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Abstract: The probability of heat extremes is often estimated using the non-stationary generalized
extreme value distribution (GEVD) applied to time series of annual maximum temperature. Here,
this practice was assessed using a global sample of temperature time series, from reanalysis (both at
the grid point and the region scale) as well as station observations. This assessment used forecast
negative log-likelihood as the main performance measure, which is particularly sensitive to the most
extreme heat waves. It was found that the computationally simpler normal distribution outperforms
the GEVD in providing probabilistic year-ahead forecasts of temperature extremes. Given these
findings, it is suggested to consider alternatives to the GEVD for assessing the risk of extreme heat.
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1. Introduction

Intensifying heat extremes, as evidenced by increasing numbers of record highs in
temperature time series [1], damage human health, welfare, and infrastructure, as well as
ecosystems more broadly [2,3]. The impacts of heat increase nonlinearly with temperature
and other heat indices [4]. Therefore, it is important to accurately forecast the risk of
heat extremes given information about current weather dynamics and ongoing climate
change [5].

Often, temperature extremes are modeled using statistical extreme value theory, which
asymptotically can describe the distribution of the most extreme values in large enough
sets of quantities drawn from any of a broad range of probability distributions [6]. This is
typically operationalized by working with the time series of annual maximum temperature
(denoted as TXx [7]) from station observations or weather and climate model outputs.
Based on extreme value theory, the TXx values are assumed to be generated from the
generalized extreme value distribution (GEVD) [8]. After GEVD parameters are estimated
from the TXx data using maximum likelihood or other suitable methods, the likelihood of
temperatures exceeding any specified threshold in a future year can be estimated [9–12]. To
account for the impact of climate change, the GEVD is typically considered non-stationary,
with its location parameter modeled as a linear function of global mean temperature and
potentially other covariates [13].

Temperature extremes have been modeled using a similar approach for attribution
studies, which aim to quantify the anthropogenic elevation in risk of observed recent ex-
treme heat waves [14–17]. The standard approach for such attribution studies, as developed
by the World Weather Attribution collaboration, is to estimate the probability of the ob-
served extreme heat, assuming that TXx or another temperature-based time series follows
the GEVD with the location parameter as a linear function of global mean temperature.
This probability is compared with that derived from the same statistical model when the
global mean temperature is set at a preindustrial baseline, and the factor (probability ratio)
by which anthropogenic warming has increased the likelihood of the observed extreme is
calculated [18,19].
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A complication noted in attribution studies is that some observed heat extremes were
so far above the historical distribution that, even when allowing for global warming, the
fitted GEVD suggested these events were very unlikely [20,21]. These implausible results
from the GEVD have been explained in several ways, including pointing to selection bias
from analyzing only the most extreme heat waves and difficulties in accurately estimating
the GEVD’s right tail from short historical records [22]. Here, the alternative considered
is that the GEVD is not actually the most suitable distribution for modeling temperature
extremes. In particular, the performance of the GEVD is compared here with that of a non-
stationary normal distribution, which is widely used for modeling the entire temperature
probability distribution (not limited to extreme values) [23–26].

The remainder of this paper is structured as follows. First, I present the TXx series
analyzed—from both station data and reanalysis—along with the probabilistic forecast
methodology based on either the GEVD or the normal distribution, and the evaluation
metrics for forecast quality. Next, I show the results comparing the two distributions,
followed by a discussion of their implications and potential directions for future research
aimed at improving forecasts of heat extremes.

2. Methods
2.1. Temperature Data

Compared to station observations, reanalyses provide spatially and temporally com-
plete weather data that may be less affected by location-specific human and measurement
errors. On the other hand, station observations have the advantage of being direct measure-
ments, while reanalyses are subject to their own biases related to the setup of the underlying
numerical weather model and inhomogeneity of the assimilated data streams, which may
particularly affect the representation of extreme events [27,28]. Therefore, in order to ro-
bustly evaluate the probability distribution of temperature extremes, both reanalysis and
station-based temperature series are considered.

2.1.1. Reanalysis

Reanalysis TXx values are extracted from the hourly 2-m air temperature field of the
state-of-the-art 5th Generation European Center for Medium-Range Weather Forecasting
Reanalysis (ERA5) [29]. ERA5 data were obtained from the National Center for Atmospheric
Research for 1940–2023 at a spatial resolution of 0.25 degrees [30]. ERA5 data have been
used in many studies of extreme heat [31–35].

TXx time series were evaluated for a globally distributed sample of grid cells in
populated land areas. As previously described [36], 100 ERA5 grid cells were selected
based on the highest population densities in 2020, using Version 4 of the Gridded Population
of the World product [37,38]. To ensure broad spatial coverage and minimize correlation
between the time series, cells were only included if they were at least 10 degrees distant
from any previously included cells.

In addition to this grid point-based analysis, temperature extremes were also evaluated
on the regional scale [3,39]. There is a hierarchical set of politically defined regions for
the analysis of climate extremes, with each hierarchal level having a characteristic areal
extent [40]. Grid-scale ERA5 TXx values were averaged over each of the 231 Level 4 land
regions, each typically encompassing an area of around half a million square kilometers
and collectively covering almost all land areas.

2.1.2. Station Observations

Stations were selected for broad temporal and spatial coverage from the Global His-
torical Climatology Network (GHCN) Daily dataset, which compiles openly available
observations and applies quality control measures to ensure a uniform format [41–43].
Stations were selected in descending order, based on the number of years from 1850 to 2023,
for which stations had complete temperature observations (needed for determining TXx).
Stations were only included if they were at least 4 degrees distant from all previously in-
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cluded stations and had at least 31 complete years of observations, for a total of 310 selected
stations, each with an average of 68 years of observations (range: 31–158 years).

Figure 1 shows the locations of the selected GHCN-Daily stations, along with the
selected ERA5 grid cells and regions.

Figure 1. Locations of ERA5 grid cells (blue circles), GHCN stations (green triangles), and land
regions (colored areas) whose temperature time series were analyzed.

2.2. Temperature Probabilistic Forecasts

For simplicity, only temperature forecasts for the next year are evaluated here using
the station and reanalysis data. This may be extended to n years ahead for n > 1 using
similar methods.

For each TXx time series, a probability distribution (GEVD or normal) is fitted to the
first 30 years of data (for the stations, these were not necessarily consecutive years), and
used to forecast the 31st year. This is repeated for each available year after the 31st until the
first N − 1 years are used for fitting and to forecast the last year (where N ≥ 31 denotes the
total number of years in the time series), for a total of 5400 ERA5 grid point year-ahead
forecasts, 12,798 ERA5 region forecasts, and 11,677 station forecasts.

2.2.1. The Generalized Extreme Value Distribution

A variable, x, distributed according to the GEVD with a real shape parameter, ξ, real
location parameter, µ, and positive scale parameter, σ, follows the cumulative distribution
function (CDF), as follows:

FGEV(s) =


exp(−e−s) if ξ = 0

exp
(
−(1 + ξs)−

1
ξ

)
if ξ ̸= 0 and ξs > −1

0 if ξ > 0 and ξs ≤ −1
1 if ξ < 0 and ξs ≤ −1,

(1)

where s = x−µ
σ . Details about the GEVD and its derivation from extreme value theory

are available in many references [6,44,45]. ξ = 0 denotes the Gumbel distribution (GEVD
Type I), which has unbounded support. ξ > 0 denotes the Fréchet distribution (Type II),
which is bounded below. ξ < 0, which is usually the best fit for temperature data, is the
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reversed Weibull distribution (Type III) and is bounded above. Note that some sources
reverse the sign for the shape parameter so that it is equivalent to −ξ in the current notation.

As conducted by the World Weather Attribution collaboration and others, the GEVD
fitted is one with a trend in the location parameter. That is, ξ and σ are taken to be the
same across all years, but µ(t) = µ0 + µtT(t), where Tt denotes the mean annual global
temperature, either from ERA5 (for reanalysis TXx time series) or from the BEST global
mean temperature anomaly time series [46,47] (for station TXx time series). The maximum-
likelihood parameter values θ̂ were found using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm and the analytic gradient of the likelihood with respect to the parameter
vector. The starting point for the likelihood optimization was chosen using the method of
moments [48,49] with the trend coefficient µt initialized at 0. At times, maximum likelihood
returned a degenerate set of parameters with very negative ξ, for which the gradient of the
likelihood was not close to zero, which relates to the known non-regularity of likelihood as
a function of GEVD parameters when ξ ≤ −0.5 [50,51]; in such cases, inspired by previous
treatments of this sort of problem [52,53], the optimization was redone with a penalty
term proportional to ξ2, which was progressively increased until the gradient indicated
convergence to a likelihood maximum.

Probabilistic forecasts were obtained by considering the GEVD with maximum likeli-
hood parameter values as well as the full posterior distribution of GEVD parameters [54,55].
Assuming standard uninformative prior distributions of the parameters, this involves cal-
culating the following:

p(x|t f ) =
∫

p(x|t f , θ)p(θ|x) dθ. (2)

Here, x denotes the temperature being forecast, t f denotes the forecast year, θ denotes
the vector of distribution parameters (ξ, σ, µ0, µt), and x denotes the TXx time series from
previous years used for fitting. The integration is performed over all admissible values of θ
(here, a four-dimensional space). Since, for the GEVD, this integral does not have an analytic
solution, it was approximated by drawing 1000 parameter samples from the multivariate
normal distribution centered at the maximum likelihood value and with covariance matrix
given by the inverse of the analytic second derivative matrix of the likelihood at that point.
These samples were then weighted following the importance sampling methodology [56].
The resulting approximation for the posterior predictive density was as follows:

p(x|t f ) ≈ Σns
i=1wi p(x|t f , θi), (3)

where ns denotes the number of samples (1000), p(x|t f , θi) denotes the GEVD density
for each sampled set of parameter values, and wi denotes the non-negative importance-
sampling weights, which sum to 1. In some cases, the probability density of the observation
was exactly zero under all 1000 samples. For these instances, sampling was repeated with a
wider dispersion for the shape parameter than what was implied by the second derivative
of the likelihood. This allowed the inclusion of unlikely parameter sets with less negative
shape parameters under which the observation had nonzero probability.

2.2.2. The Normal Distribution

The normal distribution has one fewer parameter than the GEVD since the shape
is fixed. The location parameter is the distribution mean, and the scale parameter is the
distribution standard deviation. As with the GEVD, the location parameter is assumed to
linearly depend on temperature, while the scale parameter is time-invariant. For the normal
distribution with noninformative priors, the integral (2) over all possible parameter combi-
nations has an analytic solution, with the posterior p(x|t f ) following a t distribution [26,57],
so there was no need for numerical optimization or sampling parameter values from their
posterior distribution.
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2.2.3. Trend or Stationarity

To help evaluate the performance of the compared distributions (GEV or normal, both
with trends in the location parameter) over a broader context, stationary versions of the
GEV and normal distributions were also fitted and evaluated. These differed from the
non-stationary models only in that there was no trend, µt = 0, resulting in one fewer
parameter to be estimated from the observations.

2.3. Forecast Performance Metric

The main performance metric for the probabilistic forecasts, used to compare the
GEVD and normal distribution approaches, was the mean negative log-likelihood (NLL) of
the actual next-year temperature in the forecast distribution. The expression for NLL is of
the form − log p(x̂|t f ), where p(x|t f ) denotes the forecast probability distribution and x̂
denotes the actual maximum temperature during the forecast year. Lower NLL corresponds
to the greater forecast probability density at the observed value and, therefore, a better
forecast. NLL is closely connected to the expected information gain from the forecast system
[58,59] and is the unique probability metric satisfying certain desirable properties [60].
Compared to other metrics used to evaluate probabilistic forecast performance, NLL is
particularly sensitive to the probabilities assigned to the most unlikely observed values
(here, typically the most extreme and impactful heat anomalies). In the extreme, assigning
zero forecast probability to an event that was observed would result in infinite NLL [61].

Supplementary metrics that were also calculated included the Kolmogorov–Smirnov
statistic and mean return period of the observed TXx in the forecast CDF. For a well-
calibrated forecast, the distribution of the actual maximum temperatures x̂ in the forecast
CDF should follow a uniform density between 0 and 1, with, e.g., close to 1% of observations
found above the forecast 99th percentile, and close to 0.1% of observations above the forecast
99.9 percentile. The Kolmogorov–Smirnov statistic can be used to quantify overall closeness
to the uniform distribution, with lower values suggesting better calibration [26]. In addition
to good performance over all cases, decision-makers may well be especially interested in
the calibration of predictions of the worst heat extremes. Thus, it is of particular importance
to consider the frequency of observations at the highest quantiles, near 1, corresponding to
heat extremes with long return periods (where the return period is a function of the quantile,
q, with RP = 1

1−q ). The forecasted RP of the observations has an infinite expectation because

the integral
∫ 1

0
1

1−q dq is infinite. However, it is possible to compare the mean value of a

sublinear power RPk (0 < k < 1), which has the expected value of 1/(1 − k) for a well-
calibrated forecast. A higher-than-expected value indicates that the observations have
values that are significantly more extreme than the forecast predicts, while a lower-than-
expected value suggests that the forecast assigns greater probabilities to extreme events
than are observed. Higher k values give greater prominence to the most extreme events.
Therefore, the CDF (across forecasts) was plotted, and the mean RPk subtracted from its
ideal value of 1/(1 − k) was computed for k ranging from 0.1 to 0.9. Similar ideas have
previously been used to evaluate probabilistic forecasts of temperature and precipitation
extremes [62,63].

3. Results

The mean NLL was lower for the normal distribution forecasts compared to the
GEVD forecasts across all three datasets (GHCN stations, ERA5 grid cells, and ERA5
regions) (Table 1), suggesting that, overall, the normal distribution outperforms the GEVD
in forecasting the annual maximum temperature TXx. NLL was higher for ERA5 grid cells
than for ERA5 regions, and the highest for individual stations, consistent with more erratic
temperatures at smaller spatial scales.
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Table 1. Extreme temperature year-ahead forecast skill metrics. See the text for details on the methods
and datasets compared. GEVD = generalized extreme value distribution; Stat = stationary model
(no change in the distribution parameters with time); NLL = mean negative log-likelihood (nats);
Dn = Kolmogorov–Smirnov statistic; RP = return period (mean of values raised to the indicated
power); q = quantile of the observed value in the forecast distribution (the number and percentage of
forecasts where q is above the indicated threshold).

NLL Dn RP0.1 − 10
9 RP0.5 − 2 RP0.9 − 10 q > 0.99 (%) q > 0.999 (%)

Station data
GEVD 2.041 0.0076 0.007 4.73 8680.10 183 (1.57) 47 (0.40)
Normal 2.022 0.0197 0.003 0.28 30.01 191 (1.64) 29 (0.25)
GEVD-Stat 2.057 0.0704 0.025 1.59 683.20 243 (2.08) 70 (0.60)
Normal-Stat 2.044 0.0572 0.025 0.93 233.55 264 (2.26) 54 (0.46)
ERA5 grid
GEVD 1.615 0.0204 −0.002 2.247 3978.32 62 (1.15) 11 (0.20)
Normal 1.595 0.0340 −0.003 0.033 −0.45 66 (1.22) 9 (0.17)
GEVD-Stat 1.757 0.1808 0.054 63.62 1,122,590.46 140 (2.60) 30 (0.56)
Normal-Stat 1.739 0.1589 0.055 1.09 34.87 181 (3.35) 29 (0.54)
ERA5 region
GEVD 1.465 0.0293 −0.0006 0.38 89.02 160 (1.25) 42 (0.33)
Normal 1.430 0.0263 −0.002 0.014 0.12 132 (1.03) 16 (0.12)
GEVD-Stat 1.702 0.2444 0.073 110.54 8,683,674.37 392 (3.06) 126 (0.98)
Normal-Stat 1.675 0.2420 0.073 1.13 20.23 396 (3.09) 61 (0.48)

Significance measures for the difference in mean NLL between GEVD and normal
forecasts were estimated using 1000 bootstrap resamples [64] from the 5400 ERA5 grid
forecasts (this dataset was chosen because the larger spacing between grid points minimized
inter-forecast correlations, which were not accounted for in the bootstrap resampling).
Based on these, the difference of 0.0195 nats in mean NLL between the two sets of forecasts
(indicating that the normal distribution produced better forecasts on average than the
GEVD) is greater than zero at the 0.999 confidence level, and has a 95% confidence interval
of 0.0099 to 0.0311 nats.

The Kolmogorov–Smirnov statistic did not consistently favor one forecasting method
over the other: It was lower for GEVD forecasts for the stations and grid cells, but lower
for normal distribution forecasts for the regions (Table 1). This suggests that the reason
for the normal forecasts outperforming the GEVD ones as measured by NLL is not their
performance near the middle of the TXx probability distribution, to which the Kolmogorov–
Smirnov statistic is the most sensitive, but due to the normal distribution better forecasting
the more extreme TXx values. Indeed, if we look at the mean RPk, especially at higher k,
such as 0.9, there are large differences between the two forecast probability distributions,
resulting from some observations being highly unlikely (very large RP) on the GEVD
forecasts, whereas the normal distribution forecasts of the most extreme observations are
relatively well-calibrated.

The stationary normal and GEVD forecasts clearly performed worse in all respects
compared with the non-stationary ones that were taken as the standards, consistent with
the pronounced warming trend seen in all temperature datasets. As might be expected
given this warming trend, the stationary forecasts particularly underestimate the likelihood
of the hottest extremes observed in recent decades, as quantified by the large positive
departures of RP moments from the values for a well-calibrated forecast. The stationary
version of the GEVD tended to do slightly worse than the stationary version of the normal
distribution (Table 1).

Coming back to the non-stationary forecasts, even with the normal distribution, RP0.9

is considerably larger than expected for the station data (but not for reanalysis data), indi-
cating that even this forecast does not completely account for the most extreme few station
observations. In fact, out of 11,677 station observations, 191 (1.64%) were above the 99th
percentile of the normal forecast (100-year return period—compared with 1% expected un-
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der a perfectly calibrated forecast), and 29 (0.25%) were above the 99.9 percentile (100 year
return period—compared with 0.1% expected under a perfectly calibrated forecast). For
the GEVD forecasts, the number above the 99th percentile was about the same, 183, but
the number above the 99.9 percentile was larger, 47 (Figure 2). The GEVD forecasts for
ERA5 regions also show more observations than expected in the top percentile (Figure 3),
while for ERA5 grid cells, both forecasts were reasonably calibrated at the top percentile
(Figure 4). Thus, much of the normal distribution’s outperformance appears to lie in its
ability to better represent the most extreme fraction of observations, which the GEVD,
despite its theoretical foundation in extreme value theory, performed worse at representing.
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Figure 2. Frequency distribution of observed annual maximum temperatures as percentiles of the one-
year-ahead forecast probability distribution for station data using either the (a) normal distribution
or (b) GEVD for the forecasts. For a well-calibrated forecast, this histogram should be flat.
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Figure 3. Frequency distribution of the observed annual maximum temperatures as percentiles of
the one-year-ahead forecast probability distribution for ERA5 region-average data using either the
(a) normal distribution or (b) GEVD for the forecasts. For a well-calibrated forecast, this histogram
should be flat.
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Figure 4. Frequency distribution of observed annual maximum temperatures as percentiles of the
one-year-ahead forecast probability distribution for ERA5 grid-cell data using either the (a) normal
distribution or (b) GEVD for the forecasts. For a well-calibrated forecast, this histogram should
be flat.

4. Discussion
4.1. Why Are Extreme Temperatures so Normal?

A key finding of this work is that, for probabilistic forecasting of hot extremes in
recent decades, the simpler normal distribution outperformed the GEVD. The GEVD
underestimated the probability of the most extreme high temperatures. Therefore, it is
recommended that the World Weather Attribution collaboration and similar efforts replace,
or at least supplement, the GEVD as their primary tool for estimating the probability of
extreme heat waves.

This poorer performance of the GEVD for the hottest extremes is unexpected, given
its theoretical justification as the asymptotic limit distribution for extremes derived from a
wide variety of parent distributions. Indeed, the World Weather Attribution protocol notes
that “If the event is not very extreme, a normal distribution can also be used. . . . Gaussian
[=normal] distributions are often seen not to describe the tails well. . . . [The GEVD] is thus
used for event definitions like the annual maximum temperature” [18]. Also outside of
climate science, it is commonly assumed that, unlike the GEVD and related distributions,
normal distributions underestimate the likelihood of the most extreme and impactful
events [65,66]. There are a number of possible reasons for the surprising over-performance,
found in the current study, of the normal distribution as compared to the GEVD for annual
maximum temperatures.

The finite available record length, typically on the order of 50–100 years from observa-
tions and reanalyses, may not be sufficient for the GEVD to be a good approximation. Also,
in regions with strong temperature seasonality, TXx represents the maximum over only a
few dozen days and a few synoptic shifts during the hottest month or two, which may not
constitute a sufficiently extreme block maximum for the GEVD to approximate well.

In general, the best probability distribution to fit a given type of data depends on the
length of the available record. More complex distributions (with additional free parameters)
often provide better predictions when there is a very long record for fitting, whereas simpler
distributions with fewer free parameters are typically better suited when there are fewer
data points [67]. From this perspective, the present analysis, with the test forecasts being
based on 30–157 years of data, is directly applicable to typical efforts to estimate the risk
of future temperature extremes using either station or reanalysis data, where the record
length is of this order in most cases.
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More concretely, the GEVD fitted to the annual maximum temperature series generally
has a negative shape parameter, ξ, which implies zero probability mass above some upper
limit that may not be far above the record historical value. This does not fit the physics
of even a stationary climate, since an unlikely but physically possible configuration of
atmospheric circulation can generally push temperature substantially above a previous
record at a given location. In a climate with different anthropogenic and natural perturba-
tions over a range of timescales, a hard upper limit to next year’s temperature is even less
plausible. The Bayesian approach adopted here, which uses the full posterior distribution
of GEVD parameters to generate a forecast—thereby blurring the definite upper bound
associated with each individual GEVD parameter combination—mitigates this conceptual
discrepancy and improves the forecast NLL compared to using a point estimate of GEVD
parameters [36], although this is evidently not enough to predict sufficient probabilities for
the most extreme recently observed temperatures.

4.2. Extensions and Future Research Directions

Even the normal distribution underestimated the occurrence of the most extreme tem-
peratures, particularly in station data. As described below, a number of approaches could
be tried to generate better forecasts, beyond an empirical adjustment for this misfit [68]
in the form of a quantile-based bias correction [69]. The poorer fit of forecasts for station
temperature compared to reanalysis temperature may also be influenced by observation
errors, shifts in instruments and observation conditions, and aspects of microclimate that
are not captured in reanalyses but could still play an important role in local heat impacts.

Temperatures in certain regions have been found to have nonzero skew or asymmetric
tails, inconsistent with the normal distribution [24,70,71]. In this context, generalized
normal and skew-normal distributions could be explored [72,73] to improve extreme
temperature forecasts. Variants of the GEVD that may mitigate its underestimation of the
likelihood of the most extreme temperatures can also be compared [36]. The distribution
scale (standard deviation) may change over time, as well as its location (mean) [74,75].
Covariates for local climate influences (beyond global mean temperature) could be added,
ranging from teleconnections such as the Southern Oscillation to urbanization, land use,
and air pollution [76–78]. Spatial statistics methods could also refine forecasts of extreme
heat risk and allow extension to unobserved areas by pooling information from several
nearby stations [79].

It would be interesting to see to what extent the conclusions drawn for annual maxi-
mum temperature (TXx) values are valid for other temperature extremes. Annual minimum
temperature, TNn, like TXx, has been warming, and understanding the evolving risk of cold
extremes is significant for agriculture, ecology, and civic infrastructure [80–83]. Humid heat
poses health risks beyond temperature alone, so the risk of extreme humid heat metrics, such
as wet bulb temperature, could also be assessed [33,84–86].

5. Conclusions

In this work, a representative global station, grid, and regional temperature time
series were used to compare the ability of the GEVD and normal distributions to accurately
estimate the risk of the hot extremes observed in recent decades using only data from earlier
years. A Bayesian approach was used to integrate across parametric uncertainty to produce
probabilistic assessments of future temperature extremes. As measured by the negative
log-likelihood of observations in the forecast, year-ahead local and regional maximum
temperature forecasts align better with the normal distribution compared to the GEVD.
Selecting an appropriate probability distribution is crucial for generating well-calibrated
assessments of the risk of high-impact heat extremes, which can inform mitigation and
adaptation measures at local, national, and global scales. Several potential directions
for follow-up research are outlined to further improve probabilistic forecasts of the most
extreme events, including the exploration of alternative probability distributions and
covariates beyond global mean temperature.
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