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1. Introduction

Terrestrial ecosystem respiration (Re) is a crucial
component of the carbon cycle and is expected
to increase with anthropogenic warming [1]. The
temperature response of Re is typically paramet-
erized using temperature sensitivity Q10, which
describes the increase in respiration with a 10 K
rise in temperature. This is commonly expressed
as [2]

Q10 =
Re (T+ 10)

Re (T)
= e

Ea
k

10
(T+10) . (1)

However, the Arrhenius equation [3] provides a
more mechanistic foundation by explicitly incor-
porating activation energy (Ea), which governs
the temperature dependence of biochemical
reactions,

Re = ae
−Ea
kT , (2)

where Re is ecosystem respiration, a is a reference
respiration rate, Ea is activation energy (eV), k is
Boltzmann’s constant (8.62 × 10−5 eV K−1), and T
is temperature (K) (table 1).

The respiration increase largely determines the
future direction of the terrestrial-atmosphere carbon
balance [4, 5]. However, our current understanding
of the mechanisms driving Q10 variation across latit-
udes and biomes is still insufficient [6, 7]. As a result,
it remains difficult to constrain predictions of future
Re dynamics [4, 8].

The Michaelis–Menten (MM) kinetics
[9], developed to describe enzyme-catalyzed reac-
tions, is a cornerstone to understand biochemical
processes at cellular and molecular levels. This model
effectively captures the relationship between sub-
strate concentration and reaction rates, simplifying
complex biochemical interactions into manageable
mathematical expressions using the key paramet-
ers Vmax (maximum reaction rate) and Km (substrate
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concentration at half themaximum rate). The general
form of the MM equation is

Re =
Vmax · S
Km + S

(3)

where S represents the substrate concentration. The
applicability of such a microscopic model to large-
scale ecosystem processes can be questioned [10].
However, most Earth system models already incor-
porate the Farquhar–von Caemmerer–Berry (FvCB)
biochemical model [11], which is grounded in MM
kinetics, to simulate photosynthesis at ecosystem or
larger scales. By contrast, the description of respira-
tion processes over large ecosystem scale still predom-
inantly relies on more empirical models [1, 12, 13],
projecting an exponential temperature response with
Arrhenius [13] or Q10 types of functions [3].

The FvCB model is fundamentally a leaf-scale
approach, which various Land Surface Models
(LSMs) have extended to the canopy level through
various scaling methods [14, 15]. Early models
treated the canopy as a simple ‘big leaf ’, but more
advanced models incorporate sunlit and shaded
leaves or even use numerical multi-layer approaches
to capture vertical gradients in photosynthetic capa-
city, such as the exponential decrease of Vmax with
canopy depth [15]. Ecosystem-level respiration mod-
eling is more complex, involving diverse compon-
ents like stems, roots, microbes, and animals, with
both anaerobic and aerobic pathways [6]. Thus, while
upscaling photosynthesis has been refined, questions
remain about the applicability of MM kinetics for
capturing ecosystem-level respiration dynamics.

Despite the example of photosynthesis, the com-
plexity of ecosystem respiration—which encom-
passes autotrophic processes in plants and hetero-
trophic activities of soil microbes—poses challenges
for applying a simplified model like MM kinetics
at large scales [10]. To enhance its effectiveness, we
propose temperature and substrate availability (e.g.
soil organic carbon) as key predictors of respira-
tion rates. Temperature regulates enzymatic reaction
rates in both autotrophic and heterotrophic path-
ways, while substrate availability provides the fuel
for microbial respiration. Additionally, soil moisture
should be considered, as it influences substrate access-
ibility and microbial activity in many ecosystems.

Ecosystem respiration operates across a wide
range of temporal and spatial scales, interacting
with dynamics and spatially heterogeneous environ-
mental factors like temperature, moisture, and sub-
strate availability [6, 16], which further complicate
the application ofMMkinetics at ecosystem scale [16,
17]. One particularly challenging issue is the non-
linear response of ecosystem respiration to moisture,
where the precipitation thresholds can drastically
shift ecosystems between water-limited and energy-
limited states [18, 19]. This raises the question:
Can MM kinetics adequately capture the nonlinear

dynamics of ecosystem respiration at large scales,
especially in the context of a precipitation threshold?
This paper aims to discuss arguments against and in
favor of this question, drawing on existing research
and data to explore the strengths and limitations of
using this model to predict ecosystem-level carbon
cycling.

2. Problems of usingMM kinetics for
large-scale ecosystem respiration

A primary challenge in applying MM kinetics to
ecosystem respiration lies in scalability. Originally
developed for enzyme-level reactions, MM kinetics
does not naturally extend to larger, complex systems
like ecosystems. Ecosystems involve numerous organ-
isms and processes, eachwith unique contributions to
respiration and individual Vmax and Km parameters.
Simple summing or averaging of these interactions
across an entire ecosystem does not typically preserve
the original MM form, as parameters like Vmax and
Km, which are well-defined in controlled conditions,
are difficult to apply in dynamic and heterogeneous
environments [8, 20, 21]. Choosing an appropriate
ecosystem substrate, then accounting for the variab-
ility in substrate concentrations and enzyme activit-
ies across spatial and temporal scales, complicates the
definition of ecosystem-wide MM parameters.

Despite these challenges, recent research indicates
it may be possible to derive ‘effective’ large-scale rates
that retain theMM form by accounting for ecosystem
heterogeneity and dynamic variability. By averaging
localized MM parameters (e.g. Vmax and Km) while
accounting for spatial and temporal variations, MM
kinetics can be approximated at broader scales. This
approach, which explicitly addresses ecosystem-level
complexities, suggests that MM kinetics may remain
valid at large scales, though not necessarily with
parameters directly interpretable in the same way as
in controlled lab settings [22, 23]. However, more
research is needed to establish the conditions, under
which these effective rates reliably capture ecosystem-
scale dynamics.

Ecosystem respiration involves a diverse array
of organisms—plants, microbes, animals—each
operating under varying physiological and envir-
onmental constraints [4, 24]. MM kinetics assumes
stable conditions for enzyme-substrate interactions,
whereas ecosystems are characterized by fluctuations
in substrate availability, temperature, and moisture.
Additionally, respiration of autotrophs and hetero-
trophs contribute differently to total CO2 fluxes [25,
26], further complicating the application of a uniform
model.

Another issue is the timescale. MM kinetics
describes rapid enzyme reactions occurring over mil-
liseconds, while ecosystem respiration operates on
much longer timescales influenced by nutrient cyc-
ling, biomass turnover, and other slower processes
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Table 1. Comparison of Michaelis–Menten and Arrhenius Models in the Context of Ecosystem Respiration Re.

Model Michaelis–Menten (MM) model Arrhenius model

Key parameters -Vmax (maximum enzyme activity) is
typically represented by ecosystem
respiration potential under optimal
conditions.

- Activation energy (Ea) is often replaced
with an empirical temperature sensitivity
parameter.

- KM (substrate affinity) is often linked to
environmental factors like soil moisture or
carbon availability.

- The pre-exponential factor can be
influenced by substrate availability and
microbial biomass.

Background - Describes the rates of enzyme reactions
depending on substrate concentration

- Describes the rates of chemical reactions
depending on temperature

- Substrate concentration is the main factor
of the reaction rate

- Temperature changes are the main factor
of the reaction rate

- Is based on 2 parameters: reflecting affinity
of enzyme to the substrate (KM) and
maximal reaction rate at substrate
saturation (Vmax).

- Assumed to be independent of the
reaction type and agents.

- Is independent of time

Advantages - Captures enzyme-substrate interactions,
suitable for biological systems.

- Directly models temperature effects; ideal
when temperature is the primary driver.-
Simple, broadly applicable, with
straightforward calculations.

- Considers substrate saturation, including
soil moisture via substrate concentration.
- Allows temperature effects via Vmax and
KM adjustments.

Limitations - Temperature effects are indirect, requiring
separate functions for Vmax and KM.

- Ignores substrate saturation, limiting
accuracy in systems with varying resources.

- Challenging to scale due to
non-linearity and substrate variability.

- May oversimplify reactions influenced by
enzyme kinetics and resource availability.
- Less accurate where substrate controls the
reaction rates.
- Ignores denaturation of enzymes by
warming

[27]. Using MM kinetics at this scale can reduce it to
an empirical tool, alienated from its enzyme-level the-
oretical foundation.

In this context, the Arrhenius equation provides
an alternative approach that scales more naturally to
ecosystem-level respiration.Widely used in ecosystem
studies, the Arrheniusmodel does not rely on detailed
enzyme mechanisms [28, 29] but instead captures
temperature effects on respiration at a broader scale.
Though less mechanistic than MM kinetics, it offers
a practical framework for modeling of ecosystem
dynamics (table 1).

In summary, ecosystem respiration involves com-
plex biological processes across multiple scales. MM
kinetics, while effective at the enzyme level, relies on
assumptions that rarely hold in ecosystems. Scaling
MM kinetics to the ecosystem level oversimpli-
fies real-world variability, leading to inaccuracies.
Nonlinear models like MM kinetics do not scale pre-
dictably, and the emergent behaviors of ecosystems
cannot be fully captured bymodels designed for indi-
vidual enzyme reactions. As such, while MM kinet-
ics offers an intriguing conceptual framework, it often
results in a loss of accuracy and theoretical coherence
when applied to larger scales (table 1).

3. Possibilities to use MM kinetics for
large-scale ecosystem respiration

The MM kinetics framework, traditionally applied
to enzyme-catalyzed reactions at the microbial or
molecular level, has increasingly been adapted for
use in ecosystem-scale studies, particularly in under-
standing carbon cycling and ecosystem respiration.
Several studies provide strong evidence that MM kin-
etics can effectively describe processes involved in
soil organic matter (SOM) decomposition, extracel-
lular enzyme activities, and temperature sensitivities
in ecosystems.

(i) Temperature Sensitivity and Soil Enzyme Kinetics
In German et al [30], the MM kinetic framework was
applied to study the activity of extracellular hydro-
lytic enzymes across a latitudinal gradient fromboreal
forests to tropical rainforests. These enzymes are cru-
cial for SOM decomposition. Although the study was
conducted under controlled conditions, it demon-
strated that Vmax and KM of enzymes involved in
SOM degradation, such as β-glucosidase and cello-
biohydrolase, were both temperature-sensitive, with

3
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Q10 values indicating strong increases in Vmax across
temperatures.

While KM had lower temperature sensitivity, its
variability showed that MM kinetics can effectively
capture enzyme responses to temperature changes,
offering preliminary insights relevant to soil C
dynamics. This study suggests that MM kinetics,
when properly adapted, offers a mechanistic frame-
work to understand soil carbon loss under global
warming. However, further research is needed to val-
idate MM’s applicability at ecosystem scales, where
environmental complexity and natural soil variabil-
ity play a larger role.

(ii) Nonlinear Temperature Sensitivity and the
Canceling Effect
The concept of a ‘canceling effect’, first introduced
by Davidson and Janssens [6], describes how dif-
fering temperature sensitivities between Vmax and
KM can dampen the overall temperature response of
enzymatic reactions under limited substrate condi-
tions. Razavi et al [31] expanded on this concept
by examining the nonlinear temperature sensitiv-
ity of soil enzymes involved in SOM decomposi-
tion in loamy haplic Luvisol. Their study observed
that while Vmax for enzymes like β-glucosidase and
cellobiohydrolase increased nonlinearly between 10
and 15 ◦C, a reduction in enzyme-substrate affinity
(increased KM) at temperatures above 25 ◦C led to
a sharp decline in overall enzyme activity. This can-
celing effect was particularly evident at low substrate
concentrations and moderate temperatures, suggest-
ing a natural regulatory mechanism that could buffer
the effects of global warming on SOMdecomposition
rates.

Razavi et al [31] studied the nonlinear beha-
vior of soil enzyme kinetics in response to warming.
The MM kinetics framework allowes to demonstrate
how temperature thresholds affect enzyme functions,
which in turn affects soil respiration. Importantly,
the canceling effect can offset some of the warming-
induced acceleration in SOM decomposition, espe-
cially in temperate regions, indicating thatMMkinet-
ics can incorporate nuanced responses to temperature
changes in predictive models. This study underscores
the necessity of including such nonlinear dynamics
in Earth system models to improve predictions at
regional and global scales.

Blagodatskaya et al [32] expanded on the can-
celing effect by examining the temperature sensitivity
of SOM decomposition along an altitudinal gradient
on Mount Kilimanjaro. They observed that, as alti-
tude increased, so did KM, which counteracted the
increase inVmax with temperature. This phenomenon
resulted in a ‘canceling effect’, reducing decomposi-
tion rates at higher altitudes and indicating a thermal
adaptation in cold climates. By defining threshold
substrate concentrations (Scrit), below which decom-
position becomes temperature-insensitive, the soils in

cold climates may be less sensitive to global warm-
ing than those in warmer climates. These findings
underscore how environmental gradients influence
the applicability of MM kinetics for predicting large-
scale SOM decomposition in response to climate
change.

(iii) Nitrogen Fertilization and Forest Ecosystems
A similar approach was taken by Stone et al [33], who
used MM kinetics to explore the effects of nitro-
gen fertilization on soil enzymes in temperate forests.
The long-term nitrogen addition strongly increased
the Vmax values of multiple enzymes, including
α-glucosidase and β-glucosidase, in forest soils.
Interestingly, nitrogen fertilization also affected KM

values, showing that MM kinetics could capture both
potential reaction rate and substrate affinity changes
in response to nutrient inputs.

In addition, Vmax and KM were sensitive to tem-
perature changes, with Q10 values ranging from 1.6
to 2.3 for Vmax, suggesting a robust increase in sub-
strate degradation rates at higher temperatures. The
application of MM kinetics in this context provided
insights into how nitrogen deposition could exacer-
bate carbon release from forest soils under warming
conditions. This underscores the utility of MM kinet-
ics for predicting ecosystem respiration responses to
both nutrient enrichment and climate change.

(iv) Ecosystem-Level Modeling and Prediction
These studies not only demonstrate the relevance
of MM kinetics to understand enzyme behavior in
ecosystems but also show that MM-based models
can scale up from microbial processes to predict
ecosystem-wide responses. In both microbial and
ecosystem-scale applications, temperature sensitivity
and nutrient effects were captured throughMMpara-
meters, enabling predictions of CO2 release and soil
respiration under varying environmental conditions.

For example, German et al [30] tested the hypo-
thesis that enzymes from higher latitudes (cooler cli-
mates) would be more sensitive to temperature than
those from lower latitudes (warmer climates). They
found that enzymes in cooler climates have greater
temperature sensitivities, validating the potential of
MMkinetics to capture regional variations in enzyme
activity and carbon cycling. This study demonstrates
that local adaptations of microorganisms to produce
enzymes efficient under specific conditions can influ-
ence ecosystem responses to climate change, further
supporting the application of MM models at larger
scales.

These successful examples demonstrate the viab-
ility of MM kinetics in capturing ecosystem respir-
ation thresholds and carbon cycling dynamics. By
adapting parameters such as Vmax and KM to account
for temperature and nutrient conditions, researchers
have shown that MM kinetics can effectively model
ecosystem-scale processes. This challenges the notion
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that MM kinetics are confined to small-scale biolo-
gical systems and suggests that, with proper paramet-
erization, MM-based models can predict critical car-
bon cycle feedbacks in a changing climate.

4. New data supporting the use of MM
kinetics

Our recent study [18]investigated the mechanisms
behind the apparent Q10 decline for drier ecosys-
tems, represented by larger Budyko dryness index
(DI), and further supported the application of
MM kinetics at large ecosystem scale. The DI,
defined as the ratio of potential evapotranspiration to
precipitation [34], was shown to demarcate temper-
ature and precipitation dependence of ecosystem res-
piration. When DI < 1, Re is temperature-sensitive,
whereas when DI > 1, Re becomes precipitation-
limited and its sensitivity to temperature is reduced.

Most current LSMs assume the temperature
and moisture effects on Re to be independent [1].
However, recent observations challenge this, showing
that the temperature sensitivityQ10 varies with mois-
ture conditions [18, 19] Using FLUXNET2015 data
[35] from 212 global sites, we identified DI= 1 as the
threshold at which Re shifts from temperature-driven
(wet conditions) to moisture-driven (dry condi-
tions). Specifically, in wetter environments (DI < 1),
Q10 decreases linearly with increasing DI, while in
drier environments (DI > 1), Q10 remains low and
stable [18].

At the ecosystem scale, the temperature sensit-
ivity of Re can be interpreted through the lens of
MM kinetics, which effectively models the inter-
actions between substrate availability (e.g. carbon)
and enzyme-mediated processes over that scale. The
Arrhenius equation (table 1), traditionally used to
describe temperature sensitivity, was also applied to
calculate activation energy (Ea) across sites with vary-
ingDI values. Inwet conditions (DI< 1),Ea decreases
linearly with increasing DI, whereas in dry condi-
tions (DI > 1), Ea remains low and nearly constant
(figure 1). This suggests that the probability of reac-
tion occurrence by overcoming the energy barrier
(activation energy) increasesmore rapidly inwet con-
ditions than in dry ones, leading to greater temperat-
ure sensitivity of Re in moist environments.

To explain whyQ10, or Ea in the Arrheniusmodel,
depend on DI, the MM kinetics model (table 1)
provides a compelling framework. In wet conditions
(DI < 1), where substrate (e.g. carbon) is abund-
ant, the system approaches Vmax, and the temperat-
ure sensitivity of Re is driven primarily by Vmax (T).
In dry conditions (DI > 1), substrate availability
diminishes, and Re becomes decoupled from tem-
perature as the MM kinetics equation suggests—
low substrate concentration leads to T-insensitivity
(figure 1). This occurs because the temperature sens-
itivity of Vmax (T) is counteracted by the temperature

response of KM (T), leading to the ‘canceling effect’
also found in laboratory studies[31].

We also examined the site-specific maximum
(LAImax) as a proxy for ecosystem productivity and
substrate availability. In wet sites (DI < 1), LAImax

remains consistently high, but it decreases sharply
near DI= 1 and continues to decline as DI increases,
reflecting reduced biomass and microbial activity
under water-limited conditions (figure 1). These
findings are consistent with decreased carbon flux
between soil, canopy, and atmosphere under dry
conditions [36, 37], further decoupling Re from tem-
perature under such water limitation, and supporting
the utility ofMMkinetics inmodeling these processes
at ecosystem scale.

In summary, analysis of FLUXNET data under-
scores the potential of MM kinetics to explain the
shifting temperature sensitivity of ecosystem respira-
tion acrossmoisture gradients, providingmechanistic
insights into how substrate availability and enzyme
kinetics interact under varying climatic conditions.

5. Future directions: extendingMM
kinetics to ecosystem respiration

While MM kinetics has long been applied to estim-
ate gross primary production (GPP, photosynthesis)
across various time and spatial scales, its application
to ecosystem respiration remains limited. The MM
application difference between assessments of GPP
and ecosystem respiration underscores an important
gap in current ecological modeling, one that presents
both challenges and opportunities for future research.
Expanding MM kinetics to more comprehensively
model ecosystem respiration could strongly advance
our understanding of the carbon cycle, especially in
the context of climate change.

5.1. Application of MM kinetics to GPP vs.
ecosystem respiration
The broad application of MM kinetics to GPP
has yielded valuable insights into photosynthetic
processes and carbon uptake. However, ecosys-
tem respiration—which includes respiration of
both autotrophs (plants) and heterotrophs (mostly
microorganisms)—has not been similarly modeled
with MM kinetics.

Understanding the difference: One reason for this
difference may lie in the relative simplicity of pho-
tosynthetic processes compared to the complex and
variable factors that influence respiration. GPP is
driven by relatively predictable factors like light, tem-
perature, and CO2 concentration. Ecosystem respir-
ation, however, is influenced by a wider array of
environmental and biological variables, such as tem-
perature, moisture, substrate availability, microbial
activity [38, 39], and plant physiology. This complex-
ity makes it more difficult to apply a straightforward
MM framework to respiration.
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Figure 1.Mechanistic explanation of a temperature-sensitivity moisture threshold using Michaelis–Menten (MM) kinetics. 212
sites of FLUXNET2015 were grouped by dryness index (DI) into six intervals: 0< DI< 0.4 (9 sites); 0.4< DI< 0.7 (61 sites);
0.7< DI< 1.0 (58 sites); 1.0< DI< 1.4 (38 sites); 1.4< DI< 2.2 (23 sites); and DI> 2.2 (23 sites). The activation energy Ea
and its variability are high under moist climates when DI< 1, where substrate availability (S) is much lower than the
half-saturation constant (KM), making the MMmodel highly sensitive to temperature. Under dry climates with DI> 1, KM ≈ S,
and the temperature sensitivities of Vmax and KM largely cancel out, leading to a lower and more stable Ea. Maximum monthly
leaf area index (LAI) was used as a proxy for substrate availability (S). The whiskers on each data point represent standard errors.
The equations in the figure illustrate MM kinetics depending on moisture conditions, explaining why Ea varies across DI. For

each DI group, we estimate Ea using Ea =
1
kT
ln
(

a
Re

)
based on temperature and Re data.

Potential for Extension: Despite these challenges,
the potential to extend MM kinetics to model eco-
system respiration is considerable. Doing so would
provide a more mechanistic and process-based rep-
resentation of both major components of the car-
bon cycle, enabling more accurate predictions of
net ecosystem exchange depending on environmental
conditions.

5.2. Challenges in applyingMM kinetics to
ecosystem respiration
Several challenges must be overcome to apply MM
kinetics to ecosystem respiration effectively.

Heterogeneity of Respiratory Processes: Respiration
involves both autotrophic (plant) and heterotrophic
(microbial) components, each of which responds spe-
cifically to environmental factors. The MM paramet-
ers (Vmax and KM) would need to be calibrated sep-
arately for these processes, which poses a methodolo-
gical challenge.

Approaches for Calibration: In controlled labor-
atory or greenhouse experiments, autotrophic and
heterotrophic respiration can be isolated using
root exclusion methods, stable isotope labeling, or
chamber-based incubations. These techniques allow
estimation of species- or functional-group-specific
MM parameters under well-defined conditions.
However, scaling these parameters to the ecosystem
level is more complex due to spatial heterogeneity
and environmental variability.

Scaling Complexity: Bridging this gap requires
integrating multiple data sources, including
ecosystem-scale flux measurements (e.g. eddy cov-
ariance), soil chamber experiments, and isotope
tracing, to differentiate autotrophic and hetero-
trophic contributions [40]. Machine learning tech-
niques can further aid in inferring effective MM
parameters across diverse environmental conditions.
Additionally, process-based modeling approaches
can incorporate findings from controlled laboratory
incubations and greenhouse experiments to improve
parameterization at ecosystem scales. Future research
should focus on developing scalable techniques that
account for spatial and temporal variability in res-
piration dynamics, ensuring that MM kinetics can be
effectively applied across ecosystems.

Temperature Sensitivity: Ecosystem respiration,
especially heterotrophic respiration, is highly sens-
itive to temperature changes. MM kinetics, which
already incorporates temperature effects on enzyme
activity, could be a valuable framework for model-
ing temperature-respiration relationships, especially
under changing climate conditions. However, cap-
turing this sensitivity accurately at large scales will
require advanced coupling of MM models with cli-
mate and hydrological variables.

5.3. Toward a unified framework for carbon cycle
modeling
One promising direction for future research is the
development of a unified framework that appliesMM
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kinetics to both GPP and ecosystem respiration. This
would allow for more integrated and mechanistic
modeling of carbon fluxes at ecosystem and global
scales as well as application of partly the same para-
meters for GPP and Re.

Parameterization for Respiration: Developing
robust parameterizations of MM kinetics for
ecosystem respiration is a key research priority.
This includes determining appropriate effective
ecosystem-scale Vmax and KM values for respira-
tion across biomes and environmental conditions.
Rather than parameterizing arbitrary ‘segments’ of
the biome, a more effective approach would be to
infer emergentMMparameters at the ecosystem scale
using integrative techniques. Ecosystem-scale flux
measurements (e.g. eddy covariance), soil chamber
data, and machine learning methods can be lever-
aged to constrain effectiveMM kinetics. Additionally,
process-based modeling approaches can integrate
controlled experimental findings with field obser-
vations, improving parameterization across environ-
mental gradients while minimizing equifinality issues
[38, 39].

Dynamic Feedbacks: Rather than treating auto-
trophic and heterotrophic respiration as fully inde-
pendent processes, an alternative approach is to
model their interactions explicitly within an MM-
based framework. Heterotrophic respiration depends
dynamically on carbon inputs by autotrophs, par-
ticularly in the rhizosphere, where root exudates
fuel microbial activity [41–43]. While the Krebs
cycle is a shared metabolic pathway for respiration,
differences in substrate availability, environmental
responses, and spatial distribution justify distinguish-
ing between autotrophic and heterotrophic contri-
butions. However, to balance complexity and tract-
ability, an effective approach could involve coupling
MM-based GPP and respiration parameterizations
while integrating empirical constraints. Rather than
explicitly separating autotrophic and heterotrophic
respiration in a highly complex framework, mod-
els could leverage emergent dependencies of total
ecosystem respiration on GPP, ensuring that carbon
exchange between plants and microbes is adequately
represented while maintaining dynamic feedback.

5.4. Leveraging data for improvedmodel
calibration
Advances in satellite-based remote sensing and net-
works like FLUXNET offer new opportunities to
refine MM kinetics at the ecosystem scale. High-
resolution datasets, such as eddy covariancemeasure-
ments, provide critical substrate, temperature, and
moisture data to calibrateMMmodels at regional and
global levels.

Machine learning algorithms can further aid this
effort by automating parameter estimation for Vmax

andKM anddetecting patterns that traditionalmodels
may overlook. By integrating AI tools with large-scale

data, we might be able to better predict how ecosys-
tems respond to environmental changes and identify
critical thresholds, refining MM-based approaches to
ecosystem respiration modeling.

5.5. Predicting ecosystem resilience and carbon
balance
Ultimately, applying MM kinetics to ecosystem res-
piration could help to predict ecosystem resilience
and the response of carbon cycling to climate change
[1, 5, 7, 18].

Thresholds and Tipping Points: As ecosystems
experience increasing stress due to climate change,
MM kinetics could help identify critical thresholds
or tipping points where respiration accelerates, lead-
ing to a net release of carbon. This could be par-
ticularly important for understanding carbon feed-
backs in vulnerable ecosystems like boreal forests and
peatlands.

Improving Global Carbon Budgets: ExtendingMM
kinetics to ecosystem respiration could enable more
accurate estimates of global carbon budgets by
providing amechanistic basis for predicting both car-
bon uptake and release. This would improve projec-
tions of how ecosystems respond to climate scenarios
and help guide climate mitigation strategies.

In summary, resolving the issues underlying the
current difference in application of MM kinetics
betweenGPP and ecosystem respiration is an import-
ant research direction. By extending MM kinetics to
ecosystem respiration, researchers can develop amore
mechanistic understanding of the carbon cycle at lar-
ger scales, ultimately improving predictions of eco-
system responses to climate change. Overcoming the
challenges associated with heterogeneity, scaling, and
data availability will be essential, but the potential
benefits for carbon cycle modeling and climate pro-
jections are significant.
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