 2005–2014 are obtained by com-

bining the last year of the historical simulation (2005) with each available

RCP pathway (2006–2014). Other statistics, including intra-annual CV

and skewness, confirms the ability of the climate- informed scheme to

reproduce 1960s data. The comparison of the model-simulated statistics

is made with the observed statistics using a similarity measure under a

bootstrap approach. From the distributions of the observed and the

model-simulated statistics, we randomly draw 100 values and compare

how many of them match, that is, how many of the simulated statistics

are equal to the observed statistics. We compute a similarity ratio as the

fraction of common values in the bootstrap sample of 100. A ratio close

to one (zero) indicates that most of the randomly sampled values from

the model simulated, and the observed statistics are similar (different).

We repeat this process—sampling and computing the similarity ratio—

10,000 times to obtain a distribution of the similarity ratio. The fifth per-

centile from this distribution is selected as the test statistic and reported

in Table 1 for both the 1960s and the recent wet decades. It is evident

from the table that the climate-informed K-NN model simulations com-

pare better than the original K-NN and the GCM simulations in terms of

the statistics used. For example, for the average annual precipitation, at

the 95% confidence level, the match ratio is only 67.6% for K-NN and

F IGURE 5 Boxplots of
statistic parameters for
(I) historical data, (II) K-NN model,
(III) climate-informed K-NN
model, and (IV) GFDL-ESM2M
model over 1961–1970. The
training process is implemented
over 1900–1960 data. K-NN,
K-nearest neighbour
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59.7% for GCMs, but it is 94.5% for the climate-informedmodel, indicat-

ing that for the same chosen level of confidence, the climate-informed

model has much higher match ratio – similarity to the observed. Trend

compares poorly with the observations in both the decades across the

three models. GCM similarity is generally lower compared to the two K-

NN models. The largest improvement that the climate-informed K-NN

F IGURE 6 Boxplots of
statistics for (I) historical data,
(II) K-NN model, (III) climate-
informed K-NN model, and
(IV) GFDL-ESM2M model over
2005–2014. The training process
is implemented over 1900–2004
data. K-NN, K-nearest neighbour

TABLE 1 The test statistic of the bootstrap similarity test

Period
1961 � 1970 2005 � 2014

Model K-nearest neighbour (K-NN) Climate informed GCMs K-NN Climate informed GCMs

Average annual precipitation 0.676 0.945 0.597 0.876 0.913 0.818

Coefficient of variation 0.818 0.891 0.725 0.881 0.908 0.739

Skewness 0.843 0.840 0.703 0.822 0.819 0.766

Trend 0.182 0.373 0.295 0.682 0.681 0.680

95 percentile extremes 0.781 0.775 0.744 0.733 0.738 0.714

Dry-spell 0.931 0.930 0.811 0.804 0.802 0.775

Wet-spell 0.916 0.910 0.909 0.903 0.903 0.901

Lag-1 ACF 0.943 0.979 0.990 0.922 0.960 0.921

Note: Similarity ratio is the fraction of common values between observed and model generated statistics in a bootstrap sample. A total of 10,000 replicates

of the similarity ratio are generated from which the fifth percentile is selected as the test statistic to verity similarity at the 95% confidence level.
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model offers in terms of its similarity to the observed statistics is in the

annual average precipitation during the 1960s decade. In the

2005–2014 decade, the most improvement seems to be on the annual

average precipitation and the intra-annual CV of rainfall.

In addition to these comparisons, an examination of Figures 5 and

6 indicates that the climate-informed model better reproduces the

1960s trend than the GFDL simulations. This illustrates the shortcom-

ing of GCMs to capture the decadal fluctuations of annual precipita-

tion due to internal variability in the climate system. The simulation of

contemporary data also shows the capability of the climate-informed

model in better simulating precipitation statistics, even though all the

models poorly represent the recent trend. In the simulation of the

1960s, all three models (K-NN and climate-informed K-NN along with

GFDL) capture the observed 95% precipitation extreme values. In the

contemporary runs, the climate-informed scheme depicts a more reli-

able performance. Either with the short or long training period, both

resampling schemes, as well as the GFDL model, successfully capture

wet spell and dry spell length. In both sets of training, the original and

modified K-NN schemes replicate the lag-1 auto-correlation. The

GFDL results are also acceptable with the 1960s simulation, but not

reliable in the contemporary period.

In Figures 5 and 6, we use different statistics to assess the perfor-

mance of the climate-informed resampling, in two different observa-

tion blocks. In Figures 7 and 8, we measure the capability of the

climate-informed model to simulate the decadal variability of the

1960s and the contemporary period (2005–2014). Comparing the

inter-annual variability of average daily precipitation reveals that for

the 1960s drought, the climate-informed model improves on the origi-

nal K-NN resampling scheme, particularly with respect to annual aver-

age precipitation. For the contemporary period, both models generate

a relatively similar pattern in the median of values, but only the

climate-informed model preserves the range and tails of average daily

precipitation well. Notably, K-NN underestimates the observed vari-

ability for both periods. The outcomes of the climate-informed model,

on the other hand, relatively overestimate the values of the median.

In summary, as a result of incorporating climate information in the

resampling model, we observed an improvement in the simulation of

average annual precipitation over periods of changing regional hydro-

climate regime. The use of climate data favourably modifies the

resampling scheme and replicates several characteristics of daily precipi-

tation, although limitations are observed in the preservation of tails in

some statistics (e.g., wet spell and dry spell). Inclusion of additional

regional scale atmospheric variables as climate informants may better

resolve the tails in these statistics. The performance of the model may be

more satisfactory if we incorporate historical temperature data, which is

specific to each station, where available. Moreover, our results are pooled

over all stations for each season. Hence, the error that may come due to

averaging iswrapped into the uncertainty of our results' distributions.

F IGURE 7 (I) The results of simulation over 1961–1970 and their (II) inter-annual variability (CV) for (a) 30 runs of K-NN scheme, (b) 30 runs
of climate-informed K-NN scheme. The training process is implemented over 1900–1960 data. K-NN, K-nearest neighbour
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For both training periods, the climate-informed model regularly

performs well in recreating different statistics over the periods stud-

ied. Specifically, the model replicates the range of average annual daily

precipitation values in both the 1960s and the contemporary wet

periods. The Northeast is characterized by on-going wetting shift

(Huang et al., 2017) and an upward trend in extreme precipitation

(Easterling et al., 2017). Krakauer (2014) shows that the mean of the

recent precipitation in parts of the Northeast is 25% above its value

before 1970, with even larger increases in the intensity of wet

extremes. The results of this simulation indicate that the long-size

training dataset contains similar hydroclimatic years, which enable the

simulation of these new prevailing conditions with climate-informed

K-NN. The wet period observed in the earlier part of the twentieth

century (Seager et al., 2012) conditions the algorithm in the later sets

of simulations by supplying neighbours with analogous hydroclimate

conditions.

4 | SUMMARY AND CONCLUSION

Engineering design and practice may rely on the simple idea that the

characteristics of future events resemble the past. Non-stationarity

contradicts this traditional point of view. Practically, GCMs perform a

critical role in addressing non-stationarity in meteorological data due

to changing climate forcing. However, GCMs often fail to represent

inter-annual variability accurately on a decadal scale. Our analysis

adopted an exploratory method to verify the feasibility of applying

stochastic modelling in inferring these characteristics for precipitation

in the Northeast United States.

We proposed a climate-informed K-NN model, which adjusts the

vector of selected nearest neighbours based on climatic information.

We employed both the original K-NN and proposed climate-informed

model and performed a set of simulations using a stepwise expanding

training window, with a minimum length of 40 years. It is revealed

that the climate-informed model replicates the range of annual aver-

age daily precipitation, while the original K-NN scheme fails to cap-

ture lower tail values across many blocks of simulation. With the

simulation of different statistics of daily precipitation in the 1960s

and contemporary (2005–2014) period, we compared the results of

the proposed model with the original K-NN and the GFDL model.

Results indicate that the climate-informed model presents better per-

formance. It demonstrates that incorporating climate information

improved the skill of resampling scheme in the regeneration of differ-

ent usable statistics.

Lins and co-authors (Lins & Cohn, 2011) argue that a lack of thor-

ough understanding of the physical and scientific background in the

F IGURE 8 (I) The results of simulation over 2005–2014 and their (II) inter-annual variability (CV) for (a) 30 runs of K-NN scheme, (b) 30 of
climate-informed K-NN scheme. The training process is implemented over 1900–2004 data. K-NN, K-nearest neighbour
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context of hydrology blurs the line between stationarity and non-

stationarity. They conclude that: “In a statistical sense, while the

future will not repeat the past, its properties can be inferred from the

past.” In this study, we show that the utilization of historical data

along with proven climate informants allows the simulation of the sta-

tistical properties of daily precipitation over the next 10 years. The

demand for such empirical correction that applies a data-adaptive

scheme to improve near-term projections is suggested by

Krakauer (2014) and Krakauer and Fekete (2014). Although GCMs

may not always simulate these properties well over the near-term

future, they may be a valuable tool to inform the predictors and initial

condition for simulating future regional hydroclimate using climate-

informed K-NN or similar methods, particularly where forecasts at

longer (multidecade to century) lead times are needed.

Retrospective GCM runs, including re-analysis products, are

potentially quite useful in assessing global teleconnections associated

with regional hydroclimatology. Applying climate-informed resampling

to combine local neighbours with modes of natural climate variability

relies on the knowledge of modes of decadal variability of regional cli-

mate. This methodology offers a way to integrate climate information

with historical variability for improved simulations. These improved

simulations can be used for simulating near-term streamflow, which in

turn are used for short-term water resources planning and manage-

ment. Water managers and decision makers can benefit from this

information for robust system design and water resources analysis.
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