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Abstract: Water resources have always been a major concern, particularly in arid and semiarid parts
of the world. Low precipitation and its uneven distribution in Algeria, along with fast population
and agriculture activity increase and, particularly, recent droughts, have made water availability
one of the country’s most pressing issues. The objectives of the studies reported in this article are
to investigate and forecast the meteorological and hydrological drought in Wadi Ouahrane basin
(270 km2) using linear stochastic models known as Autoregressive Integrated Moving Average
(ARIMA) and multiplicative Seasonal Autoregressive Integrated Moving Average (SARIMA). In
particular, data from 6 precipitation stations and 1 hydrometric station for the period 1972–2018 were
used to evaluate the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI)
for 12 months. Then, the multiplicative ARIMA model was applied to forecasting drought based on
SPI and SRI. As a result, the ARIMA model (1,0,1) (0,0,1)12 for SPI and (1,0,1) (1,0,1)12 for SRI were
shown to be the best models for drought forecast. In fact, both models exhibited high quality for
SPI and SRI of 0.97 and 0.51 for 1-month and 12-month lead time, respectively, based on validation
R2. In general, prediction skill decreases with increase in lead time. The models can be used with
reasonable accuracy to forecast droughts with up to 12 months of lead time.

Keywords: meteorological drought; hydrological drought; SPI; SRI; Wadi Ouahrane basin; ARIMA

1. Introduction

Drought is a recurring temporary natural phenomenon that generally results from a
decrease in precipitation relative to its long-term average and can occur in any climate [1].
However, an exact drought definition is not simple, as different drought types exist, which
can be defined based on the several hydrometeorological variables related to drought,
including precipitation, soil moisture, river flow, water level, and groundwater level.
For example, to distinguish meteorological drought the precipitation variable is used, to
distinguish agricultural drought the soil moisture variable is used, and other hydrological
cycle variables are used to diagnose hydrological drought [2,3]. Meteorological drought is
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known as the source of other types of droughts. Hydrological and agricultural droughts
arise from meteorological droughts [4].

In order to study this complex phenomenon, drought indicators are considered as a key
to quantifying the definition of drought in the implementation of drought programs [5,6].
One widely used drought index was presented by Palmer in 1965 (Palmer Drought Stress
Index or PDSI) and included previous precipitation as well as modeled soil moisture
storage and evapotranspiration [7]. One of the often used indices is SPEI (Standardized
Precipitation Evapotranspiration Index). This index is based on a standardized monthly
climatic balance calculated as the difference between the cumulative precipitation and
the potential evapotranspiration; the latter is estimated based on temperature and other
meteorological variables [8–11]. McKee et al. [8] developed the Standardized Precipitation
Index (SPI) and applied it to the Colorado area. SPI has several advantages over the Palmer
Drought Stress Index [8,12]. The first advantage is that SPI is based on precipitation only.
For this reason, SPI is not affected by soil type. Second, the SPI can be calculated at different
time scales, which allows it to describe different types of droughts: shorter time scales for
meteorological and agricultural droughts, and longer scales for hydrological droughts [13].
Third, due to the normal distribution of SPI, droughts are expressed on a scale that can
be used for any location and time duration. Moreover, Hayes et al. [14] argued that SPI
detects a moisture deficit faster than PDSI. Paolo et al. [15] used several drought indicators
in Portugal and concluded that SPI is superior to other indicators for drought monitoring.
Moreover, for hydrological drought, an index similar to the standardized precipitation
index called the Standardized Runoff Index (SRI) can be used, which is based on monthly
flow [16].

Time series methods provide an important approach in drought forecasting. One of
the most widely used time series models is the Autoregressive Integrated Moving Average
Model (ARIMA) [17]. The widespread use of the ARIMA model is due to its flexibility and
possibility for systematic search (identification and estimation) at each stage of a model [18].
The ARIMA model has several advantages over other models, in particular its predictability
and richer information about changes over time [19]. ARIMA models have also been used
to analyze and model hydrological time series [20]. Mishra and Desai [21] used the ARIMA
and seasonal ARIMA (SARIMA) models to predict the SPI time series in the Kansabati
River basin in India. The results show reasonably good agreement between the observed
and predicted data, 1–2 months ahead. The root mean square error and mean average
error value increases with increase in lead time. The models could be used to forecast
droughts with up to 2 months of lead time with reasonable accuracy. Fernandez et al. [22]
used the SARIMA model to predict flow in a small basin in Galicia, Spain. Durdu [23]
developed linear stochastic models to predict meteorological drought in Turkey using
the SPI series. Bazrafshan et al. [24] used multiplicative ARIMA to predict seasonal and
monthly hydrological drought. The results showed that the forecasts at seasonal scale had
less error. Concerning the Mediterranean region, the ARIMA model was used in Lebanon to
forecast temperature, precipitation, and then drought projections [25]. Finally, the authors
concluded that the method can serve as a tool for proactive climate change mitigation or
adaptation plans. Shatanawi et al. [26], based on calculation preformed in the Jordan River
basin, showed that ARIMA models can be used to forecast the future drought trends.

As mentioned above, drought, which is characterized by high spatial and temporal
variability [27], has significant environmental, social, and economic consequences [28]. In
particular, the investigation of both meteorological and hydrological drought is important
for water management and early warning and mitigation at basin scale [29]. Within this
context, the objective of this study is to use the multiplicative ARIMA (and SARIMA) model
for meteorological and hydrological drought forecasting in the Wadi Ouaharane watershed
located in Algeria. The ARIMA model was tested in this region, which experiences highly
variable precipitation and runoff. In the knowledge of authors, the method has not yet
been used to forecast drought in Algeria.
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For this study, we calculated time series of SPI and SRI at the 12-month time scale and
developed stochastic models to forecast and simulate these time series.

2. Data and Methods
2.1. Study Area and Data

The study area is the Wadi Ouahrane basin of northern Algeria, which is located
between 36◦00′ N and 36◦24′ N and between 01◦00′ E and 01◦30′ E. It is a small tributary of
Wadi Cheliff, extending over 270 km2 with a maximum altitude of 991 m and a minimum
altitude of 165 m (Figure 1). The Wadi Ouahrane basin is limited to the east by the basin
of Wadi Fodda, to the west by the Wadi Ras basin, to the north by the Wadi Allala basin,
and to the south by the Wadi Sly basin. The basin is monitored by six pluviometric stations
and one hydrometric station (Figure 1). It is influenced by the Mediterranean climate, with
an interannual average precipitation of 333 mm during the period 1972–2018. The mean
annual temperature is 18◦ C. The Ouled Farès sector receives a rainfall that varies from 207
to 628 mm, which is located below 200 m altitude. It occupies nearly 40% of the basin’s
area. The Benairia sector, located at more than 350 m altitude, receives an average annual
rainfall that varies between 234 and 749 mm. This sector covers about 60% of the basin.
The Wadi Ouahrane basin is defined by impermeable marl bedrock that covers 80% of
the basin’s surface. In contrast to the formations in the southern part of the basin, which
are composed of conglomerate and red sand and have an average permeability, these soft
lithological strata in the northern half of the basin are continually subjected to significant
water erosion. The primary agricultural activities in the wadi Ouahrane watershed, in
terms of land usage, are mixed farming and cereal cultivation [30]. The Köppen–Geiger
classification [31] identifies the climate of the basin as a hot-summer Mediterranean climate,
thus presenting relatively mild winters (with rain) and very hot summers (often very dry).
With this climate, the coldest month generally averages above 0 ◦C, at least 1 month’s
average temperature reaches values higher than 22 ◦C, and at least 4 months average above
10 ◦C. Concerning rainfall, in the hot-summer Mediterranean climate, rainfall in the wettest
month of winter averages over three times that in the driest month of summer, which
receives less than 30 mm.

The precipitation data used in this study were collected at 6 stations (Figure 1, Table 1)
at the monthly scale in the period from 1972 to 2018. These precipitation data are taken from
the Algeria National Agency of Meteorology and Hydrology (ANRH) and the National
Office of Meteorology (ONM). Monthly runoff data from 1972 to 2018 were also collected
from ANRH. In this study, the Thiessen polygons method was applied to compute the
monthly areal mean basin precipitation. Weights for the 6 stations were computed based
on the Thiessen polygons method (Figure 1). To construct the SPI, this monthly weighted
mean precipitation was used to approximate the basinwide amount.

Table 1. Precipitation and hydrometric station characteristics.

Stations ID Name

Geographical Coordinates
Elevation

Longitude Latitude
(◦ ′ ′′) (◦ ′ ′′) (m)

Precipitation Stations
S1 012201 LARBAT OULED FARES 01◦09′18′′ 36◦16′20′′ 116
S2 012224 BOUZGHAIA 01◦14′27′′ 36◦20′15′′ 217
S3 012205 BENAIRIA 01◦22′28′′ 36◦21′04′′ 320
S4 012221 MEDJAJA 01◦20′53′′ 36◦16′39′′ 487
S5 012209 CHETIA 01◦15′53′′ 36◦12′56′′ 108
S6 NMO Airport, Chlef 01◦19′28′′ 36◦13′31′′ 158

Hydrometric Station
HS1 012201 LARBAT OULED FARES 01◦13′56′′ 36◦14′14′′ 173

HS1: Hydrometric Station; S: Precipitation Station.
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Figure 1. Location, topographic characteristics, pluviometric, and hydrometric network of the study
area.

2.2. Standardized Precipitation (Runoff) Index

As mentioned above, to study meteorological drought, several indicators have been
developed, of which the standardized precipitation index (SPI), first developed by McKee
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et al. [8], is particularly widely used. For hydrological drought, an index similar to the
SPI can be developed as the standardized runoff index (SRI), which is based on monthly
mean streamflow and was first proposed by Shukla and Wood [16]. The computational
principles of these indices are presented in Figure 2. To forecast the SPI and SRI indices,
the commonly known ARIMA model was used [25]. All steps of stochastic modeling were
performed in R software in version 4.1.2.

Figure 2. Methodology of SPI and SRI.

When the time series is stationary, the basic form of ARMA models for a standardized
normal variable Zt can be used [32]:

Zt = ∑p
i=1 ϕiZi−1 −∑q

j=1 θjεt−j for θ0 = −1, (1)

where Zt is the observed series, ϕ is the polynomial of order p, and θ is the polynomial of
order q.

If a time series is nonstationary, it can be made stationary using the difference operator.
Using the dth difference of the time series and modeling it with ARMA (p,q) leads to the
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emergence of a new set of nonseasonal autocorrelated cumulative moving average models
(ARIMA (p,d,q)). The basic form of the nonseasonal ARIMA model follows [32]:

ϕ(B)(1− B)dZt = θ(B)εt, (2)

where ϕ and θ are polynomials of order p and q, respectively, and B is the lag operator that
returns previous values of Zt.

ϕ(B) =
(

1− ϕ1B− ϕ2B2 − · · · − ϕpBp
)

, (3)

θ(B) =
(

1− θ1B− θ2B2 − · · · − θqBq
)

, (4)

In the case of using the seasonal difference operator with delay w and their fitting with
ARMA models (p, q), ARIMA seasonal models (P, D, Q)w are created. A combination of
seasonal and nonseasonal models forms the so-called multiplicative ARIMA models. The
basic form of this model follows [33]:

ΦP(Bw)ϕp(B)(1− Bw)D(1− B)dZt = ΘQ(Bw)θq(B)εt, (5)

where p is the order of the nonseasonal AR model, P is the order of the seasonal AR model,
q is the order of the nonseasonal MA model, Q is the order of the seasonal MA model, w
is the season length, ε is a random variable (net perturbation), and B is the lag operator
B(Zt) = Zt−1, (1 − B)d is equal to d of the second nonseasonal difference and (1 − Bw)D is
equal to D of the second seasonal difference of size w [33].

The development of time series models includes three stages: identification, parameter
estimation, and a model adequacy test [17]. In the identification step, the general form of
the model is determined according to the time series behavior. In the parameter estimation
stage, the parameters of the model selected in the previous stage are calculated by a
statistical method such as the momentum method or least squares and maximum likelihood.
Finally, in the model adequacy test stage or diagnostic check, the selected model is used to
model the time series and criteria such as the normality test and the independence of the
residual are measured.

2.3. Model Development

The first step is the model identification. At this stage, the time series correlation
structure is determined by testing the autocorrelation function (ACF) and partial autocor-
relation (PACF) [17]; this information is then used to determine the general form of the
univariate model. According to the number of significant steps in each of the ACF and
PACF diagrams, the range of order changes of the models can be obtained. Finally, by
combining them, the candidate models can be found. The model with the lowest Akaike
information criterion (AIC) and Schwarz Bayesian criterion (SBC) is selected as the best
model. The mathematical formulas of AIC [34] and SBC [35] follow:

AIC = N·ln
(

σ2
ε

)
+ 2(m), (6)

SBC = −2log(L) + (m)ln(n), (7)

where m = (p + q + P + Q) is the number of estimated parameters and L is the likelihood
function of ARIMA models.

After the model identification step, the parameters of each selected model were
calculated. Preliminary estimates of the parameters were calculated from the ACF time
series obtained at the identification stage.

The parameter estimation is followed by the diagnostic check. In this step, first the
residual series is obtained from the difference of the observed time series and the model-
predicted time series fit, then two validation tests are performed on the residues: (i) the
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white noise ACF and PACF of residuals and (ii) the normal probability of residuals and
Kolmogorov–Smirnov statistics of residuals. Concerning the first test, if the ACF and PACF
values of the residual series are consistent with zero within the confidence range, there is
no significant correlation between the residues, and the residues are pure perturbation [18].
With respect to the latter test, the Kolmogorov–Smirnov (K–S) statistic is used to test the
normality of residuals from different sets of models of the fit of data, as follows:

D = max
∣∣∣F(x)− F(x)

∣∣∣, (8)

where D is the maximum deviation, F(x) is the completely specified theoretical cumulative
distribution function under the null hypothesis, and F(x) is the sample cumulative density
function based on n observations. For a chosen significance level α, if D is greater than the
critical value Dtab, the null hypothesis related to normality is rejected for the chosen level
of significance.

2.4. Kappa (κ)

Comparing the SPI (SRI) classes in the observed and predicted series, the disagreement
between the mild drought and the moderate drought categories is not as great as the
disagreement between the mild drought and the severe drought categories. Therefore, by
considering certain weights for each case of disagreement, it is possible to make a more
accurate comparison of the classes in the observed and predicted series. In this paper, we
used kappa statistics [36–38] to comparison observed and predicted series.

The significant test statistic of the weighted kappa, statistic with the null disagreement
hypothesis is as follows [37]:

t =
κ√

∑ w2
ij pe,ij−(∑ wij pe,ij)

2

n

(9)

where n is the number of series observations.

2.5. Model Validation

To evaluate the accuracy of the hydrological and meteorological drought forecasts and
forecasting performance of models at the validation stage, results were compared based on
the correlation coefficient (R2), Mean Absolute Error (MAE), and Root Mean Square Error
(RMSE) [20,39].

R2 =
∑n

t=1(xt − xt)
(
x́t − x́t

)√
∑n

t=1
(10)

RMSE =

√
∑n

i=1(Oi − Ei)
2

n
, (11)

MAE =
∑n

j=1|Oi − Ei|
n

, (12)

Figure 3 shows a flowchart of the proposed method for drought forecasting. All
modeling steps were performed using R software, version 4.1.2.
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Figure 3. Model development in stochastic models.
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3. Results
3.1. Assessment of Drought Based on SPI and SRI

In this study, SPI and SRI time series on a 12-month time scale were calculated using
monthly precipitation and runoff data over a 45-year period (1973–2017). A 12-month
duration of drought is one of the most common among other time scales in the studied
watershed [40,41]. Moreover, in larger catchments, there is a strong relationship between
meteorological and hydrological droughts if analyses are conducted for a more extended
accumulation period [42,43].

According to Li et al. [44], the SPI is highly sensitive to onset of meteorological
droughts, because meteorological droughts usually occur after the continuous lack of
precipitation, but the SRI is effective in identifying the duration and termination of drought.
Figure 4 shows the changes of SPI-12 and SRI-12 in the study area. The two variables follow
an almost similar trend, and runoff and precipitation show a severe drought in the late
1980s and early 1990s, and generally dry conditions since the late 1990s. Time lags appear
between SPI and SRI due to the delayed response of runoff to precipitation variability [45].
It can be therefore be observed that the time of the onset of hydrological drought tends to
be later than the meteorological drought in most of the drought events. According to Sattar
and Kim [46], the onset time of hydrological drought lags behind meteorological drought.
This situation is similar to the one presented in this study. Data from 1973 to 2010 were
used for model development and 2011 to 2017 for validation, and the three modeling steps
were performed on each series.
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3.2. Stochastic Model Development

Figure 5 shows the ACF and PACF correlograms of the SPI-12 and SRI-12 time series.
Owing to the ACF fluctuations in SPI-12 (Figure 5a), the time series is a combination of
exponential and sinusoidal damping waves, and lagged correlations are significant in the
first 20 time steps. Therefore, an MA model can be proposed. In the case of its PACF
(Figure 5b), it is significant in the first step, which can suggest an AR model. In addition,
the PACF is significant at 12 and 24 months, so the series has a 12-month period indicative
of an annual cycle in precipitation. Therefore, a combination of AR and MA models as a
multiplicative SARIMA model is proposed for modeling this series. The same applies to
the SRI-12. ACF (Figure 5c) is attenuated as a combination of exponential and sinusoidal
waves, and in the first 10 time steps, it is significant that an MA model with different orders
can be proposed, and PACF (Figure 5d) in steps 1, 2, and 3 means that an AR model can be
proposed with degrees 0, 1, 2, and 3. It also has a periodicity of 12 and 24, which indicates
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that the model is seasonal. Therefore, this variable is also a multiple (seasonal) ARIMA
model.

Figure 5. ACF and PACF correlograms and 95% confidence limits for stochastic monthly series for
the Wadi Ouahrane basin (a–d).

According to the number of significant steps in each of the ACF and PACF diagrams,
the range of order changes of the models can be obtained and finally, by combining them,
the candidate models can be obtained. A model with the least AIC and SBC is selected as
the best model. All SPI-12 and SRI-12 time series models were identified and the best model
for each time series based on AIC and SBC was obtained from more than 860 candidate
models. The same model was selected as the best by Han et al. [47] to drought forecasting
in the Guanzhong Plain. Table 2 shows an example of several models, parameters, and
criteria of AIC and BIC. The standard error calculated for each of the model parameters
was generally small compared to the parameters. Therefore, these parameters can be used
in modeling.
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Table 2. Summary of AIC and BIC parameters of the best-fitted ARIMA models.

Index Model AIC BIC

SPI-12

ARIMA(0,1,0)(0,1,1)12 605.25 613.74
ARIMA(0,1,1)(0,0,1)12 321.57 334.38
ARIMA(1,0,1)(1,1,0)12 754.55 771.54
ARIMA(1,0,1)(0,1,1)12 587.61 604.61
ARIMA(1,0,0)(2,0,1)12 320.11 345.74

SRI-12

ARIMA(1,0,1)(1,0,0)12 −1277.37 −1255.90
ARIMA(2,0,0)(2,0,0)12 −1355.60 −1329.84
ARIMA(2,0,1)(1,0,0)12 −1305.33 −1279.57
ARIMA(2,1,0)(2,0,0)12 −1360.34 −1338.88
ARIMA(2,1,2)(1,0,1)12 −1481.87 −1451.83

Then, validation tests were performed on the residues to evaluate the adequacy of the
selected model, which are ACF and PACF residuals and residual histogram and normal
residual probability. Figure 6a,b shows ACF and PACF residues for SPI-12 time series
and Figure 6c,d shows SRI-12 for two selected ARIMA models (0,1,0)(0,1,1)12 and ARIMA
(2,0,1)(1,0,1)12, respectively. According to the figures, it can be seen that most of the ACF
and PACF values in both indices are within the confidence limit. Therefore, there is no
significant correlation between the residuals; the residuals are white noise.

Figure 6. Diagnostic check of the best-fitted multiplicative ARIMA model for SPI-12 (a,b) and SRI-12
(c,d) time series for the Wadi Ouahrane watershed.

Figure 7 shows the residual histogram and the normal probability for the SPI-12 and
SRI-12 time series. According to Figure 7a,b, it can be seen that the residuals of both time
series follow the normal distribution, so the residuals are white noise and the cumulative
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distribution plot of the residuals is a straight line when drawn on normal probabilistic
paper. Therefore, the residuals follow the normal distribution.

Figure 7. Normal probability plot and residual histogram for SPI-12 (a) and SRI-12 (b).

3.3. Drought Forecasting Using Selected Models

For validation, the time series from 2011 to 2017 was used for SPI-12 and SRI-12. In
Figure 8a,b, comparison of the observed and predicted time series shows the two drought
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indicators. As the results show, there is good agreement between the two series. That is,
the time series model was able to simulate drought indices well.

Figure 8. Comparison of SPI-12 (a) and SRI-12 (b) series observed and predicted in the validation
phase for 1-month lead time.

The main statistical features were compared between the observed and predicted data
using Z test for mean and F test for standard deviation. The results are presented in Table 3.

The results of the mean test (Z test) indicate that the null hypothesis, that the means
are equal, is accepted for the time series SPI-12 and SRI-12 at a significance level of 95%;
therefore, the stochastic model maintains the observed series average well. The results of
the variance comparison test (F test) indicate that the null hypothesis, that the variances
are equal, is accepted at the 95% significance level for the time series studied. Therefore,
there is no significant difference between the observed and predicted values of variance.

We also calculated weighted kappa in drought classes. Based on the results shown in
Table 4, there is good agreement between observed in drought classes and predicted (K > 0.7).
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Table 3. Summary of the statistical analysis of model parameters.

Index
Variables in the Model

Model Parameter Value of
Parameters Standard Error t-Ratio p

SPI

ARIMA (0,1,0)(0,1,1)12 Θ1 −1.00 0.02 −57.66 0

ARIMA(0,1,1)(0,0,1)12
θ1 −0.01 0.04 −0.29 0.77
Θ1 −0.71 0.03 −24.54 0

ARIMA(1,0,1)(1,1,0)12

φ1 0.87 0.02 34.87 0
θ1 0.11 0.05 2.09 0.04
Φ1 −0.71 0.03 −22.22 0

ARIMA(1,0,1)(0,1,1)12

φ1 0.91 0.02 45.49 0
θ1 0.01 0.05 0.25 0.81
Θ1 −1.00 0.02 −53.63 0

ARIMA(1,0,0)(2,0,1)12

φ1 0.98 0.01 121.44 0
Φ1 −0.15 0.08 −1.93 0.05
Φ2 −0.01 0.06 −0.23 0.82
Θ1 −0.62 0.07 −9.21 0

SRI

ARIMA(1,0,1)(1,0,1)12

φ1 0.98 0.01 118.45 0
θ1 0.35 0.03 10.22 0
Φ1 −0.46 0.04 −11.66 0

ARIMA(2,0,0)(2,0,0)12

φ1 1.42 0.04 36.79 0
φ2 −0.44 0.04 −11.22 0
Φ1 −0.59 0.04 −13.88 0
Φ2 −0.29 0.04 −6.82 0

ARIMA(1,0,1)(1,0,0)12

φ1 1.37 0.11 12.91 0
θ1 0.08 0.1 0.77 0.44
Φ1 −0.47 0.04 −12.03 0

ARIMA(2,1,0)(2,0,0)12

φ1 0.38 0.04 8.83 0
φ2 0.12 0.04 2.69 0.01
Φ1 −0.59 0.04 −13.98 0
Φ2 −0.30 0.04 −7.13 0

ARIMA(2,1,2)(1,0,1)12

φ1 −0.06 0.36 −0.18 0.86
φ2 0.45 0.26 1.74 0.08
θ1 0.45 0.36 1.25 0.21
θ2 −0.14 0.15 −0.93 0.35
Φ1 0.05 0.05 0.99 0.32
Θ1 −0.95 0.03 −36.98 0

Note: Bold and underline indicates the best model.

Table 4. Comparison of statistical properties of the observed and predicted data in model validation.

Index SPI SRI

Model ARIMA (1,0,1)(0,1,1)12 ARIMA (1,0,1)(1,0,1)12
Kw 0.79 0.88

Variance (Observed) 0.97 0.17
Variance (Forecasted) 0.81 0.16

F test 1.12 1.06
Mean (Observed) −0.187 −0.263
Mean (Forecasted) −0.174 −0.26

Z −0.013 −0.012
RMSE 0.46 0.067
MAE 0.02 −0.002

R 0.89 0.98

The forecast was performed for SPI-12 and SRI-12 from 1 to 12 month lead times using
the best model. Table 5 shows R2, RMSE, and MAE values between observed data and
predicted data using the selected best model for all time series. Results show that with
a longer lead time, the coefficient of correlation decreases and error coefficient increases
between observed and predicted data. The best models selected from the multiplicative
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ARIMA approach using a time series data of SPI-12 and SRI-12 series can be used for
drought forecasting at whatever lag is desired.

Table 5. Coefficient of correlation, RMSE, and MAE between observed and predicted data for lead
time 1 to 12.

Lead Time
SPI-12 SRI-12

R2 RMSE MAE R2 RMSE MAE

1 0.96 0.43 −0.026 0.97 0.061 −0.001
2 0.9 0.45 −0.028 0.966 0.06 −0.016
3 0.87 0.55 −0.049 0.961 0.058 −0.018
4 0.86 0.58 −0.054 0.96 0.11 0.03
5 0.85 0.64 −0.089 0.95 0.14 0.07
6 0.8 0.67 −0.001 0.92 0.17 0.09
7 0.78 0.78 −0.012 0.91 0.19 0.1
8 0.71 0.84 −0.022 0.88 0.23 0.12
9 0.68 0.89 −0.033 0.86 0.28 0.15

10 0.65 0.91 −0.052 0.84 0.29 0.16
11 0.58 0.93 −0.080 0.74 0.37 0.19
12 0.51 0.98 −0.091 0.7 0.39 0.21

4. Discussion

Generally, the results show that SPI and SRI indicators have a similar behavior and
SRI tends to occur later than SPI indicators for particular events. In this study, the ARIMA
model was used to forecast meteorological and hydrological drought. The popularity of
the ARIMA model in many areas is due to its flexibility and the systematic searching at
each stage (identification, estimation, and diagnostic check) for an appropriate model [18].
Quite visible differences in the behavior of ACF and PACF between SPI and SRI can be
explained by mechanisms influencing the two forms of drought.

Comparison of multiplicative SARIMA models used in meteorological and hydrologi-
cal droughts shows that increasing the forecast lead time (from 1 to 12 months) increases
the error rate. The reason for this is the cumulative error from the previous steps, which
spreads to the next steps [21]. It can be concluded that stochastic models provide good
results in the case study only for the next 12 months; in other words, it is better to use
this linear statistical approach to forecast only the next 12 monthly steps ahead to prevent
anomalies in the results, and for more than 12 months to consider using other models.

Meteorological drought in this region is determined by a high variability of precipi-
tation and is influenced by the El Niño Southern Oscillation (ENSO) [48], Mediterranean
Oscillation (MO) [49], and Western Mediterranean Oscillation (WeMO) [50,51]. The neg-
ative phase of the NAO dominated between 1940 and 1980, corresponding to a period
when precipitation was above normal and thus SPI generally had positive values in the
Mediterranean basin [52]. More recently, drier conditions dominated, corresponding to
commonly negative SPI values (Figure 4). These teleconnections with climate indices offer
additional possibilities for drought forecasting approaches.

Considering the hydrological drought, expressed by SRI, a lag time between the
occurrence of meteorological and hydrological drought is visible. It is mainly visible
in Figure 8, where negative SRI are observed after negative SPI. The time buffering is
influenced by catchment properties, including land cover, geological properties, and human
activities. The ARIMA model (1,0,1) (0,0,1) for the SPI and (1,0,1) (1,0,1) for the SRI model
were found as the best models to predict drought. Moreover, the models help to identify
seasonality of SPI and SRI indicators that is strongly dependent on the precipitation seasonal
variability.

The ARIMA model has some limitation, as it is not suitable for nonlinear relationships,
especially in a complex and dynamic problems [53], and is incapable of fully capturing
nonlinear patterns hidden within a time series. These limitations are less of a problem for
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forecasting SPI and SRI, which are transformed to follow a standard normal distribution,
as compared to precipitation and streamflow, whose distribution is highly non-normal.

Our results are broadly consistent with those of studies from other regions of the world
that tried to use the ARIMA model to predict meteorological and hydrological drought.
Karimi et al. [54] detected that an ARIMA model can be used to forecast SPI index in 1, 3, 6,
9, 12 monthly time scales in the Karkheh River watershed. Han et al. [47] describe results
of drought forecasting where the ARIMA model linked with remote sensing was used to
analyze change of the Vegetation Temperature Condition Index (VTCI) in the Guanzhong
Plain. Finally, they conclude that the ARIMA model gave accurate results in forecasting the
index. In contrast, Beyaztas and Yaseen [55] showed that Functional Principal Component
Analysis (FPCA) gave better results compared to the ARIMA model when predicting the
Palmer Drought Severity Index (PDSI).

5. Conclusions

Drought forecasting is an important issue, especially in arid regions and under climate
change. Many techniques are used to forecast drought, but one of the more popular is the
ARIMA model. In this work, a multiplicative ARIMA model was used for meteorological
and hydrological drought forecast in the Wadi Ouaharane watershed located in Algeria.
Moreover, the model can be used in other regions and different types of catchments because
parameters of the ARIMA model are optimized based on time series. The model does not
have parameters that are linked with catchment features; instead, the model only requires
time series characteristics. To use the ARIMA model, a long time series with constant time
steps is necessary.

Drought was indicated by the SPI representing meteorological drought and the SRI
for hydrological drought. Results showed that despite some similarity between the courses
of the two indices, time lags appear between SPI and SRI due to the delayed response of
runoff to precipitation variability. Analyses showed that the ARIMA model (1,0,1) (0,0,1)
for the SPI and (1,0,1) (1,0,1) for the SRI were found as the best models to predict drought.
Based on R2, both models had good quality; for the SPI and the SRI, R2 was equal to 0.96
and 0.97, respectively, at 1-month lag. Finally, we conclude that the seasonal ARIMA model
can be used to forecast meteorological and hydrological drought indices in arid regions.
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