Chapter 4 Radiocarbon in the Atmosphere

J.C. Turnbull, H. Graven and N.Y. Krakauer

4.1 Introduction

Carbon dioxide (CO₂) is one of the most abundant and important atmospheric trace gases. It is found naturally in the atmosphere with a preindustrial mole fraction ("concentration") of about 280 parts per million (ppm). It is stable in the atmosphere, but exchanges readily with the surface reservoirs: the oceans (Chap. 5) and terrestrial biosphere or land (Chap. 6). Both land and oceans naturally exchange large amounts of C with the atmosphere. On long timescales, CO₂ is also removed from the atmosphere by rock weathering, but this very slow process will not be discussed further here.

The land absorbs CO_2 by photosynthetic uptake in plants and re-emits CO_2 back into the atmosphere by respiration from plants, animals, and soils (Fig. 4.1). This process produces large daily and seasonal cycles in the atmospheric CO_2 mole fraction, but on an annual to decadal timescale, the natural land exchange is nearly balanced. The gross one-way fluxes into and out of the land are about 120 petagrams of C per year (Pg C year⁻¹) (Ciais et al. 2013), but the natural net annual land flux historically was approximately zero.

J.C. Turnbull (🖂)

National Isotope Centre, GNS Science, Lower Hutt, New Zealand

J.C. Turnbull

H. Graven

N.Y. Krakauer Department of Civil Engineering, The City College of New York, New York, NY, USA

© Springer International Publishing Switzerland 2016 E.A.G. Schuur et al. (eds.), *Radiocarbon and Climate Change*, DOI 10.1007/978-3-319-25643-6_4

Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

Department of Physics and Grantham Institute for Climate Change, Imperial College London, London, UK

Fig. 4.1 Global C cycle showing natural C fluxes (*black*) and anthropogenic perturbations to the C cycle (*red*). Units are Pg C for pools (*boxes*) and Pg C year⁻¹ for fluxes (*arrows*). Numbers shown here represent the midpoints of ranges published in Fig. 6.1 of Ciais (2013) with the exception of the soil organic matter pool that harmonizes new numbers for permafrost with global soil organic carbon inventories (Schuur et al. 2015)

Ocean C uptake and release is via gas exchange with surface waters. When upwelling water is low in dissolved CO_2 , atmospheric CO_2 is absorbed and the ocean acts as a C sink. Conversely, when upwelling water is CO_2 -rich, CO_2 is released and the ocean acts as a C source to the atmosphere. Many factors influence the rate of exchange, and the gross one-way fluxes into and out of the ocean are about 80 Pg C year⁻¹ (Fig. 4.1), but on annual to decadal timescales, the net ocean flux was, like the land flux, roughly neutral.

Over the past 150 years, the atmosphere has been perturbed by the introduction of additional CO₂ from anthropogenic activities, primarily the combustion of fossil fuels and land-use change. The rate at which fossil fuel and land-use change C has been added to the atmosphere is small compared to the large natural fluxes, but it represents an additional one-way flux into the atmosphere that is not in balance. This results in an accelerating buildup of CO₂ in the atmosphere to the current mole fraction of over 400 ppm (in 2015). However, this increase in atmospheric CO₂ represents only about half of the ~500 Pg C emitted by humans since 1850

(Houghton 2008; Boden et al. 2012), and therefore, the other half must have moved into the ocean and land C reservoirs. Understanding exactly how much CO_2 is emitted from anthropogenic sources such as fossil fuels and land-use change, and the details of where, when, and how CO_2 is absorbed into the ocean and land is vital to predicting future atmospheric CO_2 levels and hence future climate.

Measurements of CO_2 in the atmosphere can potentially be used, in conjunction with atmospheric transport models, to infer the locations and magnitudes of the sources and sinks (release and uptake) of CO₂. Yet measurements of CO₂ mole fraction in themselves are not always sufficient to pinpoint the locations and magnitude of different sources and sinks with useful precision. Difficulties in doing so arise from the sparseness of the atmospheric measurement network, uncertainties and biases in the atmospheric transport models, and the inability to distinguish between different sources, particularly when they are located within the same region. A particular challenge is that the large gross fluxes of C into and out of the biosphere are usually the dominant source of CO₂ variability at any given time, even though on the annual timescale, the net biospheric flux is roughly in balance resulting in little or no net change in atmospheric CO₂. Radiocarbon (¹⁴C) can provide a window into the atmospheric CO₂ budget, as different sources of CO₂ vary in ¹⁴C content. This difference in source isotopic values allows partitioning of atmospheric observations into their component sources using standard partitioning models (Chap. 3).

In this chapter, we examine the controls on the ¹⁴C content of CO₂ (¹⁴CO₂) in the atmosphere over time in relation to CO₂ itself, and the specific C cycle questions that can therefore be addressed with atmospheric ¹⁴C measurements. We discuss not only atmospheric observations, but also how these observations are interpreted using models of atmospheric transport, which describe the physical mixing of the atmosphere (similarly, models of the ocean and biosphere C reservoirs are used to describe ¹⁴C movement through them). This discussion spans the simplest conceptual model of addition of a gas into a single well-mixed (homogeneous) box of air, to multibox (heterogeneous) models where the atmosphere is partitioned into a few latitudinal divisions, to full-fledged three-dimensional global or regional atmospheric transport models.

We start by examining the terms of the CO₂ and ¹⁴CO₂ budgets (Sect. 4.2). Then, we divide the atmospheric ¹⁴C history into five different time periods, defined by times when different factors dominated atmospheric ¹⁴CO₂. First, we consider the preindustrial (before 1850) near steady state of ¹⁴CO₂, investigating its sources and sinks and how they differ from those of CO₂ itself (Sect. 4.3). Next, we examine the period from 1890 to 1945, when fossil fuel CO₂ emissions started to impact atmospheric ¹⁴CO₂ (the Suess effect, Sect. 4.4). The bomb period from 1945 to 1985 follows (Sect. 4.5), when the production and redistribution of ¹⁴C from aboveground nuclear weapons testing produced a major perturbation in atmospheric ¹⁴CO₂ that propagated throughout the C cycle. The post-bomb period from 1985 until present is characterized by the strong dominance of fossil fuel emissions on ¹⁴CO₂ (Sect. 4.6). We also discuss how other sources are impacted, and how this can be used to examine C cycle processes. In Sect. 4.7, we suggest how

atmospheric ¹⁴CO₂ might continue to evolve in the future. In Sect. 4.8, we delve into using ¹⁴CO₂ as a tracer for recently added fossil fuel CO₂, currently the most widely used application of atmospheric ¹⁴CO₂ measurements. This extended discussion of ¹⁴CO₂ is followed by related approaches using ¹⁴C of other atmospheric species, including CH₄, carbon monoxide, and aerosols (Sect. 4.9). These have been less extensively studied than CO₂, but have potential for bringing new understanding to a number of atmospheric processes. Atmospheric ¹⁴C is already used in a diverse suite of applications, yet there remain outstanding questions and future directions to be explored, which we address in Sect. 4.10.

4.2 Carbon Dioxide and Radiocarbon in the Atmosphere: Overview

4.2.1 The Global Carbon Dioxide and Radiocarbon Budgets

The atmospheric CO_2 budget can be described by:

$$\frac{\mathrm{d}C_{\mathrm{a}}}{\mathrm{d}t} = F_{\mathrm{p}} + F_{\mathrm{r}} + F_{\mathrm{ao}} + F_{\mathrm{oa}} + F_{\mathrm{ff}} \tag{4.1}$$

where C_a is the atmospheric CO₂ burden. F_p and F_r are the CO₂ fluxes into (photosynthesis) and out of (respiration, biomass burning, etc.) the terrestrial biosphere. From an atmospheric perspective, C uptake or release by vegetation due to land-use change is indistinguishable from natural terrestrial C exchange and is therefore implicitly included in these terms. F_{ao} and F_{oa} are the fluxes from the atmosphere into the ocean and from the ocean into the atmosphere, respectively. $F_{\rm ff}$ is the flux into the atmosphere from fossil fuel emissions. In this notation, fluxes into the atmosphere (F_r , F_{oa} , $F_{\rm ff}$) are positive, and fluxes out of the atmosphere (F_p , F_{ao}) are negative.

The change in ¹⁴C can be described in a similar way as follows:

$$\frac{\mathrm{d}C_{\mathrm{a}}\Delta_{\mathrm{a}}}{\mathrm{d}t} = F_{\mathrm{p}}\Delta_{\mathrm{p}} + F_{\mathrm{r}}\Delta_{\mathrm{r}} + F_{\mathrm{ao}}\Delta_{\mathrm{ao}} + F_{\mathrm{oa}}\Delta_{\mathrm{oa}} + F_{\mathrm{ff}}\Delta_{\mathrm{ff}} + F_{\mathrm{c}}\Delta_{\mathrm{c}} + F_{\mathrm{n}}\Delta_{\mathrm{n}} + F_{\mathrm{d}}\Delta_{\mathrm{d}} \quad (4.2)$$

where Δ is the ¹⁴C value of the denoted pool or flux (Tans et al. 1979). The ¹⁴C budget has three extra terms. All of these terms are pure ¹⁴C fluxes, with, by definition, ¹⁴C of 8.5×10^{14} ‰, so although the fluxes are very small, the impact on ¹⁴CO₂ can be large. F_c is the flux due to natural cosmogenic production of ¹⁴C in the upper atmosphere. F_n is the flux due to (1) atmospheric nuclear weapons testing (bomb ¹⁴C) and (2) the nuclear industry—primarily nuclear reactors, but also including spent nuclear fuel reprocessing and other ¹⁴C production, such as ¹⁴C created for isotopic labeling experiments and subsequently released to the atmosphere. This term comprises ¹⁴C atoms created by humans. F_d is the negative flux

due to radioactive decay, which is too small to influence decadal to century-scale changes in atmosphere ¹⁴C and is ignored hereafter. This equation describes the entire atmosphere as a single pool, but since the stratosphere, as the primary site of cosmogenic production, is enriched in ¹⁴C relative to the troposphere, it can be treated as a separate pool (Levin et al. 2010). Combining Eqs. 4.1 and 4.2, we obtain

$$C_{a}\frac{d\Delta_{a}}{dt} = F_{r}(\Delta_{r} - \Delta_{a}) + F_{oa}(\Delta_{oa} - \Delta_{a}) + F_{ff}(\Delta_{ff} - \Delta_{a}) + F_{c}(\Delta_{c} - \Delta_{a}) + F_{n}(\Delta_{n} - \Delta_{a}) + F_{p}(\Delta_{p} - \Delta_{a}) + F_{ao}(\Delta_{ao} - \Delta_{a})$$
(4.3)

Each term on the right-hand side of Eq. 4.3 is an *isoflux*, the product of the one-way gross CO_2 flux and the isotopic difference between the source (or sink) and the atmosphere. This difference is known as the isotopic disequilibrium. A small CO_2 flux can have a large isoflux if the isotopic disequilibrium between the atmosphere and the reservoir is large, and conversely, a large CO_2 flux can have a small or zero isoflux if there is little or no isotopic disequilibrium between the atmosphere and the reservoir. Isofluxes may be positive or negative, depending on the sign of the isotopic disequilibrium, and the isoflux may be of a different sign than the CO_2 flux. When C is dissolved into the surface ocean or taken up by plants (fixed by photosynthesis), the only change in isotopic composition is due to mass-dependent fractionation during uptake, which is corrected for in the ¹⁴C nomenclature (Chap. 3). Therefore, p and ao are by definition equal to a, so the isotopic disequilibrium in uptake is zero. As a result, the last two terms in Eq. 4.3

$$C_{a}\frac{d\Delta_{a}}{dt} = F_{r}(\Delta_{r} - \Delta_{a}) + F_{oa}(\Delta_{oa} - \Delta_{a}) + F_{ff}(\Delta_{ff} - \Delta_{a}) + F_{c}(\Delta_{c} - \Delta_{a}) + F_{n}(\Delta_{n} - \Delta_{a})$$

$$(4.4)$$

The remaining terms in Eq. 4.4 are all fluxes of CO_2 into the atmosphere. So measurements of ${}^{14}CO_2$ detect the one-way gross fluxes into the atmosphere, rather than the net fluxes that are detected by CO_2 concentration measurements.

Four factors drive the isotopic disequilibrium in ¹⁴C between the sources and the atmosphere: (1) natural production of ¹⁴C by interaction of nitrogen with cosmic rays in the upper atmosphere; (2) anthropogenic production of ¹⁴C from nuclear weapons testing and the nuclear industry; (3) fossil fuel emissions; and (4) the *reservoir age*, which determines the ¹⁴C content in each C reservoir or source. Radiocarbon decays in reservoirs that are out of contact with the atmosphere, resulting in lower ¹⁴C, which can also be presented in terms of the ¹⁴C age or reservoir age in units of years by relating ¹⁴C to the decay rate of ¹⁴C. The reservoir age can be determined from the ¹⁴C content of the atmosphere at the time the C was

taken up into the reservoir, together with the residence time of C in that reservoir. It can also be determined empirically from measurements of the reservoir's 14 C value.

4.2.2 Atmospheric Transport Modeling of Radiocarbon

Interpretation of atmospheric observations of ¹⁴CO₂ and CO₂ requires an understanding of the movement and mixing of air, as well as the sources and sinks of CO₂. Carbon cycle and atmospheric transport models are used to build up detailed descriptions of these interactions, and these descriptions can be tested and adjusted by comparison with observations. The global budgets of both CO_2 and $^{14}CO_2$, described in Eqs. 4.1 and 4.2, can be simulated by models with varying degrees of resolution and complexity. Models of the terrestrial biosphere and ocean provide information on the flux of C and the isotopic disequilibrium from each reservoir, taking changes in atmospheric ¹⁴C into account. One example of this type of modeling exercise is the global budgeting of CO_2 and ${}^{14}CO_2$ isofluxes for different time periods shown in Tables 4.1, 4.2, and 4.3. Simulated isofluxes include uncertainties that are the subject of ongoing research. These uncertainties relate to the transport rates and pathways of C on land and in the ocean and the difficulty in representing ecosystem and oceanic dynamics in models (Naegler and Levin 2009b; Levin et al. 2010; Graven et al. 2012b, c). Uncertainty in the cosmogenic 14 C production rate is also significant, with various estimates differing by ~ 25 % (Lal 1988; Masarik and Beer 1999). The source of CO₂ from fossil fuel combustion is

Reservoir	Estimated flux F into the atmosphere (Pg C year ⁻¹)	Δ^{14} C difference between reservoir and atmosphere (‰)	Isoflux (Pg C ‰ year ⁻¹)	Impact on $\Delta^{14}CO_2$ (‰ year ⁻¹)
Oceans	85 ± 21^{a}	-65 ^b	-5500 ± 1400	-9 ± 2
Terrestrial biosphere	$52 \pm 11^{\circ}$	-4.5°	-235 ± 55	-0.4 ± 0.1
Cosmogenic production	$6.5 \pm 0.8 \times 10^{-12}$	8.5×10^{14}	5500 ± 700	9 ± 1
Annual mean change			0	0

Table 4.1 Idealized steady-state preindustrial ¹⁴C isofluxes to the atmosphere

The isoflux is the product of the C flux and the isotopic difference between the reservoir and the preindustrial atmosphere (a = 0 %). The impact of each isoflux on atmospheric ¹⁴CO₂ is calculated assuming a preindustrial CO₂ mixing ratio of 280 ppm. Cosmogenic production generates pure ¹⁴C, which equates to a Δ^{14} C value of 8.5×10^{14} %

^aHeimann and Maier-Reimer (1996)

^cNaegler and Levin (2009b)

^dLal (1988), Masarik and Beer (1999)

^bKey et al. (2004)

Reservoir	Estimated flux F into the atmosphere (Pg C year ⁻¹)	Δ^{14} C difference between reservoir and atmosphere (‰)	Isoflux (Pg C ‰ year ⁻¹)	Impact on $\Delta^{14}CO_2$ (‰ year ⁻¹)
Fossil fuels	$2.8 \pm 0.3^{\mathrm{a}}$	-1570 ^f	-4400 ± 400	-7 ± 1
Ocean	85 ± 21^{b}	-635 ^g	$-54,000 \pm 13,000$	-80 ± 20
Terrestrial biosphere	$52 \pm 11^{\circ}$	-575°	$-30,000 \pm 6000$	-44 ± 9
Nuclear weapons testing	2.6×10^{-10} d	8.5×10^{14}	220,000	320
Cosmogenic production	${6.5 \pm 0.8 \times 10^{-12}}_{e}$	8.5×10^{14}	5500 ± 700	8 ± 1
Annual mean change			+140,000	+200

Table 4.2 Estimated ¹⁴C isofluxes to the troposphere in 1963 near the start of the bomb period

The isoflux is the product of the C flux and the isotopic difference between the reservoir and the atmosphere (tropospheric Δ^{14} CO₂ = 570 ‰ for 1963; Levin et al. 2010). The impact of each isoflux on atmospheric ${}^{14}CO_2$ is calculated assuming an atmospheric CO_2 mixing ratio of 319 ppm for 1963 (Keeling and Whorf 2005). Note that this budget omits ${}^{14}C$ accumulation in the stratosphere

^aMarland et al. (2006), including 10 % uncertainty in emissions

^bHeimann and Maier-Reimer (1996)

^cNaegler and Levin (2009b), assuming negligible change in ¹⁴C from preindustrial state ^dLevin et al. (2010)

^eLal (1988). Masarik and Beer (1999)

^fZero ¹⁴C content, or -1000 ‰ in fossil C

^gKey et al. (2004), assuming negligible change in 14 C from preindustrial state

estimated using economic data on fuel use and carries an uncertainty of 5-10 % for global emissions (Marland 2010).

Thus far, we have used Eq. 4.4 to describe the global ¹⁴C budget, yet we often want to understand the C budget in smaller regions. The biosphere, fossil fuel, and nuclear isofluxes are all predominantly over the Northern Hemisphere land. In contrast, the ocean exchange is concentrated in the Southern Ocean, due to upwelling of old water and fast wind-driven air-sea exchange there. These geographic differences result in a north-south interhemispheric gradient in ¹⁴CO₂. The cosmogenic production source is concentrated in the upper atmosphere at higher latitudes because of the structure of the Earth's magnetic field, but is roughly symmetric between the two hemispheres (e.g., Lal 1988). There is also considerable heterogeneity in the isofluxes at regional scales and through time. The mixing timescale of the troposphere between hemispheres is about one year; it involves barriers associated with the intertropical convergence zone near the equator, as well as divergent subtropical and convergent subpolar regions (Jacob 1999). Mixing occurs more rapidly in the west-east direction over the mid-latitudes of each hemisphere due to predominantly zonal winds, with a timescale of a few weeks.

Reservoir	Estimated flux F into the atmosphere (Pg C year ⁻¹)	Δ^{14} C difference between reservoir and atmosphere (‰)	Isoflux (Pg C ‰ year ⁻¹)	Impact on $\Delta^{14}CO_2$ (‰ year ⁻¹)
Fossil fuels	6.4 ± 0.6^{a}	-1115 ^f	-7100 ± 700	-9 ± 1
Ocean	85 ± 21^{b}	-60 ^g	-5100 ± 1200	-7 ± 2
Terrestrial biosphere	$52 \pm 11^{\circ}$	$25 \pm 25^{\circ}$	1300 ± 1500	2 ± 2
Nuclear weapons testing	$8 \times 10^{-13} d$	8.5×10^{14}	700	1
Cosmogenic production	$e^{6.5 \pm 0.8 \times 10^{-12}}$	8.5×10^{14}	5500 ± 700	7 ± 1
Annual mean change			-4700	-6

Table 4.3 Estimated ¹⁴C isofluxes to the atmosphere in 1995 (post-bomb period)

The isoflux is the product of the C flux and the isotopic difference between the reservoir and the atmosphere (using a atmospheric $\Delta^{14}CO_2 = 115 \%$ for 1995; Levin et al. 2010). The impact of each isoflux on atmospheric $^{14}CO_2$ is calculated assuming an atmospheric CO_2 mixing ratio of 361 ppm for 1995 (Keeling and Whorf 2005). Note that if mixing is assumed to occur only in the troposphere, then these values increase by about 25 %

^aMarland et al. (2006), including 10 % uncertainty in emissions

^bHeimann and Maier-Reimer (1996)

^cNaegler and Levin (2009b)

^dUNSCEAR (2000)

^eLal (1988), Masarik and Beer (1999)

^fZero ¹⁴C content, or -1000 ‰ in fossil C

^gKey et al. (2004)

Mixing with the stratosphere is slower, with a timescale of several years (Jacob 1999). This variability in the isofluxes and in atmospheric mixing results in spatial and temporal variability in ¹⁴C and in CO₂ mole fraction in the atmosphere.

Atmospheric observations are made at specific locations, and the atmospheric variability needs to be understood to interpret these measurements at global, regional, and local scales. Atmospheric transport models are commonly used to address this. These models use a combination of theoretical formulations and observations of meteorological parameters to describe atmospheric transport. The isofluxes are then input to the model and convolved with the transport to obtain simulated atmospheric ¹⁴C and CO₂ mole fractions.

The simplest atmospheric transport models are box models that divide the atmosphere into a few compartments or *boxes*, such as the GRACE model (Levin et al. 2010). Typically, the global atmosphere is divided into 2–8 zonal bands and/or separated vertically into troposphere and stratosphere boxes. A separate stratosphere is particularly important for describing vertical gradients of ¹⁴C, since this is the initial location of both cosmogenic ¹⁴C production and bomb-produced ¹⁴C. These simple box models typically work on time steps of one year. At each time step, an estimated isoflux from each source (biosphere, ocean, fossil fuels,

nuclear industry, and cosmogenic production) is entered into each box. The isoflux estimates are best guesses that are usually determined offline from other models or information. The isofluxes are mixed between the atmospheric boxes using simple parameterizations of the mixing rates between the various boxes. These box models can approximate the overall latitudinal patterns observed in both CO_2 concentration and in ¹⁴C isotope ratios, and can be used to test isoflux estimates. Simple models are computationally cheap, so they are often used to examine variability over long time periods of hundreds to thousands of years. However, their simplicity means that they cannot adequately describe more detailed regional and temporal variability.

More complex global atmospheric transport models divide the world into many more boxes. Typically, the Earth's surface is gridded into boxes of up to a few degrees (100-500 km) on a side, and between 15 and 100 vertical levels. As computing time and storage become cheaper, these models are moving to higher resolution (more gridboxes). These models usually ingest meteorological observations to *force* the transport, but can also be driven by their own physics-based simulation of atmospheric transport, or some combination of the two. The largest difficulty comes in dealing with phenomena that occur at a smaller scale than the gridboxes and must be *parameterized*, convective mixing being one example. These models are immensely helpful in understanding observed distributions. They are widely used in *inversions*, a method of adjusting the a priori flux estimates to optimize the agreement between observations and model simulations (Gurney et al. 2002). Typically, a set of a priori flux estimates are obtained from bottom-up inventory information and/or process models such as terrestrial and ocean C cycle models and gridded to the same spatial and temporal scale as the atmospheric transport model. These fluxes are ingested into the model to provide simulated ¹⁴C and CO₂ mole fractions. The simulated and observed values are compared, and adjustments (typically using least squares minimization) are made to the fluxes to improve the agreement between the two, obtaining improved flux estimates, known as a posteriori fluxes. Thus far, ¹⁴CO₂ inversions have been done in only a simplified way, whereby model simulations are performed with several different sets of a priori fluxes to test which fluxes agree best with the observations (e.g., Turnbull et al. 2011).

However, more work is needed to improve the accuracy of the atmospheric transport models. Most atmospheric transport models do not accurately predict the vertical transport of tracers such as CO_2 , leading to too much or not enough accumulation in the surface boundary layer (Stephens et al. 2007). As yet, only a handful of simulations with three-dimensional atmospheric transport models have been performed with a complete depiction of the ¹⁴C isofluxes (Randerson et al. 2002; Turnbull et al. 2009b; Miller et al. 2012). These studies have shown that over the continents in the post-bomb period (since 1985), the ¹⁴C variability is usually dominated by the fossil fuel isoflux (Sect. 4.6). Thus, the models can be used to simulate continental ¹⁴CO₂ gradients resulting from fossil fuels and compare them to observed ¹⁴CO₂ gradients (Sect. 4.8).

Regional models are similar to global atmospheric transport models, but allow increased spatial and temporal resolution by modeling only a small portion of the atmosphere. They typically cover regions with spatial extent of a few hundreds to thousands of kilometers and often only examine the lower regions of the atmosphere. The higher resolution is beneficial for regional studies, but these models must address "boundary conditions"—the mixing ratios and isotopic values of air entering the edges of the model domain (Hsueh et al. 2007; Palstra et al. 2008; Riley et al. 2008). At much smaller scales of tens to hundreds of meters, plume models provide an alternative modeling method. These describe the dispersion of a plume of gas within the atmosphere and can be useful for describing atmospheric enrichment near a source, such as that caused by ¹⁴C emissions from nuclear power plants (Levin et al. 2003) or emissions from point sources (Turnbull et al. 2014). At distances of more than a few kilometers from a source, their assumptions usually break down.

4.3 Preindustrial Distribution of Radiocarbon

In the preindustrial atmosphere before 1850, the fossil fuel and nuclear isofluxes were zero, so only cosmogenic production, radioactive decay, and land and ocean exchanges influenced atmospheric ¹⁴CO₂. Cosmogenic production was the only positive isoflux, increasing ¹⁴C in the atmosphere by about 9 ‰ year⁻¹ (Table 4.1). Both the terrestrial biosphere and oceans had negative isofluxes, since C resides in each of these reservoirs for some time and becomes depleted in ¹⁴C by radioactive decay before returning to the atmosphere. The biospheric residence time is typically years or decades (Chap. 6), whereas the ocean reservoir age is typically hundreds or thousands of years (Chap. 5). Therefore, in the preindustrial atmosphere, the ocean isoflux by far dominated over the land isoflux (Table 4.1) in its influence on ¹⁴CO₂ variability.

4.3.1 Mean Isotope Ratio

The ¹⁴C content of CO₂ in the past atmosphere can be measured from C samples with known ages, such as tree rings. These can be analyzed for ¹⁴C content today, which can be converted to past ¹⁴C (Chap. 3) by counting the exact age of each tree ring and correcting for radioactive decay that occurred since the time of growth. Considerable effort has been made to construct tree-ring chronologies for paleoclimate applications (Chap. 7), and the tree-ring record presently extends ~ 14,000 years before 1950 ("before present" or BP) (Friedrich et al. 2004; Hua et al. 2009). Reconstruction of atmospheric ¹⁴CO₂ content goes beyond this, back to the detection limit of ¹⁴C measurements at ~50,000 years BP, based on ¹⁴C in cross-dated coral carbonate and foraminifera (Reimer 2013). Neither corals nor for aminifera reflect the atmospheric ${}^{14}\text{CO}_2$ content as precisely as tree rings because their ${}^{14}\text{C}$ is different from atmospheric ${}^{14}\text{CO}_2$ due to the ocean reservoir age (Reimer 2013). Uncertainty in the reservoir age and its variability through time make the reconstruction of atmospheric ${}^{14}\text{CO}_2$ content in the distant past potentially less accurate than the measurements from tree rings.

In a steady-state Earth system, ${}^{14}CO_2$ will be constant, with cosmogenic ${}^{14}C$ being produced in the atmosphere, then mixing throughout the C reservoirs, where it radioactively decays. Table 4.1 shows the globally integrated ${}^{14}CO_2$ isofluxes for an idealized preindustrial steady state, where cosmogenic ${}^{14}C$ production in the atmosphere is balanced almost entirely by C exchange with the oceans, which have lower ${}^{14}C$ due to radioactive decay within the oceans themselves. Biospheric exchange makes a smaller contribution to the preindustrial ${}^{14}CO_2$ balance since the land biosphere has a much shorter mean C residence time and smaller C pool than the oceans.

Yet the Earth System is dynamic, and records show that ¹⁴CO₂ has varied through time, due to variability in both cosmogenic production and in the global C cycle. The various records show that ¹⁴CO₂ increases when the cosmogenic ¹⁴C production rate increases (F_c in Eq. 4.4), while it decreases when the atmospheric CO₂ concentration increases and dilutes the ¹⁴C content (in Eq. 4.4, increasing C_a results in decreased a). During the last ice age, when the atmospheric CO₂ concentration was up to 35 % lower than during interglacial periods, Δ^{14} CO₂ was as high as +600 ‰ (Reimer 2013) (Fig. 4.2). Over the last 10,000 years, Δ^{14} CO₂ has stayed within a 100 % range, mostly decreasing gradually, and showed quasi-cyclic variations on decade to century timescales associated with solar activity, which drives changes in cosmogenic ¹⁴C production (Stuiver and Braziunas 1993). Millennial and longer scale fluctuations in ¹⁴CO₂ are largely correlated with the Earth's magnetic field strength, which also affects the ¹⁴C production rate (Mazaud et al. 1991). By assuming that the C cycle (i.e., plant photosynthesis and respiration and ocean CO₂ exchange) was constant over the Holocene, the ¹⁴CO₂ record can be inverted to yield a time series of smoothed fluctuations in cosmogenic ¹⁴C production (Usoskin and Kromer 2005). However, part of

the ¹⁴CO₂ variability is likely due to changes in the C cycle, driven for example by ocean upwelling variability (Muscheler et al. 2004; Kohler et al. 2006). A simple box model of the C cycle performed better in reproducing the higher ¹⁴CO₂ in the last ice age if exchange between surface and deep ocean water is decreased by 50 % and the shell carbonate sedimentation rate is decreased by 10 % compared with Holocene values (Hughen et al. 2004). In the preindustrial atmosphere, the biosphere likely did not have a large impact on ¹⁴CO₂ gradients, even if the biospheric CO₂ flux varied, since the biospheric turnover time is on the order of decades, and the ¹⁴C of respired CO₂ was therefore only slightly lower than atmospheric ¹⁴CO₂ (Braziunas et al. 1995). This topic is also covered in more detail in Chap. 7.

4.3.2 Spatial Gradients

The reconstructions of ¹⁴CO₂ show hemispheric and regional variability (Hua and Barbetti 2004; Hua et al. 2013) due to the spatial distribution of the isofluxes, with the ocean isoflux concentrated in the Southern Hemisphere, the biospheric isoflux mostly in the Northern Hemisphere, and the cosmogenic isoflux at high altitudes near the poles (Sect. 4.2.2). The mixing timescale of the troposphere is about one year between hemispheres, but only a few weeks in the west–east direction at the mid-latitudes of each hemisphere. Due to the faster mixing time in the longitudinal direction, along with the primarily latitudinal pattern of spatial variability in the fluxes, latitudinal variability in preindustrial ¹⁴CO₂ was characteristically much greater than longitudinal variability. Models have shown that preindustrial longitudinal gradients are likely below the detection limit of present-day measurement techniques because of the fast mixing in the west–east direction (Fig. 4.3, Braziunas

Fig. 4.3 Geographic distribution of simulated preindustrial atmospheric Δ^{14} C. Contours are in units of permil and represent deviations from a fixed value of 0 ‰ for the Olympic Peninsula, Washington, USA. Figure modified from Braziunas et al. (1995)

et al. 1995). Most studies have therefore focused on the larger preindustrial latitudinal gradients, particularly the interhemispheric difference.

The first accurate measurements of the interhemispheric gradient in preindustrial ¹⁴CO₂ showed that Southern Hemisphere tree-ring samples from the 1830s had Δ^{14} CO₂ 4.5 \pm 1 ‰ lower than Northern Hemisphere samples (Lerman et al. 1970). Subsequent studies found similar north-south offsets from mid-latitude sites in the late eighteenth to the late nineteenth centuries (Vogel et al. 1993; McCormac et al. 1998; Stuiver and Braziunas 1998). This preindustrial interhemispheric difference is primarily due to the predominance of the ocean isoflux in the Southern Hemisphere. In addition to the large ocean surface area there, upwelling of old water and fast wind-driven air-sea exchange increase the Southern Ocean isoflux. Two studies (Hogg et al. 2002; McCormac et al. 2002) analyzed decadal-average tree-ring samples from Great Britain and New Zealand going back to 950 AD, with replicate measurements conducted in the Belfast and Waikato laboratories to control for interlaboratory calibration differences. They found an average difference of 5.0 ± 1.6 ‰ over 950–1850, but with detectable centennial-scale variability of up to ± 4 ‰ (Fig. 4.4). The variability has been attributed to changing wind patterns over the Southern Ocean during the Medieval warm period and the Little Ice Age (Rodgers et al. 2011). Such analyses are at the edge of the accuracy of current measurement technology and require stringent calibration and quality control procedures. Recent work, making use of newly developed, longer New Zealand tree chronologies, finds interhemispheric offsets for the first millennium AD that are similar in magnitude and variability to those of the preindustrial second millennium (Hogg et al. 2009b). With a lower degree of precision, wiggle matching (matching the timescales by lining up the patterns of variability in ¹⁴C) with floating Southern Hemisphere tree-ring chronologies extends this conclusion through previous millennia in the Holocene (Hogg et al. 2009a).

Less attention has been paid to reconstructing preindustrial ${}^{14}CO_2$ in regions outside the mid-latitudes. The complexity of atmospheric transport in the tropics is illustrated by work with Thai trees (19°N) from the seventeenth and eighteenth

centuries, which showed that ${}^{14}CO_2$ levels were intermediate between those of northern and southern mid-latitudes despite their location in the Northern Hemisphere (Hua et al. 2004). This is attributed to northward entrainment of Southern Hemisphere air, with lower ${}^{14}CO_2$, during the Asian summer monsoon.

4.4 The "Suess" Period: 1890–1945

The first observation of anthropogenic influence on atmospheric ¹⁴CO₂ was made by Suess (1955), showing decreasing ¹⁴CO₂ in the early part of the 1900s in tree-ring records from North America. The decline in atmospheric ¹⁴CO₂ content since the industrial revolution demonstrated the addition of ¹⁴C-free fossil fuel CO₂ to the atmosphere (Fig. 4.5a). Suess' tree-ring measurements showed a decrease of 25 ‰ in atmospheric Δ^{14} CO₂ between 1890 and 1950 (Suess 1955). This decrease, now called the *Suess effect*, is not determined solely by the rate of fossil fuel

Fig. 4.5 (a) Observations of Δ^{14} C in tree rings from the Northwestern US. (b) Carbon cycle model of Δ^{14} CO₂ calculated for the natural atmospheric ¹⁴CO₂ level (top line) and taking into account the release of fossil CO₂ (bottom line). Symbols are observed ¹⁴CO₂ values. Figures modified from Stuiver and Quay (1981)

emissions, however. Gross fluxes of C between the atmosphere and the oceans and terrestrial biosphere moderate the dilution of atmospheric ¹⁴CO₂ by effectively increasing the reservoir of C into which the ¹⁴C-free fossil fuel CO₂ is mixed. Via gross exchanges, some fossil-derived C enters the oceanic and terrestrial reservoirs and is replaced in the atmosphere by C with the ¹⁴C of the oceanic and terrestrial reservoirs.

Representation of the Suess effect in models of the global C cycle is sensitive to the exchange rates associated with air–land and air–ocean fluxes (Revelle and Suess 1957; Oeschger et al. 1975; Stuiver and Quay 1981). In one of the first applications of a C cycle model, the observed Suess effect was used in a very simple box model that included one atmospheric box and one oceanic box to estimate the global air–sea exchange rate (Revelle and Suess 1957). Since then, the Suess effect has been simulated in more advanced C cycle models, including one that also considered how the observed Suess effect might have been influenced by variations in cosmogenic ¹⁴C production (Fig. 4.5b, Stuiver and Quay 1981). Utilizing a model with various possible relationships between ¹⁴C production and the observed number of sunspots between 1735 and 1952, this study demonstrated that the observed decrease in ¹⁴CO₂ could not have been caused by natural fluctuations in cosmogenic production.

Further compilation of tree-ring records from different locations provided an early indication that the magnitude of the Suess effect varied regionally. The decrease in ¹⁴CO₂ until the 1930s was 5–10 ‰ greater in European trees than in North American trees (Tans et al. 1979; De Jong and Mook 1982). These observations demonstrated that the Suess effect was enhanced in regions with strong local combustion sources, a finding that would later be exploited to estimate regional fossil fuel CO₂ emission rates (Sect. 4.8.1).

4.5 The "Bomb" Period: 1945–1985

The first direct measurements of ¹⁴CO₂ in the atmosphere were made in 1954 in New Zealand (Rafter and Fergusson 1957; Currie et al. 2011). Globally distributed networks of ground-based atmospheric sampling stations followed shortly after (Nydal 1963; Manning et al. 1990; Levin et al. 1992). These networks were initially deployed to observe the radioactive fallout caused by intensive nuclear weapons testing in the 1950s and 1960s. Production of ¹⁴C by nuclear weapons testing nearly doubled the tropospheric burden of ¹⁴CO₂ in the Northern Hemisphere (Fig. 4.6). In the Northern Hemisphere, ¹⁴CO₂ peaked in 1963 with the maximum of large aboveground thermonuclear (hydrogen fusion) bomb tests immediately before the atmospheric nuclear test ban treaty came into effect. In the Southern Hemisphere, ¹⁴CO₂ peaked a few years later. ¹⁴CO₂ then began to decrease rapidly as the negative isoflux from the ocean and terrestrial biosphere became larger than the positive isoflux from the stratosphere (Figs. 4.5a and 4.6). The observed trend in ¹⁴CO₂ resembled an exponential curve, initially falling rapidly (by more than 40 ‰ year⁻¹)

Fig. 4.6 Observations of Δ^{14} CO₂ and the magnitude of nuclear explosions occurring in the Northern Hemisphere (*black lines* and *bars*) and Southern Hemisphere (*gray lines* and *white bars*). Figure modified from Hua and Barbetti (2007), with observations from Levin and Kromer (2004), Currie et al. (2011) and Levin et al. (2010)

then slowing with time (Fig. 4.6). Estimated isofluxes for the start of the bomb period are shown in Table 4.2.

Due to the long half-life of ¹⁴C, excess ¹⁴C produced by weapons testing will remain for many thousands of years. As discussed for fossil fuel CO_2 and the Suess effect, the natural C cycle exchange acts to redistribute this bomb ¹⁴C throughout the atmosphere, biosphere, and oceans. The rate of redistribution of bomb ¹⁴C provides a method for tracing natural C exchanges that has been used in many aspects of C cycle studies. In this section, we will describe the input of ¹⁴C to the atmosphere from weapons testing and the initial transfers of bomb ¹⁴C between C reservoirs, focusing on the influence of these processes on atmospheric ¹⁴CO₂ and how these observations have been used to study atmospheric C exchange.

4.5.1 Global Bomb Radiocarbon Budget

Most of the nuclear weapons tests occurred in the Northern Hemisphere (UNSCEAR 2000) (Fig. 4.6), and the explosive force injected ¹⁴C into the stratosphere roughly 10–17 km above sea level. The large initial concentration of bomb ¹⁴C in the northern stratosphere was observed using high-altitude aircraft, revealing $\Delta^{14}CO_2$ values as large as 5000–20,000 ‰ in the stratosphere (Telegadas 1971; Hesshaimer and Levin 2000). Bomb ¹⁴C gradually entered the troposphere via stratosphere–troposphere exchange processes in the mid- to high latitudes. Investigation of the time-evolving budget of bomb ¹⁴C in C cycle studies and assessment of the human exposure to radioactive fallout requires estimates of the total amount of ¹⁴C produced by weapons testing (Fig. 4.7). These estimates use

emission factors that assume ¹⁴C produced in each test was roughly proportional to the explosive force of the bomb (e.g., UNSCEAR 2000). There are significant uncertainties in these estimates of bomb ¹⁴C production since the production of neutrons may vary with different types of fuel or bomb designs and not all neutrons react to produce ¹⁴C. Several studies have augmented estimates from scaling factors with observations of bomb-derived ¹⁴C and C cycle models (e.g., Hesshaimer et al. 1994: Naegler and Levin 2006). The current best estimate of total bomb ¹⁴C is 598– 632×10^{26} atoms (Naegler and Levin 2006). Though a few tests were performed after the nuclear test ban in 1963, almost all bomb ¹⁴C was produced by thermonuclear bomb tests between 1961 and 1963 (Fig. 4.6). For comparison, it would take 250 years to produce this amount of ¹⁴C cosmogenically (Masarik and Beer 1999). Besides the strong pulse of ¹⁴C from bomb testing, a small amount of anthropogenic ¹⁴C production continues to occur through nuclear industrial and research applications (UNSCEAR 2000). Annual anthropogenic ¹⁴C production comprised approximately 10 % of natural cosmogenic production in recent decades (Graven and Gruber 2011).

Since all of the bomb ¹⁴C produced must be allocated into atmospheric, oceanic, or terrestrial reservoirs, accounting for bomb ¹⁴C in a realistic C cycle model constrained with observations of bomb ¹⁴C in the troposphere, stratosphere, and ocean can help to refine the estimates of the total bomb ¹⁴C produced. By creating ¹⁴C budgets that incorporate information from C cycle models, bomb ¹⁴C observations, and bomb detonation histories, researchers have also argued for a lower estimate of the total biospheric inventory of bomb ¹⁴C (Naegler and Levin 2009a) (Fig. 4.7). The total biospheric inventory of bomb ¹⁴C can provide a useful measure of the average residence time and ¹⁴C disequilibrium of terrestrial C, which

Fig. 4.7 The time-evolving global inventory of anthropogenic 14 C, derived primarily from bomb testing but also from ongoing 14 C production by the nuclear power industry, in tropospheric, stratospheric, terrestrial, and oceanic reservoirs. Figure modified from Naegler and Levin (2009b)

is difficult to observe directly because of the heterogeneity in biomass and ecosystem types (Chap. 6).

4.5.2 Atmospheric Radiocarbon Seasonality During the Bomb Period

The seasonal cycles of ¹⁴CO₂ had amplitudes of more than 100 ‰ at Northern Hemisphere ground-level stations in the mid-1960s (Fig. 4.8). These observations clearly demonstrated the strong seasonality in the descent of stratospheric, bomb ¹⁴C-enriched air across the tropopause (Nydal and Lovseth 1965), showing that the strength of stratosphere-to-troposphere exchange has a maximum in late spring in each hemisphere. The seasonal maximum in ¹⁴CO₂ at ground level occurred in summer, delayed by a few months from the strongest stratosphere–troposphere exchange due to the time required for air to descend from the upper troposphere to ground level. The magnitude of the seasonal amplitude was influenced by hetero-trophic respiration, which still had prebomb ¹⁴C values, resulting in strongly negative isofluxes to the atmosphere (Randerson et al. 2002). As heterotrophic respiration is strongest in summer, this isoflux offset the stratospheric input and slightly reduced seasonal amplitudes from what they otherwise would have been.

4.5.3 Spatial Gradients

By tracing the movement of bomb ¹⁴C through the atmosphere, early ¹⁴CO₂ observations helped to establish the rates and seasonality of stratosphere-to-troposphere exchange and of latitudinal and cross-equatorial mixing

of the troposphere. Strong latitudinal gradients in the troposphere were created by the concentrated bomb ¹⁴C input to the northern latitudes where nuclear weapons were tested and subsequent transport of that bomb ¹⁴C through the troposphere. Observed $\Delta^{14}CO_2$ was 100–500 ‰ higher at northern stations than at southern stations between 1961 and 1965 (Figs. 4.6 and 4.7). Strong latitudinal gradients were also present within the Northern Hemisphere, where observed $\Delta^{14}CO_2$ values were 20–200 ‰ higher at mid- to high latitudes than low latitudes (Fig. 4.8).

Observed Δ^{14} CO₂ values during the bomb period were used to estimate that the timescale of interhemispheric mixing across the equator is approximately one year (Lal and Rama 1966; Nydal 1968). This mixing timescale is an important determinant of latitudinal gradients of CO₂ and several industrial gases, since their emissions and surface exchanges occur primarily in the Northern Hemisphere. Therefore, accurate representation of interhemispheric mixing is essential for model-based estimates of regional fluxes of CO₂ and other gases (Denning et al. 1999). The early ¹⁴CO₂ observations have also been used to constrain cross-equatorial and cross-tropopause exchange in atmospheric box models (Lal and Rama 1966; Nydal 1968; Johnston 1994; Naegler and Levin 2006) and to test three-dimensional atmospheric general circulation models (Kjellstrom et al. 2000; Land et al. 2002). In addition to providing a chemical tracer to estimate transport rates, observations of ¹⁴CO₂ and other radioactive fallout species have also helped in developing theories on internal stratospheric dynamics and stratosphere–troposphere exchange (Holton et al. 1995).

Latitudinal gradients observed in the bomb period were also influenced by the spatial distribution of terrestrial, oceanic, and fossil fuel isofluxes (globally integrated isofluxes for 1963 are summarized in Table 4.2). During the period of testing and the subsequent few years, these influences were minor in comparison with the effect of the bombs and stratospheric ¹⁴C input to the Northern Hemisphere. However, after 1968, stratospheric¹⁴C input decreased substantially and latitudinal gradients became much smaller. In the late 1960s and early 1970s, stratospheric and oceanic isofluxes made roughly equal contributions to the interhemispheric ¹⁴CO₂ gradient, each increasing Northern Hemisphere Δ^{14} CO₂ by 10–20 ‰, compared to the Southern Hemisphere (Randerson et al. 2002; Levin et al. 2010; Fig. 4.9c). Even though negative isofluxes were occurring over the entire ocean, the isofluxes were the largest over the Southern Ocean due to stronger air-sea ¹⁴C gradients and high winds (see also Chap. 5). Stronger negative isofluxes over the Southern Ocean decreased Southern Hemisphere ¹⁴CO₂ values relative to Northern Hemisphere ¹⁴CO₂ values, reinforcing the gradient caused by stratospheric ¹⁴C input in the north. Small negative isofluxes from the biosphere and fossil fuel emissions, focused over the tropics and northern continents, counteracted the stratospheric and oceanic influences on latitudinal gradients (Randerson et al. 2002; Levin et al. 2010; Fig. 4.9c).

Fig. 4.9 Simulated components of the global tropospheric ${}^{14}\text{CO}_2$ trend (**a**, **b**) and North–South interhemispheric gradient (**c**, **d**) for 1945–1980 (**a**, **c**) and 1980–2008 (**b**, **d**). The *black dashed line* shows the sum of all simulated components, and the *purple dashed line* in the *right panels* shows the observed global trend (**b**) and the observed gradient between Jungfraujoch and Cape Grim, 1987–2007 (**d**). Figure modified from Levin et al. (2010)

4.5.4 Evolving Isofluxes During the Bomb Period

As bomb ¹⁴C dispersed through the atmosphere and entered oceanic and terrestrial reservoirs, changes to ¹⁴CO₂ and the subsequent changes in the ¹⁴C of oceanic and terrestrial C caused ¹⁴C isofluxes to evolve. For example, in 1963, respiration of short-term C pools in the terrestrial biosphere, such as leaves and twigs, added CO₂ that was fixed before the peak in ¹⁴CO₂. Therefore, the ¹⁴C of leaves and twigs was much lower than ¹⁴CO₂ and the respiration of leaves and twigs caused a large negative isoflux (Fig. 4.9a; Table 4.2). By 1975, a large fraction of the C in leaves and twigs contributed much less to the decreasing trend in ¹⁴CO₂. Since the amount and average residence time of C in the terrestrial biosphere is smaller than in the ocean, the negative isoflux from the terrestrial biosphere was smaller and decreased more rapidly than the oceanic isoflux (Randerson et al. 2002; Naegler and Levin 2009a; Levin et al. 2010). Negative isofluxes from fossil fuel emissions were much smaller than the negative isoflux from the ocean and terrestrial biosphere before 1970, but

after 1970 fossil fuel emissions became a principal influence on the decreasing trend in ${}^{14}\text{CO}_2$.

4.6 The Post-bomb Period: 1985–Present

We consider the post-bomb period as the period commencing in the mid-1980s, after a few decades had passed since the peak ¹⁴CO₂ level in the troposphere and the influences on atmospheric ¹⁴CO₂ had changed significantly. The rapid uptake of bomb ¹⁴C during the bomb period that decreased the tropospheric ¹⁴CO₂ content simultaneously increased ¹⁴C in land biosphere and ocean reservoirs. In the post-bomb period, rapidly overturning C reservoirs came closer to equilibrium with tropospheric ¹⁴CO₂, while at the same time, uptake of bomb ¹⁴C into longer term reservoirs continued and fossil fuel emissions increased. These processes changed the disequilibrium in terrestrial, oceanic, and stratospheric C reservoirs, thereby altering the influence of those exchanges on tropospheric ¹⁴CO₂ (Fig. 4.9b, d). The start of this period is somewhat arbitrary, since the processes are continuous, but we consider this period to start when the global biosphere isoflux changed sign in about the mid-1980s (Randerson et al. 2002; Naegler and Levin 2009b). This section will describe the influences on the long-term trend, interhemispheric gradient, and seasonal cycles in tropospheric ¹⁴CO₂ over the post-bomb period, including how each process changed since the bomb period.

The history of ¹⁴CO₂ through the post-bomb period has been directly measured by continued measurements from a few locations. The longest records, both of which continue today, are from New Zealand (Currie et al. 2011) and the European Alps (Levin and Kromer 2004), shown in Fig. 4.6. Observations from these and several other shorter records from around the globe are available from the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/). In recent years and decades, additional observations of ¹⁴CO₂ at both clean-air and polluted measurement sites have begun at laboratories in Europe (Levin et al. 2010; Van Der Laan et al. 2010), the US (Turnbull et al. 2007; Graven et al. 2012b, c) and Japan (Kitigawa et al. 2004).

4.6.1 Fossil Fuel Carbon Dioxide

 CO_2 emissions from fossil fuel burning have grown substantially over the post-bomb period, increasing by ~50 % between 1985 and 2005 (Marland et al. 2006). Dilution of ¹⁴CO₂ by fossil-derived CO₂ is now the strongest contribution to the long-term trend and interhemispheric gradient of ¹⁴CO₂ in unpolluted background air (Fig. 4.9) and is one of the main influences on seasonal cycles of ¹⁴CO₂ in the Northern Hemisphere (Levin et al. 2010; Graven et al. 2012b, c). Fossil fuel CO₂ emissions decreased tropospheric $\Delta^{14}CO_2$ by about 10 ‰ year⁻¹ (Table 4.3).

Despite the large growth in fossil fuel emissions, their influence on the ¹⁴CO₂ trend and interhemispheric gradient has remained rather steady over the post-bomb period (Levin et al. 2010; Graven et al. 2012b, c; Fig. 4.9b). This can be attributed to a decrease in the sensitivity of ¹⁴CO₂ to fossil fuel emissions between the 1980s and 2000s: The troposphere–fossil fuel isotopic disequilibrium grew smaller as $\Delta^{14}CO_2$ dropped from 250 to 50 ‰ and the fractional change in the CO₂ mixing ratio caused by an added increment of fossil fuel CO₂ grew smaller as tropospheric CO₂ increased from 350 ppm to the 2014 level of about 395 ppm (Levin et al. 2010; Graven et al. 2012c).

4.6.2 Nuclear Industry

The growth of nuclear power over the post-bomb period also has an impact on ${}^{14}CO_2$ because ${}^{14}C$ is released from nuclear power plants and fuel reprocessing sites, causing small, continual increases to the global inventory of ${}^{14}C$ (UNSCEAR 2000; Levin et al. 2010; Graven et al. 2012b). Globally, this term is small, at about 0.5–1 ‰ year⁻¹ increase in $\Delta^{14}CO_2$ (Table 4.3), but it can be important at the local and regional scale (Graven and Gruber 2011).

4.6.3 Terrestrial Carbon

By the 1980s, the terrestrial biosphere had assimilated ~ 20 % of the total bomb ¹⁴C, and mean ¹⁴C of respired C was close to that of tropospheric ¹⁴CO₂ (Randerson et al. 2002; Naegler and Levin 2009b). In essence, the terrestrial biosphere had nearly reached equilibrium with tropospheric ¹⁴CO₂ after roughly 20 years. Yet, as tropospheric ${}^{14}CO_2$ continued to decline due to air-ocean exchange and fossil fuel emissions, complete equilibrium could not be reached. Atmospheric ¹⁴CO₂ became, on average, lower than the ¹⁴C of C respired by terrestrial ecosystems. Thus, in the post-bomb period, the net effect of terrestrial respiration was to return bomb ¹⁴C back to the troposphere (Fig. 4.7), and the biospheric isoflux reversed sign (Randerson et al. 2002; Naegler and Levin 2009b; Levin et al. 2010; Fig. 4.10). Regionally, terrestrial ecosystems release C of various ages during heterotrophic respiration, and ecosystems in different locations can release C with different mean ages (Chap. 6). Therefore, although the global average near-equilibrium in ¹⁴C distribution was reached in the 1980s, this near-equilibrium was reached sooner in the tropics where C cycling is rapid, and later in boreal and arctic systems where C cycling is slower (Randerson et al. 2002).

4.6.4 Oceans

Water at the ocean surface is composed of varying mixtures of young water that has recently been in contact with the air and older water that has been sequestered in the deep ocean for centuries (Chap. 5). Because of this, the ocean surface has even stronger regional variability in the mean age of C exchanged with the air than does the terrestrial biosphere. Water in subtropical gyres does not mix readily with deeper water and maintains close contact with the atmosphere, while in the Southern Ocean and North Pacific Ocean, there is a significant fraction of old water that has been upwelled from depth after being out of contact with the atmosphere for hundreds to thousands of years.

In the post-bomb period, water in the subtropical gyres contains a large amount of bomb ¹⁴C that has not been dispersed by mixing with deeper water, and thus, isofluxes here resemble those from the terrestrial biosphere. They do incorporate some upwelled water that is depleted in ¹⁴C; however, the source of upwelling is shallow, relatively young water that has already assimilated some bomb ¹⁴C. Thus, subtropical areas of the ocean had reached near-equilibrium with tropospheric ¹⁴CO₂ by 1995, when large-scale hydrographic surveys showed that ¹⁴C values in surface waters of the subtropics were nearly the same as tropospheric ¹⁴CO₂ values (Key et al. 2004; Graven et al. 2012a) (Fig. 4.10). Since 1995, ¹⁴C values in these ocean regions has become even higher than tropospheric ¹⁴CO₂ values (Graven et al. 2012a). Like the terrestrial biosphere, these subtropical surface waters have started to release bomb ¹⁴C back to the atmosphere where ¹⁴CO₂ content continues to decrease; thus, the isoflux has changed sign.

In contrast, in both the Southern Ocean and North Pacific Ocean, significant uptake of bomb ¹⁴C is still occurring. Since surface waters in these regions mix with deep water, into which bomb ¹⁴C has not yet intruded, ¹⁴C there is still substantially depleted in comparison with the troposphere and has not come to this near-equilibrium state (Key et al. 2004; Graven et al. 2012a; Fig. 4.10). The

Southern Ocean is the dominant region of oceanic influence on atmospheric ¹⁴CO₂, with large regions of negative ocean–atmosphere gradients stronger than 100 ‰ as compared to gradients of 50–100 ‰ over smaller areas in the North Pacific. In the Southern Ocean, strong circumpolar winds drive strong upwelling of deep, ¹⁴C-depleted water and enhance gas transfer, leading to strong negative isofluxes. These isofluxes cause ¹⁴CO₂ to be reduced in air above the Southern Ocean (Levin and Hesshaimer 2000; Randerson et al. 2002; Fig. 4.11).

Globally, the integrated flux of bomb ¹⁴C into the ocean over the bomb and post-bomb periods provides a strong constraint on the average gas exchange velocity (Chap. 5; Revelle and Suess 1957; Broecker et al. 1985; Sweeney et al. 2007). Other estimates of the average gas exchange velocity must extrapolate from point measurements of ocean–atmosphere fluxes, which results in large uncertainties (Frost and Upstill-Goddard 1999). Both oceanic and atmospheric ¹⁴C measurements have been crucial in estimating and refining the global mean gas exchange velocity (Hesshaimer et al. 1994; Krakauer et al. 2006; Naegler and Levin 2006), which is needed to calculate the magnitude and locations of uptake of anthropogenic CO₂ by the ocean using observations of ocean–atmosphere gradients in pCO₂ (Takahashi et al. 2009).

Over the post-bomb period, the integrated flux of bomb ¹⁴C into the oceans has diminished and global ocean bomb ¹⁴C inventories in the 2000s are nearly stagnant (Graven et al. 2012a), due to near balance between the high-latitude uptake and

Fig. 4.11 Ocean–atmosphere gradients in Δ^{14} C versus latitude by decade in the bomb and post-bomb periods. Estimates of preindustrial surface water Δ^{14} C (Key et al. 2004) or observations made prior to 1957 are compared to the preindustrial atmospheric ¹⁴C of 0 ‰ and shown in *black*. *Solid lines* show smoothed curves for data in all regions south of 30°N and in the North Pacific, north of 30°N. *Dashed lines* show smoothed curves for data in all regions south of 30°N and in the North Atlantic, north of 30°N. Figure modified from Graven et al. (2012a)

low-latitude release of bomb ¹⁴C. As the low-latitude release surpasses high-latitude uptake, the oceans are now beginning an overall transfer of bomb ¹⁴C back to the atmosphere.

4.6.5 Stratosphere

In the post-bomb period, the stratosphere continues to be enriched in ¹⁴C relative to the troposphere, even though the bomb ¹⁴C that was initially injected into the stratosphere has dispersed. Observations of $\Delta^{14}CO_2$ in stratospheric air indicate that it was 50–150 ‰ above that measured in the troposphere in the early 1990s (Turnbull et al. 2009b; Fig. 4.12). One reason for higher ¹⁴C content in the stratosphere during the post-bomb period is that most cosmogenic production of ¹⁴C occurs in the stratosphere (O'Brien 1979; Jöckel 1999). While the natural stratosphere–troposphere gradient was amplified by the input of bomb ¹⁴C, the stratosphere–troposphere gradient has been positive throughout history due to this effect. Another reason for higher ¹⁴C content in the stratosphere, on the order of five-to-ten years, which creates a lag in stratospheric response to the surface exchanges that are reducing tropospheric ¹⁴CO₂.

This stratosphere–troposphere ¹⁴CO₂ gradient continues to be exploited in studies of cross-tropopause transport of air and stratospheric residence times during the post-bomb period. Observed stratosphere–troposphere gradients of ¹⁴CO₂ in 1989–1990 were used to estimate an average turnover time of the stratosphere of

Fig. 4.12 Vertical profiles of stratospheric Δ^{14} CO₂ above Japan (40°N) in 1989–94, relative to Δ^{14} CO₂ in the free troposphere, from stratospheric and high tropospheric samples taken in 1989, 1990, and 1994. Two model simulations for 2006 are shown, model (**a**) uses cosmogenic production from Lal (1988), model (**b**) moves the production to lower altitudes within the stratosphere. Figure modified from Turnbull et al. (2009b)

~9 years (Nakamura et al. 1992, 1994). In addition, very strong vertical gradients observed within the stratosphere indicate vertical mixing of stratospheric air is slow. Investigation of stratosphere–tropospheric dynamics can also utilize ¹⁴CO, the dominant form of newly produced ¹⁴C atoms which oxidizes to ¹⁴CO₂ over a timescale of weeks to months (Jöckel and Brenninkmeijer 2002; Sect. 4.9.1).

4.6.6 Long-Term Trend

In the post-bomb period, there is a complex interplay between positive influences on tropospheric ¹⁴CO₂ from the terrestrial biosphere, low-latitude oceans, stratosphere and nuclear industry, and negative influences from the high-latitude oceans and fossil fuel combustion (Levin et al. 2010; Graven et al. 2012b, c; Fig. 4.9b; Table 4.3). The long-term trend of tropospheric ¹⁴CO₂ continues to be negative (Figs. 4.6 and 4.9b), although the rate of decline has slowed from 10 ‰ year⁻¹ in the 1980s to 5 ‰ year⁻¹ since 2000 (Meijer et al. 2006; Levin et al. 2010). The primary cause of this slowing is the weakening effect of ocean–atmosphere exchange, which has resulted in the emergence of fossil fuel emissions as the dominant influence on tropospheric ¹⁴CO₂. Since 2000, all influences on ¹⁴CO₂ each contribute less than ± 5 ‰ year⁻¹ to the trend, except for fossil fuel emissions, which contribute -10 to -15 ‰ year⁻¹ (the exact magnitude varies slightly through time and depends on whether CO₂ from fossil fuel emissions is assumed to mix into the entire atmosphere or only into the troposphere) (Levin et al. 2010; Graven et al. 2012b; Fig. 4.9b).

4.6.7 Interhemispheric Gradient

The observed interhemispheric gradient of ${}^{14}\text{CO}_2$ was close to zero over most of the post-bomb period, reflecting a near balance between the effect of fossil fuel emissions and other processes (Randerson et al. 2002; Meijer et al. 2006; Levin et al. 2010; Fig. 4.9d). The dilution of ${}^{14}\text{CO}_2$ by fossil fuel emissions in the Northern Hemisphere was offset primarily by air–sea exchange that decreased ${}^{14}\text{CO}_2$ in the Southern Hemisphere. ${}^{14}\text{C}$ release by terrestrial ecosystems and nuclear power plants, concentrated in the Northern Hemisphere, also counteracted the effect of fossil fuel emissions. Since 2000, ${}^{14}\text{CO}_2$ in the Northern Hemisphere has become lower than ${}^{14}\text{CO}_2$ in the Southern Hemisphere (Levin et al. 2010; Graven et al. 2012c), apparently due to a reduction in the ${}^{14}\text{C}$ isoflux from the Southern Ocean. However, the total interhemispheric gradient simulated by models has not matched the observed gradient over the post-bomb period, and the changing interhemispheric gradient has not yet been fully explained (Randerson et al. 2002; Levin et al. 2010).

4.6.8 Seasonal Cycles

Seasonal cycles in ¹⁴CO₂ were much smaller during the post-bomb period than during the bomb period (Randerson et al. 2002; Levin et al. 2010; Fig. 4.13). The largest cycles now occur at northern mid- and high-latitude sites, which show amplitudes of several permil with maxima in late summer or fall (Meijer et al. 2006; Turnbull et al. 2007; Levin et al. 2010; Graven et al. 2012c). Seasonality in ¹⁴CO₂ primarily results from seasonal variations in atmospheric transport that regulates the stratospheric and fossil fuel isofluxes, rather than seasonality in the isofluxes themselves. As during the bomb period, the seasonal input of stratospheric air increases ¹⁴CO₂ in summer and fall at mid- to high latitudes, although the effect is much smaller in the post-bomb period (Randerson et al. 2002; Levin et al. 2010). Although fossil fuel CO₂ emissions themselves have only a small seasonal cycle, more vigorous atmospheric mixing during summer and fall allows fossil fuel CO₂ emissions to be transported away from the surface and mixed into a larger volume of air, increasing local tropospheric ¹⁴CO₂ relative to the winter months (Randerson et al. 2002; Turnbull et al. 2009a; Levin et al. 2010; Graven et al. 2012c). Smaller effects result from terrestrial and oceanic exchanges. Stronger summertime respiration slightly enriches ¹⁴CO₂ in summer months in the Northern Hemisphere, and stronger ocean-atmosphere exchange slightly depletes $^{14}CO_2$ in winter months over the Southern Ocean (Randerson et al. 2002; Turnbull et al. 2009a; Levin et al. 2010).

Fig. 4.13 Observed and simulated average seasonal cycles of Δ^{14} CO₂ for sites in the Heidelberg University observation network over 1995–2005. Figure modified from Levin et al. (2010)

4.7 The Future Trajectory of Atmospheric Radiocarbon

Tropospheric $\Delta^{14}CO_2$ is now (in 2014) about 30 ‰, that is, 3 % above the preindustrial level. If fossil fuel emissions continue to increase in a "business-as-usual" scenario (Ciais et al. 2013), atmospheric $\Delta^{14}CO_2$ values will likely drop below the preindustrial level (0 ‰) within the next decade. The continued decrease in $^{14}CO_2$ will cause the C reservoirs in the land and surface ocean that are presently enriched in ^{14}C to sustain their positive isofluxes to the atmosphere, while negative isofluxes from ^{14}C -depleted reservoirs such as the Southern Ocean will become weaker as their disequilibrium with $^{14}CO_2$ is reduced. Atmospheric $\Delta^{14}CO_2$ values may reach -150 ‰ by the year 2100 (Caldeira et al. 1998; Fig. 4.14). At this point, even the deep waters upwelling in the Southern Ocean will return CO₂ enriched in ^{14}C to the atmosphere and become a positive isoflux. Observation of such changes in the coming decades will continue to illuminate the C cycle exchange processes that determine how ^{14}C is redistributed in response to anthropogenic perturbations.

4.8 Atmospheric Monitoring of Fossil Fuel Carbon Dioxide Emissions

4.8.1 Determination of Fossil Fuel Mole Fraction from Radiocarbon Observations

In recent years, atmospheric ¹⁴CO₂ measurements have been recognized as the most unambiguous tracer method to quantify fossil fuel CO₂ (CO_{2ff}) emissions. Due to the influence of the fossil fuel isoflux on atmospheric ¹⁴CO₂ gradients, ¹⁴CO₂ can provide an objective method of evaluating the CO_{2ff} emissions reported by governments and industry. Equally importantly, the separation of fossil fuel and biological CO₂ sources by ¹⁴CO₂ allows examination of biological CO₂ exchange processes.

In order to calculate the amount of fossil fuel CO_2 present in an atmospheric sample in which ${}^{14}CO_2$ has been measured, the mass balances for C and ${}^{14}C$ from Eqs. 4.1 and 4.2 are integrated to:

$$CO_{2obs} = CO_{2bg} + CO_{2ff} + CO_{2other}$$

$$(4.5)$$

and

$$\Delta_{\rm obs} \rm CO_{2obs} = \Delta_{\rm bg} \rm CO_{2bg} + \Delta_{\rm ff} \rm CO_{2ff} + \Delta_{\rm other} \rm CO_{2other}, \qquad (4.6)$$

then manipulated to solve for CO_{2ff} :

$$CO_{2ff} = \frac{CO_{2obs}(\Delta_{obs} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}} - \frac{CO_{2other}(\Delta_{other} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}}.$$
 (4.7)

To emphasize the influence of fossil fuel combustion, the other terms have been condensed into a single CO_{2other} term, which is essentially a correction for non-fossil influences on ${}^{14}CO_2$. This represents CO_2 added or removed by non-fossil sources or sinks (respiration and biomass burning, nuclear industry, and to a lesser extent the oceans and cosmogenic production) and Δ_{other} represents the weighted mean ${}^{14}C$ of the other CO_2 sources. The integration adds two other terms, CO_{2bg} and Δ_{bg} , which represent the background air CO_2 mixing ratio and its $\Delta^{14}CO_2$ value, respectively. In this approach, the "background" is chosen to represent the initial composition of a parcel of air, which then moves across a region of interest, modifying its CO_2 mole fraction and ${}^{14}CO_2$ by the addition of CO_{2ff} and CO_{2other} . An upwind clean-air reference site can be assumed to represent the background; this is especially useful when examining large-scale gradients in ${}^{14}CO_2$ across continents.

In Eq. 4.7, ¹⁴C of photosynthetic uptake (gross primary productivity) is implicitly assumed to be equal to Δ_{bg} . This is strictly true in the limit that the time (and space) between background and observation goes to zero. Some authors (e.g.,

Kuc et al. 2007; Riley et al. 2008) have instead assumed that ¹⁴C of photosynthesis is equal to Δ_{obs} , and in this case, Eq. 4.7 can be rewritten as follows:

$$CO_{2ff} = \frac{CO_{2bg}(\Delta_{obs} - \Delta_{bg})}{\Delta_{ff} - \Delta_{obs}} - \frac{CO_{2other}(\Delta_{other} - \Delta_{obs})}{\Delta_{ff} - \Delta_{obs}}$$
(4.8)

When integrated ¹⁴CO₂ sampling (e.g., absorption onto NaOH over a period of days or weeks) is used, this formulation may be advantageous, as CO_{2obs} is not required, but the mean CO_{2bg} must be estimated. In the case of flask sampling, CO_{2obs} will usually be directly measured from the same flask, so Eq. 4.7 is more convenient. If CO_{2other} is zero, then Eqs. 4.7 and 4.8 are exactly equivalent, but slight differences in the calculated CO_{2ff} of up to 0.1 ppm can occur when both photosynthetic uptake of CO_2 and the $\Delta_{obs} - \Delta_{bg}$ differences are large (Turnbull et al. 2009a). These differences are small relative to the current CO_{2ff} detection capability.

In the current atmosphere, with about 395 ppm CO₂ mole fraction and Δ^{14} CO₂ of about 30 ‰ (in 2014), the addition of 1 ppm of CO_{2ff} results in a decrease in Δ^{14} CO₂ of ~2.7 ‰ (e.g., Turnbull et al. 2006). Current ¹⁴C measurement uncertainties are, at best, just under 2 ‰ in ¹⁴C, from both accelerator mass spectrometry (AMS) and gas counting methods (Graven et al. 2007; Turnbull et al. 2007; Levin et al. 2010). Since both Δ_{obs} and Δ_{bg} are used in calculating CO_{2ff}, the resulting uncertainty in CO_{2ff} due to measurement uncertainty alone is about ±1 ppm. Ongoing development of measurement techniques may bring the uncertainties down to 0.6–0.7 ppm in the near future.

Confounding influences, which are wrapped up in the second term in Eq. 4.7, can be important in some regions. This term can be regarded as the potential bias in CO_{2ff} if the non-fossil influences are not accounted for. Over the continents, heterotrophic respiration and biomass burning are the most important of these influences. In the tropics, and possibly at high northern latitudes, biospheric sources may have particularly substantial impacts on $^{14}CO_2$. In the tropics, the large magnitude of the respiration CO₂ flux means that even if the ¹⁴C disequilibrium is small, the impact on ¹⁴CO₂ can be significant. At high latitudes, biospheric C may have resided in the soil for long periods, particularly if warming unlocks C that has been frozen for centuries or millennia (Chap. 6). This may result in a large and variable isotopic disequilibrium. The bias from biospheric sources on ¹⁴CO₂-derived estimates of CO_{2ff} has been estimated at 0.2-0.5 ppm over the Northern Hemisphere mid-latitudes and may be larger in the tropics and at high latitudes (Turnbull et al. 2009a). Since the bias is much smaller than typical 14 C measurement precision, some researchers have assumed it to be zero (e.g., Meijer et al. 1996; Levin et al. 2003).

Ethanol and other biofuels mixed with or replacing fossil gasoline may also need to be accounted for. In the ¹⁴C method, these are not distinguishable from biomass burning or heterotrophic respiration fluxes. In contrast, other methods, particularly bottom-up inventory-based methods, may include biofuels in the gasoline budget. Some researchers have included biofuels in their ¹⁴C-based CO_{2ff} estimates by

measuring the ¹⁴C of vehicle exhaust (Djuricin et al. 2010). Where biofuel content is known (e.g. mandated by government), adjusted ¹⁴C of gasoline can also be calculated.

Another influence over continental regions arises from nuclear activities which produce ¹⁴C from nuclear power generation and combustion or reprocessing of radioactive waste. The total ¹⁴C isoflux from these activities is small relative to other sources, but the effect can be significant close to nuclear sites. For example, a study of fossil fuel emissions in Heidelberg, Germany, required an explicit correction of about 4.8 % in Δ^{14} CO₂ to account for the effects of a nearby nuclear reactor (Levin et al. 2003). A dataset of estimated ¹⁴CO₂ emissions from all known nuclear reactors is available (Graven and Gruber 2011) that takes into account varying ¹⁴C emissions from different reactor types. For example, heavy water reactors used in Canada and gas-cooled reactors used in the UK emit much more ¹⁴C for the same amount of electrical power generation than other reactor types. Most reactor types produce ¹⁴C predominantly as ¹⁴CO₂, with the exception of pressurized water reactors, which produce ${}^{14}C$ predominantly as methane (${}^{14}CH_4$). There is a lag time of several years before ${}^{14}CH_4$ is oxidized to ${}^{14}CO_2$, which affects where and when that ¹⁴CO₂ would be detected in atmospheric measurements. The magnitude and timing of nuclear reactor ¹⁴C releases are imperfectly known, and there appears to be substantial variability in the amount of ¹⁴C released even amongst reactors of the same type. Incineration of biomedical and other radioactive waste that contains ¹⁴C in high concentrations is permitted to occur, but is poorly documented even though it can have a strong effect on local ¹⁴CO₂ measurements (e.g., Trumbore et al. 2002).

Over marine or coastal regions, a potential bias from ocean exchange may also be present. This is likely to be largest in areas close to upwelling regions in the Southern Ocean and the northwest Pacific Ocean where the isotopic disequilibrium between atmosphere and ocean is greatest (Randerson et al. 2002; Key et al. 2004; Turnbull et al. 2009a). For most continental regions of interest, this effect can be eliminated by careful choice of background, using a measurement station that reflects the same ocean influence as the region of interest.

Different sampling methods can be used to make the ¹⁴C measurements. Flask samples are collected over a few minutes or up to one hour (Meijer et al. 1996; Turnbull et al. 2007; Graven et al. 2009; Djuricin et al. 2010; Turnbull et al. 2012) and can therefore be examined in the context of specific wind conditions and emission plumes. The same flask samples can be measured for other species to provide additional information (Turnbull et al. 2006; Miller et al. 2012). Integrated samples (either CO_2 absorbed into alkali, or plant material proxies) represent a longer term mixture of air masses and can be used to easily and cost-effectively examine broadscale gradients and long-term changes (Levin et al. 2008).

4.8.2 Large-Scale Spatial Fossil Fuel Carbon Dioxide Variability and Plant Material Proxies

Global ¹⁴CO₂ modeling studies (Randerson et al. 2002; Turnbull et al. 2009a; Miller et al. 2012) have been used to examine the spatial variability of ¹⁴CO₂ in the recent atmosphere. These models use best estimates of the ¹⁴C isoflux magnitudes and spatial and temporal patterns to predict the atmospheric distribution of ¹⁴CO₂. They produce reasonable representations of the observed spatial distribution, although they do not resolve all the finer details, particularly at small scales. These global models have shown that ¹⁴CO₂ variability over the Northern Hemisphere land is dominated, at the continental scale (i.e., across a single continent), by CO_{2ff} emissions (Fig. 4.15).

On the observation side, plant materials have proven to be an excellent proxy for ${}^{14}\text{CO}_2$ at the continental, annual scale, allowing them to be used to understand the broad spatial distribution of ${}^{14}\text{CO}_2$ and to compare with model simulations. Since photosynthetic uptake does not alter ${}^{14}\text{C}$, short-lived annual plants reflect atmospheric ${}^{14}\text{CO}_2$ averaged over their growing season, with the caveats that most plants

Fig. 4.15 (a) Modeled mean surface $\Delta^{14}CO_2$ distribution from the LMDZ model for 2002–2007. All known ¹⁴C fluxes are included. (b) Modeled mean surface $\Delta^{14}CO_2$ distribution for 2002–2007 if fossil fuel CO₂ is the only source that alters $\Delta^{14}CO_2$ (i.e., no other sources are considered). The range of the two scales is the same (40 ‰). Figure modified from Turnbull et al. (2009b)

Fig. 4.16 Radiocarbon measurements of corn (*Zea mays*) across North America during the summer of 2004 (in units of ‰). *Squares* show actual measured values, and colors are the interpolated spatial distribution. During this time period, a decrease of 2.8 ‰ corresponded to ~ 1 ppm of added fossil fuel CO₂. Figure modified from Hsueh et al. (2007)

Fig. 4.17 Modeled contributions to surface atmospheric Δ^{14} C anomalies (with units of ‰) caused by (**a**) fossil fuel emissions, (**b**) terrestrial biosphere exchange, and (**c**) ocean exchange as derived from a global model during May–July of 2004 and (**d**) the combined influence of these processes, along with the effects of stratosphere–troposphere mixing. The background ¹⁴C in (**d**) was adjusted by a single uniform scalar so that the mean of the model was the same as the mean of corn observations from western US mountains. Figure modified from Hsueh et al. (2007)

Fig. 4.18 Spatial pattern of Δ^{14} C from C₃ annual grasses in California, USA, from (a) observations in 2005 and (b) model simulation for annual grasses. In (a), *triangles* are actual observation sites, and *color scale* shows the interpolated spatial pattern. An expanded view of the Los Angeles area observations is shown on the *bottom left* of panel (a). Figures modified from Riley et al. (2008)

photosynthesize C only during the day, and that the magnitude of photosynthetic uptake varies with weather conditions and plant growth phase (Bozhinova et al. 2013). Two of the first studies used corn (maize) leaves and annual grasses to map ¹⁴C across the USA and within California (Hsueh et al. 2007; Riley et al. 2008). The spatial pattern measured in corn across North America is broadly matched by models, with the lowest $\Delta^{14}CO_2$ values, indicative of strong CO_{2ff} sources, in the northeastern USA and on the California coast, and higher $\Delta^{14}CO_2$ values over the central region and Rocky Mountains (Figs. 4.16 and 4.17). In California, variations in the spatial distribution compared to model simulations show where model transport could be improved at the regional scale (Riley et al. 2008; Fig. 4.18). For

example, the model used by Riley et al. (2008) predicts an area of low $\Delta^{14}CO_2$ values over Los Angeles. The observations reflect the same broad pattern, but show even lower values in Los Angeles, and also indicate an area of low $\Delta^{14}CO_2$ to the east of Los Angeles which is not predicted by the model.

Wine ethanol has also been used to map ¹⁴CO₂, and since wine vintages are rigorously documented, both the spatial distribution and the recent history of ¹⁴CO₂ can be obtained (Palstra et al. 2008). In Japan, ubiquitous rice grains provide similar spatial and historical ¹⁴CO₂ information (Shibata et al. 2005). In a study of rice, samples taken near the large number of nuclear power plants in Japan exhibited higher $\Delta^{14}CO_2$ values and were screened out to obtain the CO_{2ff} influence. In another study of large-scale ¹⁴C patterns, flask samples of air were used to map ¹⁴CO₂ from a train-based platform across Eurasia (Turnbull et al. 2009b). Several of these samples were influenced by nearby nuclear power plant emissions. The nature of the near-instantaneous flask samples made it possible to screen out these samples to reveal the continental-scale ¹⁴CO₂ gradient, which was generally consistent with a modeled result.

4.8.3 Quantification of Fossil Fuel Carbon Dioxide Emissions at the Urban and Regional Scale

At the smaller scale, ${}^{14}CO_2$ is commonly used in urban regions to quantify fossil fuel emissions and to examine emissions of other anthropogenic trace gases. The method began to be used in a quantitative way in the late 1980s, with several studies calculating CO_{2ff} in flask samples of air from Europe (Levin et al. 1989; Meijer et al. 1996; Zondervan and Meijer 1996). Longer time series using CO_2 absorbed into alkali from German air followed (Levin et al. 2003, 2008). These measurements demonstrated large CO_{2ff} enhancements in the city of Heidelberg relative to clean-air sites (Fig. 4.19).

The ¹⁴CO₂ method has been shown to be less prone to biases than other tracer methods of quantifying CO_{2ff} (Turnbull et al. 2006; Djuricin et al. 2010; Fig. 4.20). However, the utility of the method is limited by two major factors. First, the accuracy of calculated CO_{2ff} is limited by the ¹⁴C measurement precision. Second, the complex measurement techniques mean that samples must be transported and analyzed in a laboratory, limiting the temporal and spatial resolution of measurements. Therefore, ¹⁴C measurements are often combined with other, more easily measured tracers to increase the resolution of CO_{2ff} estimates. The most widely used of the other tracers is CO, which is co-emitted with CO₂ during incomplete combustion. If the CO/CO_{2ff} emission ratio is known, CO_{2ff} can be calculated from CO measurements, but the emission ratio is variable depending on combustion conditions, and CO has other sources and sinks (Turnbull et al. 2006). These confounding problems can often be addressed by obtaining ¹⁴CO₂ and CO measurements from flasks or time-integrated samples (e.g., air collected in bags) to

Fig. 4.19 (a) Long-term $\Delta^{14}CO_2$ observations at Jungfraujoch; the smooth solid line is a harmonic fit to the monthly mean observations. (b) Monthly mean Δ^{14} CO₂ at Schauinsland and Heidelberg. The inlay shows the comparison of observations at two different Heidelberg sites about 500 m apart. (c) Monthly mean fossil fuel CO2 at Schauinsland calculated using Jungfraujoch as background. (d) Monthly mean fossil fuel CO2 at Heidelberg using Jungfraujoch as background. Figure modified from Levin et al. (2008)

quantify the CO/CO_{2ff} ratio at a given location and time period. The derived emission ratio can then be used to obtain high-resolution CO_{2ff} from continuous CO measurements at the same location (Levin and Karstens 2007; Vogel et al. 2010; Turnbull et al. 2011).

These high-resolution CO_{2ff} estimates from combined CO and ¹⁴CO₂ measurements have been used in combination with estimates of atmospheric transport to determine the CO_{2ff} emission flux and compared with reported emission fluxes from bottom-up inventories. In these studies, the estimated emission fluxes have been reasonably consistent with reported inventory data, but have large uncertainties that are dominated not by the ¹⁴C measurement uncertainty, but by uncertainties in the atmospheric transport of emissions. Turnbull et al. (2011) used a simple Gaussian plume model to describe atmospheric transport at the urban scale, but this type of model requires explicit knowledge of the wind speed and the planetary boundary layer height (emissions are assumed to mix within the planetary boundary layer, but not to escape into the free troposphere). The planetary boundary layer height in particular is difficult to represent in models and is the subject of Fig. 4.20 (a) Calculated boundary layer fossil fuel CO_2 at Harvard Forest, USA, using ¹⁴CO₂ and the CO and SF₆ correlate tracer methods. (b) Derived boundary layer biological CO₂ component from total CO₂ and CO_{2ff} derived from each method. (c) Bias in the CO-derived CO_{2ff} relative to ¹⁴CO₂dervied CO_{2ff}. Figure modified from Turnbull et al. (2006)

ongoing research. At even smaller scales such as single point source monitoring, averaging over long time periods may be needed to reduce uncertainties due to turbulent mixing and obtain reasonable agreement between model and observations (Turnbull et al. 2014). Van Der Laan et al. (2010) used a different approach, avoiding the need for explicit knowledge of the meteorological parameters by correlating their CO_{2ff} measurements with ^{222}Rn . ^{222}Rn is a gas produced by radioactive decay in the soil and released to the atmosphere. Its short half-life of a few days and relatively consistent emission across all land regions means that it is an excellent tracer for boundary layer stability and mixing. By assuming the ^{222}Rn emissions, and correlating CO_{2ff} with ^{222}Rn , it is possible to back-calculate the CO_{2ff} emissions. In this method, uncertainties in the ^{222}Rn emissions dominate.

4.8.4 Other Applications of Fossil Fuel Carbon Dioxide Measurements

Radiocarbon-derived CO_{2ff} estimates are also useful in quantifying CO_2 exchange with the terrestrial biosphere. Once the CO_{2ff} mole fraction is known, any remaining CO₂ variability over a land region must be ascribed to biological CO₂ exchange (including photosynthesis, respiration, biomass burning, and biofuel use). Contrary to initial expectations, CO_{2ff} is not always the dominant source of CO₂ variability even in highly urbanized regions, and respiration can be an important component, even in winter. A study in Los Angeles, California, USA, in 2007 and 2008, partitioned CO₂ sources using ¹⁴C, ¹³C, and ¹⁸O. At a highly urbanized site, in a semi-arid environment, Djuricin and co-workers found that fossil fuel emissions contributed 30-50 % of the total CO₂ enhancement relative to background CO₂ values at Trinidad Head in Northern California and background ¹⁴CO₂ values at Point Barrow, Alaska (Djuricin et al. 2010; Fig. 4.21). In another study, the biosphere was shown to contribute up to 30 % of the total CO₂ enhancement in samples taken over Sacramento, California, in February and March 2009 (Turnbull et al. 2011). This study also found that the biosphere contribution could be different in sign between the urban area and the surrounding rural region. A third study over Denver, Colorado, USA, showed that respiration contributed 30-50 % of the total CO₂ enhancement in summer during the morning (Graven et al. 2009). All of these studies made measurements relative to continental clean-air or free troposphere background values. When more local background sites are used, it is likely that the

Fig. 4.21 Partitioning of CO₂ sources in Los Angeles, USA, for four episodes in 2007 and 2008. Sources were partitioned using ¹⁴CO₂ to obtain the fossil fraction, ¹³CO₂ to separate the different types of fossil fuel sources, and ¹⁸O of CO₂ to identify the different types of respiration. Note also that bioethanol additive in gasoline was accounted for in the fossil fraction. Figure modified from Djuricin et al. (2010)

biosphere contribution in an urban area will appear much smaller, as much of the biosphere influence is likely coming from the surrounding countryside rather than the urban area itself.

The CO_{2ff} emission flux, while somewhat uncertain, is better known than fluxes of most other anthropogenic trace gases. The CO_{2ff} emission flux is known within 3-40 % at the annual, national scale, and within 20-50 % at regional and urban scales (Gurney et al. 2009; Marland 2010; Peylin et al. 2011). Fluxes of other species (e.g., hydrocarbons, halocarbons, criteria air pollutants) may be known to within only 50-100 % at the annual, national scale, and even more poorly at the urban and regional scales. The emission ratio of CO_{2ff} to another trace gas can therefore be used to improve the constraint on the flux of any trace gas with sources that are colocated with fossil fuel combustion. This ratio method avoids the need for atmospheric transport to be explicitly known or modeled. Meijer et al. (1996) pioneered this approach to examine CO emissions in the Netherlands, and other studies have since shown that bottom-up emission inventories of CO for much of the USA were too high (Turnbull et al. 2006; Graven et al. 2009; Miller et al. 2012), whereas observed CO/CO_{2ff} ratios were consistent with emission inventories for Germany and California (Vogel et al. 2010; Turnbull et al. 2011). The same method has also been used to evaluate hydrocarbon and halocarbon emissions in California (Turnbull et al. 2011) and the eastern USA (Miller et al. 2012).

4.8.5 Volcanic Carbon Dioxide Emissions

The volcanic CO₂ isoflux is very small compared to the other isofluxes and hence is ignored at the global and regional scales. Yet offsets in local atmospheric ¹⁴CO₂ are measurable in volcanic calderas and within 1 km of springs and seeps where there is outgassing of ¹⁴C-free magmatic CO₂; this can be thought of as a natural analogue to the ¹⁴CO₂ depletion near cities and power plants where fossil fuel burning is concentrated. One of the first measurements of local ¹⁴CO₂ depletion attributable to volcanic activity was made on reeds and tree leaves at the shores of a lake in the volcanic Eifel region of western Germany with extensive CO₂ bubbling. Plants growing next to the lake showed Δ^{14} C decreases of ~ 100 ‰, but the depletion was undetectable ~ 100 m from the lake (Bruns et al. 1980). Other studies have shown that at the very local scale, ¹⁴CO₂ can be used as a sensitive tracer of CO₂ outgassing, just as it is a sensitive tracer of fossil fuel combustion at larger scales (Pasquier-Cardin et al. 1999; Saurer et al. 2003).

4.9 Atmospheric Radiocarbon in Other Compounds

4.9.1 ¹⁴CO as a Detector for Hydroxyl Radicals

The isotope ¹⁴CO tells a very different story about the atmosphere than ¹⁴CO₂. Produced naturally in the upper atmosphere, ¹⁴C oxidizes extremely rapidly to ¹⁴CO. The oxidation of ¹⁴CO by hydroxyl radical (OH) to ¹⁴CO₂ occurs with a timescale of about two months (Weinstock and Niki 1972). Hydroxyl radicals provide the oxidizing power of the atmosphere, removing many important trace gases, including CH₄, CO, volatile organic compounds, and hydrochlorofluorocarbons. OH is produced naturally in the atmosphere during sunlit hours and its high reactivity means that it has a fleeting atmospheric lifetime of only a fraction of a second, making it extremely difficult to directly measure and study (Krol and Lelieveld 2003). OH might be expected to vary due to changes in its production and changes in the abundance of the trace gases which react with it. This variability in OH can have significant consequences for the global atmosphere. For example, lower OH production would result in a longer atmospheric lifetime for CH₄, a strong greenhouse gas (Kirschke et al. 2013). If the ¹⁴C production rate is known, then measurements of ¹⁴CO concentration provide a method to indirectly estimate OH abundance and variability via its effect on CO lifetime.

This method has been used to estimate short-term variations in OH of 10 % in the Southern Hemisphere high latitudes (Manning et al. 2005; Fig. 4.22), which are attributed to volcanic and biomass burning emissions. Hemispheric differences in OH abundance can also be tested with ¹⁴CO (Jöckel and Brenninkmeijer 2002). The short lifetime and high-altitude source of ¹⁴CO makes it more sensitive to OH concentrations at high altitudes and high latitudes than to OH concentrations at low altitudes (Krol et al. 2008). The distribution of ¹⁴CO can additionally be used to test stratosphere–troposphere exchange in atmospheric models (Jöckel and Brenninkmeijer 2002).

4.9.2 Fossil Methane Source Identification

Methane, like CO₂, is a greenhouse gas with both natural and anthropogenic sources. Methane levels have increased from ~800 parts per billion (ppb) in the preindustrial era to 1800 ppb at present. The CH₄ budget is more complex than that of CO₂, with a plethora of sources, and unlike CO₂ it is oxidized in the atmosphere with a lifetime of about 10 years (Kirschke et al. 2013). The ¹⁴C content of CH₄ is one way of elucidating the CH₄ budget. Fossil CH₄ sources are ¹⁴C-free, whereas CH₄ produced from modern biomass by microorganisms (e.g., in rice paddies, termites, and cows) and fires has a ¹⁴C content similar to that of the atmosphere. The fossil fraction can, in principle, be obtained in an analogous manner to CO_{2ff} (Townsend-Small et al. 2012). However, ¹⁴CH₄ from nuclear power generation

Fig. 4.22 (a) ¹⁴CO concentrations for individual samples from Baring Head, New Zealand (*blue circles*) and Scott Base, Antarctica (*purple squares*) from 1989 to 2003. The *purple* and *black curves* show ¹⁴C production rates (*right-hand scale*) and a best-fit simulation of ¹⁴CO. (b) Residuals (observed minus simulated) for each measurement with uncertainties (1-sigma) and a smooth curve fit to the residuals (*black line*). The *gray shaded* regions show the deviations from the best fit that would be caused by a 10 % change in OH concentrations. *A*—time of eruption of Mt Pinatubo; *B*—period of high Southern Hemisphere CH₄ concentrations. Figure modified from Manning et al. (2005)

comprises perhaps 20–40 % of the ¹⁴CH₄ budget (Quay et al. 1999), complicating the interpretation of ¹⁴CH₄ measurements. Nevertheless, observations and modeling have estimated the fossil CH₄ fraction from ¹⁴CH₄ measurements at \sim 30 % versus 20 % from bottom-up CH₄ emission inventories (Lassey et al. 2007).

A novel and challenging use of ¹⁴CH₄ measurements has been to identify the cause of the abrupt CH₄ increase from about 500 to over 700 parts per billion (ppb) during the Younger Dryas–Preboreal transition about 11,600 years ago (Petrenko et al. 2009; Fig. 4.23). Several mechanisms could have driven the CH₄ increase, with increased wetland CH₄ emissions and destabilization of marine CH₄ hydrate (solid CH₄ and water mixtures quite commonly found on the ocean floor) being the most likely. Tiny amounts of CH₄ were extracted from air bubbles in ~ 1000 kg of Greenland ice and measured for ¹⁴CH₄. Wetland ¹⁴CH₄ should be similar to that of the contemporaneous atmosphere, whereas CH₄ hydrate CH₄ was ancient and contained no ¹⁴C. The measurements were confounded by in situ cosmogenic production of ¹⁴CH₄ molecules in the Arctic ice. After modeling cosmogenic production to remove this effect (which increased Δ^{14} CH₄ by about

Fig. 4.23 ¹⁴CH₄ during the Younger Dryas (YD)—Preboreal (PB) transition. For the wetland hypothesis, 100 % biospheric CH₄ emissions are assumed for all times, with ¹⁴CH₄ equal to contemporaneous ¹⁴CO₂. For the CH₄ hydrate hypothesis, all of the CH₄ rise during the transition is assumed to be due to CH₄ hydrate emissions which decrease linearly to 0 over 1000 years, and have ¹⁴CH₄ of -1000 ‰. The transient ¹⁴CH₄ increase at 11.44 thousand years B.P. in the CH₄ hydrate model line corresponds to the simultaneous transient drop in CH₄ mole fraction. Horizontal error bars represent the maximum possible range of air ages. Figure modified from Petrenko et al. (2009)

200 ‰), the researchers found that Δ^{14} CH₄ during the Younger Dryas—Preboreal transition stayed roughly constant at about 180 ‰. The CH₄ hydrate hypothesis predicts a decrease of Δ^{14} CH₄ to about –200 ‰ during this period, so the CH₄ rise must have been due primarily to wetland sources, and not due to large-scale CH₄ hydrate destabilization.

4.9.3 Aerosol Source Attribution

Aerosols are another important area of atmospheric research, having both a climate effect and a negative impact on human health. As for other atmospheric trace species, understanding the sources is a critical part of the puzzle, and aerosol sources can be partitioned into fossil and biogenic components using ¹⁴C measurements of the C in the aerosols.

Radiocarbon measurement can determine the fossil fuel contribution to total aerosol (or a collected size range) versus biogenic sources. Yet this misses an important part of the story, as anthropogenic biomass burning is also a substantial contributor to aerosols which cannot be distinguished from natural biogenic sources of aerosol. The elemental C (soot) fraction of aerosols is unique in being produced only as primary particles from fossil fuel combustion and biomass burning, whereas the organic C aerosol component is a mixture of primary sources including fossil fuel, biomass burning, and natural biogenic materials such as plant debris and pollen as well as secondary aerosol formed from gaseous precursors (Slater et al. 2002).

A study in Zurich, Switzerland, in 2002 and 2003 separated and measured both the soot and organic aerosol fractions (Szidat et al. 2006). The Δ^{14} C of the soot fraction ranged from less than -900 ‰ in summer to -750 ‰ in winter. They assigned a biomass burning Δ^{14} C of 240 ‰ in Zurich, assuming residential wood burning of 30- to 50-year-old wood, and fossil fuel Δ^{14} C of -1000 ‰. Using a simple two-member mixing model akin to the fossil fuel CO₂ method (Sect. 4.8), they determined that soot aerosol is produced solely by fossil fuel combustion in summer, but in winter, biomass burning contributes up to 25 %, even though biomass burning is only a tiny portion of local energy use. In contrast, organic aerosols had Δ^{14} C values of about -200 ‰ in all seasons of the year. This implies that the fossil fuel contribution was about 30 % of organic aerosol throughout the year. By assuming a consistent emission ratio of soot and organic biomass burning aerosols, they could further show that of the remaining non-fossil 70 % of organic aerosol, anthropogenic biomass burning was the main contributor in winter, but that natural biogenic sources became dominant in summer.

4.10 Conclusions and Future Directions

4.10.1 Improved Radiocarbon Measurement Techniques and Comparability

Atmospheric ¹⁴C measurements are expanding to measure new trace gas species and to answer ever more detailed questions about our Earth System. A major limitation is the sample size requirement and difficulty of both AMS and decay counting measurement techniques. Currently, single sample AMS precision in Δ^{14} CO₂ is ±2 to ±5 ‰, with only a few laboratories able to achieve precision of ±2 ‰ or better. In comparison with other materials that are measured for ¹⁴C, the analysis of atmospheric samples of CO₂ requires less sample handling, while the required level of precision is higher. Therefore, laboratories measuring ¹⁴CO₂ have initiated intercomparison activities specific to ¹⁴CO₂ (Miller et al. 2010, 2013; Graven et al. 2013; Turnbull et al. 2013), in addition to the routine ¹⁴C intercomparison activities that use solid materials (e.g., Scott et al. 2007). The ¹⁴CO₂ with high precision and enable measurements from different laboratories to be merged. A further issue that needs to be addressed is the comparability of measurements of CO₂ from flask samples conducted by AMS to those of integrated CO₂ samples conducted by counting techniques. Addressing this issue will require measurement and interpretation of atmospheric variability that is captured in flask sampling but averaged over by continuous sampling.

As global ¹⁴CO₂ decreases and CO₂ mixing ratio increases through time, the sensitivity of ¹⁴CO₂ to CO_{2ff} is gradually decreasing, so that the same measurement precision will result in larger CO_{2ff} uncertainties. Incremental improvements in AMS precision can drive down this uncertainty and expand the CO_{2ff} detection capability. Measurement precision drops markedly with small sample sizes, particularly limiting the usefulness of ¹⁴C measurements for the less abundant trace gases. Developments in measuring smaller sample sizes to better precision will open up many more possibilities for the use of ¹⁴C in atmospheric studies.

Optical ¹⁴C measurement techniques currently under development have the potential to revolutionize this field, particularly for ¹⁴CO₂, which could then be measured in situ at high resolution. Advances in laser technology mean that lasers can now be created with a very fine range of output wavelengths. The general principle is that a laser can be tuned to a specific wavelength where ${}^{14}CO_2$ absorption occurs. The amount of absorption of that laser light as it passes through air or concentrated CO₂ would determine the ¹⁴CO₂ content. The particular challenges for optical measurement of ¹⁴CO₂ arise from its very low abundance. First, broadening of nearby absorption lines of other gases, particularly ¹²CO₂ and ¹³CO₂, likely obscures many of the ¹⁴CO₂ absorption lines. Second, the low abundance will also mean that detection of absorption is difficult. Preconcentration of air into pure or at least much higher CO₂ concentration is needed, and the path length through the cell will need to be extremely long Galli et al. (2011). The initial results are promising, but much work remains to demonstrate reliable high precision on reasonably sized samples. It is likely that other similar methods will also be investigated over the next few years.

4.10.2 Developing Radiocarbon Observations into Policy-Relevant Fossil Fuel Carbon Dioxide Emission Estimates

The use of ${}^{14}\text{CO}_2$ has gradually been recognized as the best way to quantify $\text{CO}_{2\text{ff}}$ from atmospheric observations. It may provide the only method for objectively verifying reported $\text{CO}_{2\text{ff}}$ emissions. This will likely remain the most important, and expanding, field of atmospheric ${}^{14}\text{C}$ research for quite some time. To this end, observation networks will need to be expanded, the techniques for inferring $\text{CO}_{2\text{ff}}$ emissions from the atmospheric observations will need to evolve, and a larger capacity for ${}^{14}\text{CO}_2$ measurements will be essential.

In order to provide relevant estimates of CO_{2ff} emissions, a reasonable target for ${}^{14}CO_2$ observation and modeling programs is to aim toward achieving uncertainties of roughly ± 20 % in CO_{2ff} emissions. This level of uncertainty is similar to the differences in bottom-up inventories estimated by different groups for regions encompassing whole countries, groups of neighboring countries, or individual cities or states/provinces (Marland et al. 2006; Rayner et al. 2010; Peylin et al. 2011). Of course, this may underestimate the actual uncertainty because of shared biases due to the use by different groups of the same economic data and similar extrapolation techniques. In any case, this level of uncertainty is larger than the agreed-upon emission reductions for most nations that ratified the Kyoto Protocol (less than 10 %). Therefore, observational techniques using ${}^{14}CO_2$ are likely to be employed as a method for validating bottom-up inventories, rather than providing a precise top-down estimate of fossil fuel emissions that verifies that emission reductions have been achieved by an individual country.

Even accuracies of $\pm 20 \%$ in CO_{2ff} emissions will be challenging to achieve from atmospheric observations. Pacala et al. (2010) estimated the CO_{2ff} enrichment for several large urban regions to be 3–15 ppm, depending on the total emissions, population density, and meteorological characteristics of each city. This equates to a Δ^{14} CO₂ decrease of -6 to -40 ‰. Continental-scale signals in Δ^{14} CO₂ caused by regionally concentrated CO_{2ff} emissions are likely to be -5 to -20 ‰, as shown in Sect. 4.8.2 (e.g., Hsueh et al. 2007). Attaining $\pm 20 \%$ uncertainty in CO_{2ff} emissions will therefore require reducing the combined uncertainties in the measurement of ¹⁴CO₂, in the specification of non-fossil influences to ¹⁴CO₂, and in modeled transport from their present levels.

Understanding atmospheric transport is perhaps the most difficult problem in interpreting atmospheric ¹⁴CO₂ measurements. The methodology for quantifying CO_{2ff} mole fraction in atmospheric samples is now well established, but translating those atmospheric observations to emission fluxes is still challenging. Improvements in atmospheric transport models can potentially solve this problem by more accurately describing the transport of emissions to the observation site. Other approaches can reduce the reliance on atmospheric transport models. Levin et al. (2008) showed how long-term ¹⁴CO₂ measurements at a single site, paired with long-term observations at a mountaintop reference site, could be used to detect

changes in emissions through time. This technique reduces the reliance on knowledge of atmospheric transport, assuming that interannual variations and trends in winds or boundary layer ventilation do not change the influential source regions or the dilution of surface emissions. In Sect. 4.8.3, we described how Van Der Laan et al. (2010) used ²²²Rn to constrain planetary boundary layer mixing without the need for explicit transport models, although this method instead requires ²²²Rn emissions to be well-known.

On the other hand, since the CO_{2ff} emission flux is arguably better known than that of any other species, ¹⁴CO₂ measurements have another potential use: to validate and improve atmospheric transport models. Combining ¹⁴CO₂ observations, particularly vertically resolved observations, with forward models that use bottom-up emission inventories as surface fluxes could identify model biases in the transport of emissions. Model-data evaluations using ¹⁴CO₂ are likely to be effective in regions with well-quantified bottom-up emissions, such as the USA (Gurney et al. 2009). Achieved improvements in model transport could then be employed in regions with less well-quantified emissions, such as Asia (Gregg et al. 2008).

Continued observations of ¹⁴CO₂ in background air are also needed. Such background observations provide information on fossil fuel emissions at global scales through the observation of the long-term trend or interhemispheric gradient of ¹⁴CO₂. Currently, uncertainties in the non-fossil contributions to the trend and gradient, primarily the oceanic contribution, limit the use of ¹⁴CO₂ to estimate global emissions (Levin et al. 2010). Improvements in quantifying non-fossil influences on background ¹⁴CO₂ could enable global-scale estimates of fossil fuel emissions to be achieved in the future.

4.10.3 Detection of Climate-Related Changes in Air–Land or Air–Ocean Carbon Exchanges

The feedback between anthropogenic climate change and the global C cycle represents one of the largest uncertainties in future projections of global warming (Jones et al. 2013). Several possible mechanisms have been proposed that would reduce the uptake of anthropogenic CO_2 or release currently stored C as the climate warms, thereby enhancing the accumulation of atmospheric CO_2 and the increase in surface temperatures in the future. However, the potential strength of these feedback mechanisms is not well understood. At least two of the proposed mechanisms would significantly perturb ¹⁴C exchange with the atmosphere, so that observations of ¹⁴CO₂ may provide a method for detecting climate C feedbacks.

Thawing of arctic permafrost has the potential to release large amounts of long-sequestered C to the atmosphere in the form of CO_2 and CH_4 . Since this C is likely to be old, ${}^{14}CO_2$ and ${}^{14}CH_4$ measurements could be used to quantify these releases through the observation of an anomalous negative isoflux in the northern

high latitudes. The geographic separation should allow "old" permafrost emissions, concentrated in northern high latitudes, to be distinguished from fossil fuel emissions, concentrated in northern mid-latitudes. Coordinated observations of ¹⁴CO₂, ¹⁴CH₄, and other trace gases may further refine the separation of permafrost from fossil sources.

Climate change may also release old CO_2 from the deep ocean through enhancement in the wind-driven upwelling of the Southern Ocean, a process that has been proposed to have already begun, in part because of strengthening of Southern Hemisphere winds by stratospheric ozone depletion (Le Quere et al. 2007; Lovenduski et al. 2007). Enhanced upwelling of deep waters in the Southern Ocean causes an anomalous negative isoflux by exposing greater amounts of old water, containing older C, to the air. Observations of enhanced local gradients or trends in ¹⁴CO₂ over the Southern Ocean may therefore enable an anomalous CO₂ release to be quantified.

The centennial-scale variability in interhemispheric offset of atmospheric ${}^{14}CO_2$ (Hogg et al. 2002) also remains unexplained. Changes in ocean or atmospheric circulation have been suggested as causes (McCormac et al. 2002; Knox and McFadgen 2004), but whether the observed variations are consistent with what is known about ocean and atmosphere dynamics has not been evaluated.

The distribution of ¹⁴CO₂ in the atmosphere over the last few decades could provide more information on the ocean–atmosphere gas exchange velocity, particularly in the Southern Ocean (Krakauer et al. 2006). Most studies of ocean bomb ¹⁴C uptake have used only seawater ¹⁴C measurements to constrain ocean uptake, but measuring bomb ¹⁴C in Southern Ocean water samples is particularly difficult because it is very dilute (Broecker et al. 1980; Peacock 2004; Levin et al. 2010). Several studies have shown that both the current rate of decline of atmospheric ¹⁴CO₂ and its gradient between the tropics and the Southern Ocean are sensitive to ocean–atmosphere gas exchange over the Southern Ocean, a process that is otherwise difficult to measure.

Radiocarbon provides an immensely powerful tool in understanding C-containing constituents of the atmosphere and their sources and variability. In the past atmosphere, ¹⁴C measurements shed light on ocean C cycle processes as well as cosmic ray flux variability. Recent advances have made ¹⁴CO₂ measurements the tool of choice in constraining CO_{2ff} emissions in the modern atmosphere and potentially a key to understanding the fate of those emissions as they are taken up into the ocean.

References

Boden, T.A., G. Marland, and R.J. Andres. 2012. Global, regional, and national fossil-fuel CO₂ emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

- Bozhinova, D., M. Combe, S.W.L. Palstra, H.A.J. Meijer, M.C. Krol, and W. Peters. 2013. The importance of crop growth modeling to interpret the ¹⁴CO₂ signature of annual plants. *Global Biogeochemical Cycles* 27: 792–803.
- Braziunas, T.F., I.Y. Fung, and M. Stuiver. 1995. The preindustrial atmospheric ¹⁴CO₂ latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. *Global Biogeochemical Cycles* 9: 565–584.
- Broecker, W.S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. *Radiocarbon* 22: 565–598.
- Broecker, W.S., T.-H. Peng, H. Ostlund, and M. Stuiver. 1985. The distribution of bomb radiocarbon in the ocean. *Journal of Geophysical Research* C4: 6953–6970.
- Bruns, M., I. Levin, K.O. Munnich, M.W. Hubberten, and S. Fillipakis. 1980. Regional sources of volcanic carbon dioxide and their influence on C14 content of present-day plant material. *Radiocarbon* 22: 532–536.
- Caldeira, K., G.H. Rau, and P.B. Duffy. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. *Geophysical Research Letters* 25: 3811–3814.
- Ciais, P., C.L. Sabine, G. Bala, L. Bopp, V. Brovkin, J.G. Canadell, A. Chabbra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quere, R. Mymeni, S. Piao, and P. Thornton. 2013. Carbon and other biogeochemical cycles. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Currie, K.I., G. Brailsford, S. Nichol, A. J. Gomez, R.J. Sparks, K.R. Lassey, and K. Riedel. 2011. Tropospheric ¹⁴CO₂ at Wellington, New Zealand: the world's longest record. *Biogeochemistry* 104: 5–22. doi:10.1007/s10533-009-9352-6
- De Jong, A.F., and W.G. Mook. 1982. An anomalous Suess effect above Europe. *Nature* 298: 641–644.
- Denning, A.S., M. Holzer, K.R. Gurney, M. Heimann, R.M. Law, P.J. Rayner, I.Y. Fung, S. Fan, S. Taguchi, P. Friedlingstein, Y. Balkanski, J. Taylor, M. Maiss, and I. Levin. 1999. Three-dimensional transport and concentration of SF₆ a model intercomparison study (TransCom 2). *Tellus* 51B: 266–297.
- Djuricin, S., D.E. Pataki, and X. Xu. 2010. A comparison of tracer methods for quantifying CO₂ sources in an urban region. *Journal of Geophysical Research* 115.
- Friedrich, M., S. Remmele, B. Kromer, J. Hofmann, M. Spurk, K.F. Kaiser, C. Orcel, and M. Küppers. 2004. The 12,460-year hohenheim oak and pine tree-ring chronology from Central Europe: A unique annual record for radiocarbon calibration and paleoenvironment reconstructions. *Radiocarbon* 46: 1111–1122.
- Frost, T., and R.C. Upstill-Goddard. 1999. Air-sea gas exchange into the millennium: Progress and uncertainties. Oceanography and Marine Biology 37(37): 1–45.
- Galli, I., S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi. 2011. Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection. *Physical Review Letters* 107: 270802.
- Graven, H.D., and N. Gruber. 2011. Continental-scale enrichment of atmospheric 14CO₂ from the nuclear power industry: Potential impact on the estimation of fossil fuel-derived CO₂. *Atmospheric Chemistry and Physics* 11: 12339–12349.
- Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2007. Methods for high-precision ¹⁴C AMS measurement of atmospheric CO₂ at LLNL. *Radiocarbon* 49: 349–356.
- Graven, H.D., B.B. Stephens, T.P. Guilderson, T.L. Campos, D.S. Schimel, J.E. Campbell, and R. F. Keeling. 2009. Vertical profiles of biospheric and fossil fuel-derived CO₂ and fossil fuel CO₂:CO ratios from airborne measurements of Δ^{14} C, CO₂ and CO above Colorado, USA. *Tellus B* 61: 536–546.

- Graven, H.D., N. Gruber, R. Key, S. Khatiwala, and X. Giraud. 2012a. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO₂ uptake. *Journal of Geophysical Research* 117.
- Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2012b. Observations of radiocarbon in CO₂ at La Jolla, California, USA 1992–2007: analysis of the long-term trend. *Journal of Geophysical Research* 117.
- Graven, H.D., T.P. Guilderson, and R.F. Keeling. 2012c. Observations of radiocarbon in CO₂ at seven global sampling sites in the scripps flask network: Analysis of spatial gradients and seasonal cycles. *Journal of Geophysical Research* 117.
- Graven, H.D., X. Xu, T. Guilderson, R.F. Keeling, S.E. Trumbore, and S. Tyler. 2013. Comparison of independent ∆14CO₂ records at point barrow, Alaska. *Radiocarbon* 55: 1541– 1545.
- Gregg, J.S., R.J. Andres, and G. Marland. 2008. China: Emissions Pattern of the world leader in CO₂ emissions from fossil fuel consumption and cement production. *Geophysical Research Letters* 35.
- Gurney, K.R., R.M. Law, A.S. Denning, P.J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I.Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K.A. Masarie, P. Peylin, M. Prather, B.C. Pak, J. Randerson, J.L. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. 2002. Towards robust regional estimates of CO₂ sources and sinks using atmospheric transport models. *Nature* 415: 626–630.
- Gurney, K.R., D.L. Mendoza, Y. Zhou, M.L. Fischer, C.C. Miller, S. Geethakumar, and S. de la Rue du Can. 2009. High resolution fossil fuel combustion CO₂ emission fluxes for the United States. *Environmental Science and Technology* 43: 5535–5541.
- Heimann, M., and E. Maier-Reimer. 1996. On the relations between the oceanic uptake of CO₂ and its carbon isotopes. *Global Biogeochemical Cycles* 10: 89–110.
- Hesshaimer, V., and I. Levin. 2000. Revision of the stratospheric bomb ¹⁴CO₂ inventory. *Journal* of Geophysical Research 105: 11641–11658.
- Hesshaimer, V., M. Heimann, and I. Levin. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. *Nature* 201–203.
- Hogg, A., F. McCormac, T. Higham, P. Reimer, M. Baillie, and J. Palmer. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: A.D. 1850–1950. *Radiocarbon* 44: 633–640.
- Hogg, A.G., C. Bronk Ramsey, C. Turney, and J. Palmer. 2009a. Bayesian evaluation of the Southern Hemisphere radiocarbon offset during the holocene. *Radiocarbon* 51: 1165–1176.
- Hogg, A.G., J. Palmer, G. Boswijk, P. Reimer, and D. Brown. 2009b. Investigating the interhemispheric ¹⁴C offset in the 1st millennium A.D. and assessment of laboratory bias and calibration errors. *Radiocarbon* 51: 1177–1186.
- Holton, J.R., P.H. Haynes, M.E. McIntyre, A.R. Douglass, R.B. Rood, and L. Pfister. 1995. Stratosphere-troposphere exchange. *Reviews of Geophysics* 33: 403–439.
- Houghton, R.A. 2008. Carbon flux to the atmosphere from land-use changes: 1850–2005. TRENDS: A compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA.
- Hsueh, D.Y., N.Y. Krakauer, J.T. Randerson, X. Xu, S.E. Trumbore, and J.R. Southon. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO₂ in surface air across North America. *Geophysical Research Letters* 34: L02816.
- Hua, Q., and M. Barbetti. 2004. Review of tropospheric bomb C-14 data for carbon cycle modeling and age calibration purposes. *Radiocarbon* 46: 1273–1298.
- Hua, Q., and M. Barbetti. 2007. Influence of atmospheric circulation on regional (CO₂)-¹⁴C differences. *Journal of Geophysical Research-Atmospheres* 112.
- Hua, Q., M. Barbetti, U. Zoppi, D. Fink, M. Watanasak, and G. Jacobsen. 2004. Radiocarbon in tropical tree rings during the little ice age. *Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms* 223: 489–494.

- Hua, Q., M. Barbetti, D. Fink, K.F. Kaiser, M. Friedrich, B. Kromer, V.A. Levchenko, U. Zoppi, A.M. Smith, and F. Bertuch. 2009. Atmospheric C-14 variations derived from tree rings during the early younger dryas. *Quaternary Science Reviews* 28: 2982–2990.
- Hua, Q., M. Barbetti, and A.Z. Rakowski. 2013. Atmospheric radiocarbon for the period 1950– 2010. Radiocarbon 55: 2059–2072.
- Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring, and J. Turnbull. 2004. C-14 activity and global carbon cycle changes over the past 50,000 years. *Science* 303: 202–207.
- Jacob, D.J. 1999. Introduction to atmospheric chemistry. Princeton, NJ, USA: Princeton University Press.
- Johnston, C.A. 1994. Ecological engineering of wetlands by beavers. In *Global Wetlands: Old World and New*, ed. W.J. Mitsch, 379–384. Amsterdam: Elsevier.
- Jones, C., E. Robertson, V. Arora, P. Friedlingstein, E. Shevliakova, L. Bopp, V. Brovkin, T. Hajima, E. Kato, M. Kawamiya, S. Liddicoat, K. Lindsay, C.H. Reick, C. Roelandt, J. Segschneider, and J. Tjiputra. 2013. Twenty-first-century compatible CO₂ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. *Journal of Climate*, 26: 4398–4413.
- Jöckel, P., M.G. Lawrence, and C.A.M. Brenninkmeijer. 1999. Simulations of cosmogenic ¹⁴CO using the three-dimensional atmospheric transport model MATCH: Effects of ¹⁴C production distribution and the solar cycle. *Journal of Geophysical Research*, 104(D9): 11733–11743.
- Jöckel, P., and C.A.M. Brenninkmeijer. 2002. the seasonal cycle of cosmogenic ¹⁴CO at the surface level: A solar cycle adjusted, zonal-average climatology based on observations. *Journal of Geophysical Research* 107: 4656.
- Keeling, C.D., and T. Whorf. 2005. Atmospheric CO₂ records from sites in the SIO air sampling network. Trends: A compendium of data of global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak RIdge, Tenn., USA.
- Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy, and T.H. Peng. 2004. A global ocean carbon climatology: results from global data analysis project (GLODAP). *Global Biogeochemical Cycles* 18(4). doi:10.1029/2004gb002247 (4).
- Kirschke, S., P. Bousquetl, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. D.R. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, A. Houweling, B.A. Josse, P. J. Fraser, P.B. Krummel, J.-F.O. Lamarque, R.L. Langenfelds, C.L. Quéré, V. Naik, S. O'Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G. R.V.D. Werf, A. Voulgarakis, M.V. Weele, R.F. Weiss, J.E. Williams, and G. Zeng. 2013. Three decades of global methane sources and sinks. *Nature Geoscience* 6: 813–823.
- Kitigawa, H., H. Mukai, Y. Nojiri, Y. Shibata, T. Kobayashi, and T. Nojiri. 2004. Seasonal and secular variations of atmospheric ¹⁴CO₂ over the Western Pacific since 1994. *Radiocarbon* 46: 901–910.
- Kjellstrom, E., J. Feichter, and G. Hoffman. 2000. Transport of SF₆ and (CO2)-C¹⁴ in the atmospheric general circulation model ECHAM4. *Tellus Series B-Chemical and Physical Meteorology* 52: 1–18.
- Knox, F., and B. McFadgen. 2004. Radiocarbon/tree ring calibration, solar activity, and upwelling of ocean water. *Radiocarbon* 46: 987–995.
- Kohler, P., R. Muscheler, and H. Fischer. 2006. A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric delta C-14. *Geochemistry Geophysics Geosystems* 7.
- Krakauer, N., J. Randerson, F. Primeau, N. Gruber, and D. Menemenlis. 2006. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. *Tellus Series B-Chemical and Physical Meteorology* 58: 390–417.

- Krol, M.C., and J. Lelieveld. 2003. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? *Journal of Geophysical Research* D108.
- Krol, M.C., J.F. Meirink, P. Bergamaschi, J.E. Mak, D. Lowe, P. Jockel, S. Houweling, and T. Rockmann. 2008. What can ¹⁴CO measurements tell us about OH? *Atmospheric Chemistry and Physics* 8: 5033–5044.
- Kuc, T., K. Rozanski, M. Zimnoch, J. Necki, L. Chmura, and D. Jelen. 2007. Two decades of regular observations of ¹⁴CO₂ and ¹³CO₂ content in atmospheric carbon dioxide in central europe: long-term changes of regional anthropogenic fossil CO₂ emissions. *Radiocarbon* 49: 807–816.
- Lal, D. 1988. Theoretically expected variations in the terrestrial cosmic-ray production rates of isotopes. In: Proceedings of the International school of Physics, Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia, pp. 215–233.
- Lal, D., and Rama. 1966. Characteristics of global tropospheric mixing based on man-made C14 H3 and Sr90. *Journal of Geophysical Research* 71: 2865.
- Land, C., J. Feichter, and R. Sausen. 2002. Impact of vertical resolution on the transport of passive tracers in the ECHAM4 model. *Tellus B* 54: 344–360.
- Lassey, K.R., D.C. Lowe, and A.M. Smith. 2007. The atmospheric cycling of radiomethane and the "fossil fraction" of the methane source. *Atmospheric Chemistry and Physics* 7: 2141–2149.
- Le Quere, C., C. Rodenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, and M. Heimann. 2007. Saturation of the southern ocean CO₂ sink due to recent climate change. *Science* 316: 1735–1738.
- Lerman, J.C., W.G. Mook, and J.C. Vogel. 1970. C-14 in tree rings from different localities. Radiocarbon variations and absolute chronology. In: Proceedings of the Twelfth Nobel Symposium held at the Institute of Physics at Uppsala University. Wiley Interscience Division, New York.
- Levin, I., R. Boesinger, G. Bonani, R.J. Francey, B. Kromer, K.O. Muennich, M. Suter, N.B. A. Trivett, and W. Wolfli. 1992. Radiocarbon in atmospheric carbon dioxide and methane global distribution and trends. In: Taylor, R.E., A. Long and R. S. Kra eds. Radiocarbon After Four Decades: An Interdisciplinary Perspective; Meeting, Lake Arrowhead, California, USA, 4–8 June 1990. Xviii + 596 p. New York, USA; Berlin, Germany: Springer. Illus: 503–518.
- Levin, I., and V. Hesshaimer. 2000. Radiocarbon: A unique tracer of global carbon cycle dynamics. *Radiocarbon* 42: 69–80.
- Levin, I., and U. Karstens. 2007. Inferring high-resolution fossil fuel CO₂ records at continental sites from combined ¹⁴CO₂ and CO observations. *Tellus* 59B: 245–250.
- Levin, I., and B. Kromer. 2004. The tropospheric ¹⁴CO₂ level in mid-latitudes of the Northern Hemisphere (1959–2003). *Radiocarbon* 46: 1261–1272.
- Levin, I., J. Schuchard, B. Kromer, and K.O. Munnich. 1989. The continental European Suess effect. *Radiocarbon* 31: 431–440.
- Levin, I., B. Kromer, M. Schmidt, and H. Sartorius. 2003. A novel approach for independent budgeting of fossil fuel CO₂ over Europe by ¹⁴CO₂ observations. *Geophysical Research Letters* 30: 2194.
- Levin, I., S. Hammer, B. Kromer, and F. Meinhardt. 2008. Radiocarbon observations in atmospheric CO₂: determining fossil fuel CO₂ over Europe using Jungfraujoch observations as background. *Science of the Total Environment* 391: 211–216.
- Levin, I., T. Naegler, B. Kromer, M. Diehl, R.J. Francey, A.J. Gomez-Pelaez, L.P. Steele, D. Wagenbach, R. Weller, and D.E. Worthy. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric ¹⁴CO₂. *Tellus B* 62: 26–46.
- Lovenduski, N.S., N. Gruber, S.C. Doney, and I.D. Lima. 2007. Enhanced CO₂ outgassing in the southern ocean from a positive phase of the southern annular mode. *Global Biogeochemical Cycles* 21.

- Manning, M.R., D.C. Lowe, W.H. Melhuish, R.J. Sparks, G. Wallace, C.A.M. Brenninkmeijer, and R.C. McGill. 1990. The use of radiocarbon measurements in atmospheric sciences. *Radiocarbon* 32: 37–58.
- Manning, M.R., D.C. Lowe, R.C. Moss, G.E. Bodeker, and W. Allan. 2005. Short-term variations in the oxidizing power of the atmosphere. *Nature* 436: 1001–1004.
- Marland, G. 2010. Accounting for carbon dioxide emissions from bioenergy systems. Journal of Industrial Ecology 14: 866–869.
- Marland, G., T.A. Boden, and R.J. Andres. 2006. Global, regional and national CO₂ emissions. Trends: A compedium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.
- Masarik, J., and J. Beer. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the earth's atmosphere. *Journal of Geophysical Research-Atmospheres* 104: 12099–12111.
- Mazaud, A., C. Laj, E. Bard, M. Arnold, and E. Tric. 1991. Geomagnetic-field control of C-14 production over the Last 80 Ky—Implications for the radiocarbon timescale. *Geophysical Research Letters* 18: 1885–1888.
- McCormac, F., A. Hogg, T. Higham, J. Lynch-Stieglitz, W. Broecker, M. Baillie, J. Palmer, L. Xiong, J. Pilcher, D. Brown, and S. Hoper. 1998. Temporal variation in the interhemispheric C-14 Offset. *Geophysical Research Letters* 25: 1321–1324.
- McCormac, F., P. Reimer, A. Hogg, T. Higham, M. Baillie, J. Palmer, and M. Stuiver. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: A.D. 1850–1950. *Radiocarbon* 44: 641–651.
- Meijer, H.A.J., H.M. Smid, E. Perez, and M.G. Keizer. 1996. Isotopic characterization of anthropogenic CO₂ emissions using isotopic and radiocarbon analysis. *Physical Chemistry of the Earth* 21: 483–487.
- Miller, J.B., C. Wolak, S.J. Lehman, C.E. Allison, H.D. Graven, T.P. Guilderson, R.F. Keeling, H. A.J. Meijer, T. Nakamura, T. Nakazawa, R.E. Neubert, A.M. Smith, J.R. Southon, and X. Xu. 2010. Preliminary results of from the first intercomparison of accelerator mass spectrometry atmospheric ¹⁴CO₂ measurements. In: W. Brand, ed. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Measurement Techniques. World Meteorological Organization, Geneva.
- Meijer, H.A.J., M.H. Pertuisot, and J. van der Plicht. 2006. High-Accuracy C-14 measurements for atmospheric CO₂ samples by AMS. *Radiocarbon* 48: 355–372.
- Miller, J.B., S.J. Lehman, S.A. Montzka, C. Sweeney, B.R. Miller, C. Wolak, E.J. Dlugokencky, J. R. Southon, J.C. Turnbull, and P.P. Tans. 2012. Linking emissions of fossil fuel CO₂ and other anthropogenic trace gases using atmospheric ¹⁴CO₂. *Journal of Geophysical Research* 117.
- Miller, J.B., S. Lehmann, C. Wolak, J. Turnbull, G. Dunn, H. Graven, R. Keeling, H.A.J. Meijer, A.T. Aerts-Bijma, S.W.L. Palstra, A.M. Smith, C. Allison, J. Southon, X. Xu, T. Nakazawa, S. Aoki, T. Nakamura, T. Guilderson, B. LaFranchi, H. Mukai, Y. Terao, M. Uchida, and M. Kondo. 2013. Initial results of an intercomparison of AMS-based atmospheric ¹⁴CO₂ measurements. *Radiocarbon* 55: 1475–1483.
- Muscheler, R., J. Beer, G. Wagner, C. Laj, C. Kissel, G. Raisbeck, F. Yiou, and P. Kubik. 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of ¹⁰Be and ¹⁴C records. *Earth and Planetary Science Letters* 219: 325–340.
- Naegler, T., and I. Levin. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research-Atmospheres 111.
- Naegler, T., and I. Levin. 2009a. Biosphere-atmosphere gross carbon exchange flux and the delta (CO₂)-¹³C and Delta(CO₂)-¹⁴C disequilibria constrained by the biospheric excess radiocarbon inventory. *Journal of Geophysical Research-Atmospheres* 114.
- Naegler, T., and I. Levin. 2009b. Observation-based global biospheric excess radiocarbon inventory 1963–2005. *Journal of Geophysical Research* 114.
- Nakamura, T., T. Nakazawa, H. Honda, H. Kitagawa, T. Machida, A. Ikeda, and E. Matsumoto. 1994. Seasonal variations in ¹⁴C concentrations of stratospheric CO₂ measured with accelerator mass spectrometry. *Nuclear Instruments and Methods* B92: 413–416.

- Nakamura, T., T. Nakazawa, N. Nakai, H. Kitigawa, H. Honda, T. Itoh, T. Machida, and E. Matsumoto. 1992. Measurement of ¹⁴C concentrations of stratospheric CO₂ by accelerator mass spectrometry. *Radiocarbon* 34: 745–752.
- Nydal, R. 1963. Increase in radiocarbon from most recent series of thermonuclear tests. *Nature* 200: 212.
- Nydal, R. 1968. Further investigation on transfer of radiocarbon in nature. *Journal of Geophysical Research* 73: 3617.
- Nydal, R., and K. Lovseth. 1965. Distribution of Radiocarbon from Nuclear Tests. *Nature* 206: 1029.
- Nydal, R., and K. Lovseth. 1983. Tracing bomb ¹⁴C in the atmosphere 1962–1980. *Journal of Geophysical Research-Oceans and Atmospheres* 88: 3621–3642.
- O'Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the earth's atmosphere. *Journal of Paleolimnology* 84: 423.
- Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box diffusion model to study the carbon dioxide exchange in nature. *Tellus* XXVII:168–192.
- Pacala, S.W., C. Breidenich, P.G. Brewer, I.Y. Fung, M.R. Gunson, G. Heddle, B.E. Law, G. Marland, K. Paustian, M. Prather, J.T. Randerson, P.P. Tans, and S.C. Wofsy. 2010. Verifying greenhouse gas emissions: methods to support international climate agreements. Committee on Methods for Estimating Greenhouse Gas Emissions: National Research Council.
- Palstra, S.W., U. Karstens, H.-J. Streurman, and H.A.J. Meijer. 2008. Wine ethanol ¹⁴C as a tracer for fossil fuel CO₂ emissions in Europe: Measurements and model comparison. *Journal of Geophysical Research* 113.
- Pasquier-Cardin, A., P. Allard, T. Ferreira, E.C. Hatt, R. Coutinho, M. Fontugne, and M. Jaudon. 1999. Magma derived CO₂ emissions recorded in ¹⁴C and ¹³C content of plants growing in furnas caldera, Azores. *Journal of Volcanology and Geothermal Research* 92: 195–207.
- Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: Closing the gap. Global Biogeochemical Cycles 18.
- Petrenko, V.V., A.M. Smith, E.J. Brook, D.C. Lowe, K. Riedel, G. Brailsford, Q. Hua, H. Schaefer, N. Reeh, R.F. Weiss, D.M. Etheridge, and J.P. Severinghaus. 2009. ¹⁴CH₄ measurements in greenland ice: Investigating the last glacial termination CH₄ sources. *Science* 324: 506–508.
- Peylin, P., S. Houweling, M. Krol, U. Karstens, C. Rodenbeck, C. Geels, A. Vermeulen, B. Badawy, C. Aulagnier, T. Pregger, F. Delage, G. Pieterse, P. Ciais, and M. Heimann. 2011. Importance of fossil fuel emission uncertainties over Europe for CO₂ modeling: Model intercomparison. *Atmospheric Chemistry and Physics* 11: 6607–6622.
- Quay, P.D., J. Stutsman, D. Wilbur, A.K. Snover, E.J. Dlugokencky, and T.A. Brown. 1999. The isotopic composition of atmospheric methane. *Global Biogeochemical Cycles* 13: 445–461.
- Rafter, T.A., and G.J. Fergusson. 1957. "Atom bomb effect"—Recent increase of carbon-14 content of the atmosphere and biosphere. *Science* 126: 557–558.
- Randerson, J., I. Enting, E. Schuur, K. Caldeira, and I. Fung. 2002. Seasonal and Latitudinal variability of troposphere $\Delta(CO_2)^{-14}C$: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. *Global Biogeochemical Cycles* 16.
- Rayner, P.J., M.R. Raupach, M. Paget, P. Peylin, and E. Koffi. 2010. A new global gridded data set of CO₂ emissions from fossil fuel combustion: Methodology and evaluation. *Journal of Geophysical Research* 115: D19306.
- Reimer, P.J. 2013. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years CAL BP. *Radiocarbon* 55: 1869–1887.
- Reimer, P.J., M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, P.G. Blackwell, C.B. Ramsey, C.E. Buck, G.S. Burr, R.L. Edwards, M. Friedrich, P.M. Grootes, T.P. Guilderson, I. Hajdas, T. J. Heaton, A.G. Hogg, K.A. Hughen, K.F. Kaiser, B. Kromer, F.G. McCormac, S.W. Manning, R.W. Reimer, D.A. Richards, J.R. Southon, S. Talamo, C.S.M. Turney, J. van der Plicht, and C.E. Weyhenmeye. 2009. IntCal09 and marine09 radiocarbon age calibration curves, 0–50,000 years CAL BP. *Radiocarbon* 51: 1111–1150.

- Revelle, R., and H.E. Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO₂ during the past decades. *Tellus* 9: 18–27.
- Riley, W.G., D.Y. Hsueh, J.T. Randerson, M.L. Fischer, J. Hatch, D.E. Pataki, W. Wang, and M. L. Goulden. 2008. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. *Journal of Geophysical Research* 113.
- Rodgers, K.B., S.E. Mikaloff-Fletcher, D. Bianchi, C. Beaulieu, E.D. Galbraith, A. Gnanadesikan, A.G. Hogg, D. Iudicone, B.R. Lintner, T. Naegler, P.J. Reimer, J.L. Sarmiento, and R.D. Slater. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of southern ocean winds. *Climate of the Past* 7: 1123–1138.
- Saurer, M., P. Cherubini, G. Bonani, and R. Siegwolf. 2003. Tracing carbon uptake from a natural CO2 spring into tree rings: An isotope approach. *Tree Physiology* 23: 997–1004.
- Schuur, E.A.G., et al. 2015. Climate change and the permafrost carbon feedback. *Nature*, 520 (7546): 171–179, doi:10.1038/nature14338
- Scott, E.M., G.T. Cook, P. Naysmith, C. Bryant, and D. O'Donnell. 2007. A report on phase 1 of the 5th international radiocarbon intercomparison (VIRI). *Radiocarbon* 49: 409–426.
- Shibata, S., E. Kawano, and T. Nakabayashi. 2005. Atmospheric [¹⁴C]CO₂ variations in Japan during 1982–1999 based on ¹⁴C measurements of rice grains. *Applied Radiation and Isotopes* 63: 285–290.
- Slater, J., L.A. Currie, J. Dibb, and B.A.J. Benner. 2002. Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at summit, greenland through isotopic and molecular characterization of insoluble carbon. *Atmospheric Environment* 36: 4463–4477.
- Stephens, B., K. Gurney, P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. Langenfelds, L. Steele, R. Francey, and A. Denning. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO₂. *Science* 316: 1732–1735.
- Stuiver, M., and T.F. Braziunas. 1993. Sun, ocean, climate and atmospheric ¹⁴CO₂: An evaluation of causal and spectral relationships. *Holocene* 3: 289–305.
- Stuiver, M., and T.F. Braziunas. 1998. Anthropogenic and solar components of hemispheric ¹⁴C. Geophysical Research Letters 25: 329–332.
- Stuiver, M., and P.D. Quay. 1981. Atmospheric ¹⁴C changes resulting from fossil-fuel CO₂ release and cosmic-ray flux variability. *Earth and Planetary Science Letters* 53: 349–362.
- Suess, H.E. 1955. Radiocarbon concentration in modern wood. Science 122: 415-417.
- Sweeney, C., E. Gloor, A. Jacobson, R. Key, G. McKinley, J. Sarmiento, and R. Wanninkhof. 2007. Constraining global air-sea gas exchange for CO₂ with recent bomb ¹⁴C measurements. *Global Biogeochemical Cycles* 21.
- Szidat, S., T.M. Jenk, H.-A. Synal, M. Kalberer, L. Wacker, I. Hajdas, A. Kasper-Giebl, and U. Baltensperger. 2006. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in zurich as traced by ¹⁴C. *Journal of Geophysical Research* 111.
- Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C.S. Wong, B. Delille, N.R. Bates, and H.J.W. de Baar. 2009. Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans. *Deep-Sea Research Part I-Oceanographic Research Papers* 56: 554.
- Tans, P.P., A.F. De Jong, and W.G. Mook. 1979. Natural atmospheric ¹⁴C variation and the Suess effect. *Nature* 280: 826–828.
- Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess ¹⁴C from March 1955 to July 1969. *Health and Safety Laboratory Environmental Quarterly* 243.
- Townsend-Small, A., S.C. Tyler, D.E. Pataki, X. Xu, and L.E. Christensen. 2012. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of "Fugitive" fossil fuel emissions. *Journal of Geophysical Research: Atmospheres* 117: n/a.

- Trumbore, S.E., J.B. Gaudinski, P.J. Hanson, and J.R. Southon. 2002. quantifying ecosystem-atmosphere carbon exchange with a ¹⁴C Label. *EOS transactions* 83: 265–268.
- Turnbull, J.C., D. Guenther, A. Karion, C. Sweeney, E. Anderson, A.E. Andrews, J. Kofler, N.L. Miles, T. Newberger, S.J. Richardson, and P.P. Tans. 2012. An integrated flask sample collection system for greenhouse gas measurements. *Atmospheric Measurement Techniques* 5: 2321–2327.
- Turnbull, J.C., H. Graven, J. Miller, S. Lehmann, and Workshop Participants. 2013. Atmospheric Radiocarbon Workshop Report. *Radiocarbon* 55: 1470–1474.
- Turnbull, J.C., A. Karion, M.L. Fischer, I. Faloona, T. Guilderson, S.J. Lehman, B.R. Miller, J.B. Miller, S. Montzka, T. Sherwood, S. Saripalli, C. Sweeney, and P.P. Tans. 2011. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. *Atmospheric Chemistry and Physics* 11: 705–721.
- Turnbull, J.C., E.D. Keller, W.T. Baisden, G. Brailsford, T. Bromley, M. Norris, and A. Zondervan. 2014. Atmospheric measurement of point source fossil fuel CO₂ emissions. *Atmospheric Chemistry and Physics* (in press).
- Turnbull, J.C., S.J. Lehman, J.B. Miller, R.J. Sparks, J.R. Southon, and P.P. Tans. 2007. A new high precision ¹⁴CO₂ time series for North American continental air. *Journal of Geophysical Research* 112: D11310.
- Turnbull, J.C., J.B. Miller, S.J. Lehman, P.P. Tans, R.J. Sparks, and J.R. Southon. 2006. Comparison of ¹⁴CO₂, CO and SF₆ as tracers for determination of recently added fossil fuel CO₂ in the atmosphere and implications for biological CO₂ exchange. *Geophysical Research Letters* 33: L01817.
- Turnbull, J.C., J.B. Miller, S.J. Lehman, D.F. Hurst, W. Peters, P.P. Tans, J.R. Southon, S.A. Montzka, J.W. Elkins, D.J. Mondeel, P.A. Romashkin, N.F. Elansky, and A. Shkorokhod. 2009a. Spatial distribution of Δ^{14} CO₂ across Eurasia: Measurements from the TROICA-8 expedition. *Atmospheric Chemistry and Physics* 9: 175–187.
- Turnbull, J.C., P.J. Rayner, J.B. Miller, T. Naegler, P. Ciais, and A. Cozic. 2009b. On the use of ¹⁴CO₂ as a tracer for fossil fuel CO₂: Quantifying uncertainties using an atmospheric transport model. *Journal of Geophysical Research* 114: D22302.
- UNSCEAR, 2000. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, 1, Annex C. United Nations, New York.
- Usoskin, I.G., and B. Kromer. 2005. Reconstruction of the ¹⁴C production rate from measured relative abundance. *Radiocarbon* 47: 31–37.
- Van Der Laan, S., U. Karstens, R.E.M. Neubert, I.T. Van Der Laan-Luijkx, and H.A.J. Meijer. 2010. Observation-based estimates of fossil fuel-derived CO₂ emissions in the Netherlands using Δ^{14} C, CO and ²²²radon. *Tellus B* 62: 389–402.
- Vogel, F.R., S. Hammer, A. Steinhof, B. Kromer, and I. Levin. 2010. Implication of weekly and diurnal ¹⁴C calibration on hourly estimates of CO-based fossil fuel CO₂ at a moderately polluted site in south-western Germany. *Tellus* 62: 512–520.
- Vogel, J.C., A. Fuls, E. Visser, and B. Becker. 1993. Pretoria calibration curve for short-lived samples, 1930–3350 B.C. *Radiocarbon* 35: 73–85.
- Weinstock, B., and H. Niki. 1972. Carbon Monoxide Balance in Nature. Science 176: 290-292.
- Zondervan, A., and H.A.J. Meijer. 1996. Isotopic Characterisation of CO₂ sources during regional pollution events using isotopic and radiocarbon analysis. *Tellus* 48B: 601–612.