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We study the potential value to stakeholders of probabilistic long-term forecasts, as quanti�ed by the mean information gain of
the forecast compared to climatology. We use as a case study the USA Climate Prediction Center (CPC) forecasts of 3-month
temperature and precipitation anomalies made at 0.5-month lead time since 1995. Mean information gain was positive but low
(about 2% and 0.5% of the maximum possible for temperature and precipitation forecasts, resp.) and has not increased over time.
Information-based skill scores showed similar patterns to other, non-information-based, skill scores commonly used for evaluating
seasonal forecasts but tended to be smaller, suggesting that information gain is a particularly stringent measure of forecast quality.
We also present a new decomposition of forecast information gain into Con�dence, �orecast Miscalibration, and Climatology
Miscalibration components. Based on this decomposition, the CPC forecasts for temperature are on average undercon�dent while
the precipitation forecasts are overcon�dent.We apply a probabilistic trend extrapolationmethod to provide an improved reference
seasonal forecast, compared to the current CPC procedure which uses climatology from a recent 30-year period. We show that
combining the CPC forecast with the probabilistic trend extrapolation more than doubles the mean information gain, providing
one simple avenue for increasing forecast skill.

1. Introduction

Long-term forecasts offer prospects for enhancing climate
readiness and assisting adaptation in sectors including
agriculture, �sheries, municipal water supply, hydropower,
tourism, and public health [1, 2]. Both statistical and dynam-
ical models have shown some capability for providing long-
term forecasts of climate variables such as temperature and
precipitation, drawing on “sources of predictability” in the
earth system (such as the Southern Oscillation and deep soil
moisture) that show persistence or simple dynamics over
month to year timescales [3, 4]. Because the skill of long-term
forecasts tends to be low, however, theymust be accompanied
by precise indications of their reliability to be useful to
decisionmakers; believing an overcon�dent forecastmaywell
lead to worse outcomes than having no forecast available [5–
8].us,more so than for synoptic forecasts, useful long-term
forecasts cannot be point estimates of a climate quantity but
must be presented as a forecast probability distribution [9].

Scoring rules, which provide ametric of skill for a forecast
system based on comparing previously issued forecasts to
what actually occurred, may be used both to compare differ-
ent forecast systems and to test improved versions of forecast
systems, such as different weightings of ensemble members
or methods of bias adjustment [10, 11]. Scoring rules used
for point forecasts, such as those based on the squared
difference between the forecast and the observed quantity,
need modi�cation to be used for probabilistic forecasts.
e World Meteorological Organization has recommended
using the area under the relative operating characteristics
(ROC) curve as a scoring rule for probabilistic forecasts [12].
However, because ROC curves are for dichotomous (yes/no)
event outcomes, they do not generalize naturally into ametric
for multicategory or continuous climate variables such as
temperature and precipitation [4].

Information theory offers simple, general metrics of
forecast performance (as information gain (IG) relative to a
“no-skill” prior probability distribution). Information gain as
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a forecast skill score, some of whose advantages are already
mentioned by Good [13], has attracted increasing interest in
the meteorological community, but has not yet been system-
atically applied to evaluating and improving long-range fore-
casts. Roulston and Smith [14] applied a closely related mea-
sure they call “ignorance” to evaluating dichotomized short-
range temperature forecasts. Bröcker and Smith [15] used IG
as the objective function for �nding optimal Gaussian kernels
to transform point predictions (short- and medium-range
ensemble forecasts of temperature) into forecast probability
distributions. Benedetti [16] showed that IG is optimal in that
it is the unique scoring rule that combines the attributes of
being (1) strictly proper, meaning that adopting any forecast
instead of the best available one will always decrease the
expected score; (2) additive, meaning that it sums across a
sequence of forecasts; (3) local, meaning that the probabilities
assigned to outcomes that did not occur have no effect on
the score. Weijs et al. [17] provided formulas and MATLAB
code for a decomposition of the information gain measure
into “reliability,” “resolution,” and “uncertainty” components
(along the lines of similar decompositions for other skill
scores used in meteorology) and applied this score to eval-
uating short-term rainfall forecasts for the Netherlands; this
decomposition was also independently developed by Tödter
[18]. Weijs and van de Giesen [19] extended IG to cases
where the observations used for evaluation of the forecast are
themselves uncertain. Peirolo [20] showed how to apply the
IG score to continuous variables and used it to evaluate short-
term ECMWF ensemble predictions of geopotential height
and temperature.

While information measures are not new to meteorology
applications, they have not been widely applied to long-range
forecasts. Acceptance for IG as a metric for scoring and
optimizing long-range forecasts therefore requires systematic
comparison against other commonly employed measures,
such as the correlation coefficient, mean square error, the
Brier skill score, and the ranked probability skill score (RPSS).

An additional consideration for scoring seasonal fore-
casts is what “no-skill” baseline to compare them against.
Generally, a climatological mean or probability distribution
from some past reference period is used as the baseline. How-
ever, in the presence of trends, climatology can give biased
estimates of the expected value or probability distribution of
the climate variable being forecast [21, 22]. It is therefore of
interest to develop baselines that incorporate estimates of the
observed trend, building onwork done for temperature series
by Krakauer [23].

e seasonal forecast product we will evaluate here is
the 3-month outlook at 0.5-month lead from the Climate
Prediction Center (CPC) of the US National Weather Service
(http://www.cpc.ncep.noaa.gov/products/predictions/
90day/). On the third ursday of each month since the end
of 1994, CPC releases forecast probabilities of high, low, or
near-normal temperature and precipitation over the next
3 months on a 2∘ grid for the coterminous US (about 200
grid points). e 3 categories of high, low, near-normal are
de�ned as thirds of a climatological distribution based on a
recent 30-year period, so that a priori they are said to have
equal chances. Aer each forecast period, CPC also releases

veri�cation grids showing the categories observed. We
chose to focus on the CPC forecasts because forecasts have
been issued in the same format for a relatively long period;
archived forecasts and veri�cations are publicly available,
as are (since 2001) discussions of the reasoning behind
each forecast; and several previous papers describe the
evolution of CPC forecasts over time and present evaluations
of their skill [24–27]. e methods presented here should
be generally applicable to analyzing the track record of any
seasonal forecast product with available veri�cation data.

In this paper, our aims are to (1) estimate the information
gain of a seasonal forecast and compare IG to other metrics
previously used to evaluate seasonal forecasts, and (2) use
trend estimation to better evaluate seasonal forecast skills in
a shiing climate and suggest avenues for improving them.

2. Methods

2.1. Information-Based Forecast Skill Metrics. Information
metrics for scoring forecast skill are straightforward to inter-
pret and generalize across the type of variable being forecast
(e.g., discrete or continuous). If we consider a situation with
𝑘𝑘 possible outcomes indexed 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥𝑘𝑘 (e.g., different
temperature quantiles over a given period), the information
gained by observing that one of the possible outcomes, 𝑥𝑥𝑜𝑜,
actually took place is given by − log(𝑝𝑝(𝑥𝑥𝑜𝑜)), where 𝑝𝑝(𝑥𝑥𝑖𝑖) was
our prior belief about the probability of outcome 𝑥𝑥𝑖𝑖. If a
forecast shied our belief about the likelihood of 𝑥𝑥𝑜𝑜 from a
reference (climatology) value𝑝𝑝𝑐𝑐(𝑥𝑥𝑜𝑜) to a value𝑝𝑝

𝑓𝑓(𝑥𝑥𝑜𝑜), we can
say that the forecast conveyed information to the extent that
the information gained by observing the outcome is less now
that we have the forecast. (anks to the forecast, the actual
outcome became less “surprising”; ignorance is reduced.)e
forecast information gain [20] can therefore be de�ned as

IG = log 𝑝𝑝𝑓𝑓 𝑥𝑥𝑜𝑜 − log 𝑝𝑝
𝑐𝑐 𝑥𝑥𝑜𝑜 = log

𝑝𝑝𝑓𝑓 𝑥𝑥𝑜𝑜
𝑝𝑝𝑐𝑐 𝑥𝑥𝑜𝑜

 , (1)

which, for a skillful forecast system, will on average be
positive.

Alternatively, denote the forecast probability distribution
as 𝐟𝐟, a vector containing the probability of each possible
outcome (whose elements 𝑓𝑓𝑖𝑖, 𝑖𝑖 = 1, 2,… , 𝑘𝑘 are therefore
nonnegative and sum to 1). Let the verifying probability
distribution given by observation be expressed as a vector
𝐨𝐨, which will be a Kronecker delta if there is no uncertainty
in the observation (i.e., the element corresponding to the
observed outcome, 𝑓𝑓𝑜𝑜, will be 1, and all other elements will
be 0). en the relative entropy of the forecast given the
observation is de�ned as

RE (𝐨𝐨 || 𝐟𝐟) =
𝑘𝑘

𝑖𝑖=1
𝑜𝑜𝑖𝑖 log

𝑜𝑜𝑖𝑖
𝑓𝑓𝑖𝑖

=
𝑘𝑘

𝑖𝑖=1
𝑜𝑜𝑖𝑖 log 𝑜𝑜𝑖𝑖 −

𝑘𝑘

𝑖𝑖=1
𝑜𝑜𝑖𝑖 log 𝑓𝑓𝑖𝑖,

(2)

where 0 log 0 is taken to be zero. In general, RE is a nonnega-
tive function of two probability distributions, also known as
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Kullback-Leibler divergence [28], which can be interpreted
as the number of bits needed to communicate the observation
when its prior probability distribution is given by the forecast.
In statistical terms, relative entropy can be understood as a
negative log likelihood of the forecast probability distribution
given by the observations [29]. e information gain of the
forecast over a climatology probability distribution denoted
by 𝐜𝐜 can be written as the reduction in relative entropy
afforded by replacing the climatology with the forecast:

IG = RE (𝐨𝐨 || 𝐜𝐜) − RE (𝐨𝐨 || 𝐟𝐟)

=
𝑘𝑘

𝑖𝑖=𝑖
𝑜𝑜𝑖𝑖 log 𝑓𝑓𝑖𝑖 −

𝑘𝑘

𝑖𝑖=𝑖
𝑜𝑜𝑖𝑖 log 𝑐𝑐𝑖𝑖

=
𝑘𝑘

𝑖𝑖=𝑖
𝑜𝑜𝑖𝑖 log

𝑓𝑓𝑖𝑖
𝑐𝑐𝑖𝑖
,

(3)

which is the same as (1), generalized to include cases where
the observation is uncertain so that 𝐨𝐨 is not a Kronecker delta.

In practice, assessment of the skill of a forecast system can
be based on IG averaged over a large number of forecasts:

⟨IG⟩ = 
𝑘𝑘

𝑖𝑖=𝑖
𝑜𝑜𝑖𝑖 log

𝑓𝑓𝑖𝑖
𝑐𝑐𝑖𝑖
 , (4)

where ⟨⋅⟩ denotes averaging across some sets of forecasts.
⟨IG⟩ can be thought of as an estimate of the forecast system’s
expected information gain (with units such as bits or nats,
depending on the base of the logarithm taken), or as an
average negative log likelihood over the set of forecasts.

To facilitate comparing mean IG to other measures of
forecast skill, it may be convenient to normalize it by the
maximum possible IG, which would be RE(𝐨𝐨||𝐜𝐜), the IG
of a hypothetical perfect forecast that is always identical
to the observation 𝐨𝐨. Two possibilities for computing such
an information skill score, which differ with regard to how
averaging across forecasts is carried out, are

ISS𝑖 =
⟨IG⟩

⟨RE (𝐨𝐨 || 𝐜𝐜)⟩

= 𝑖 − ⟨RE (𝐨𝐨 || 𝐟𝐟)⟩
⟨RE (𝐨𝐨 || 𝐜𝐜)⟩

,

ISS2 = 
IG

RE (𝐨𝐨 || 𝐜𝐜)


= 𝑖 − 
RE (𝐨𝐨 || 𝐟𝐟)
RE (𝐨𝐨 || 𝐜𝐜)

 .

(5)

ISS𝑖 and ISS2 are the same if RE(𝐨𝐨||𝐜𝐜) is constant across
forecasts, as would be the case if all elements of 𝐜𝐜 are identical
(an equal-chances reference, which is what we use below). In
this paper, we will express skill scores in the ISS𝑖 form.

Particularly for seasonal forecasts, where because of
modest inherent predictability the forecast is oen similar

to climatology, the following decomposition of information
gain may offer insight:

IG =
𝑘𝑘

𝑖𝑖=𝑖
𝑓𝑓𝑖𝑖 log 𝑓𝑓𝑖𝑖 − 𝑐𝑐𝑖𝑖 log 𝑐𝑐𝑖𝑖 +

𝑘𝑘

𝑖𝑖=𝑖
𝑜𝑜𝑖𝑖 − 𝑓𝑓𝑖𝑖 log 𝑓𝑓𝑖𝑖

−
𝑘𝑘

𝑖𝑖=𝑖
𝑜𝑜𝑖𝑖 − 𝑐𝑐𝑖𝑖 log 𝑐𝑐𝑖𝑖.

(6)

In this new decomposition, the �rst term (Con�dence),
which is independent of the outcome, is the difference
between the entropy of the reference and forecast distribu-
tions; it is high if the issued forecast has much lower entropy
(is much more con�dent) than the reference. e second
term (ForecastMiscalibration) should average zero for a well-
calibrated forecast; a tendency to positive values suggests an
undercon�dent forecast (since the outcomes forecasted as
likely were even more likely to occur than was forecasted),
while a tendency to negative values suggests overcon�dence
(outcomes that were forecasted as likely in fact did not occur
as oen as expected). e third term (Climatology Miscali-
bration) is independent of the forecast issued and is zero if
the reference distribution is equal chances. is Con�dence-
Forecast Miscalibration-Climatology Miscalibration decom-
position complements the reliability-resolution-uncertainty
decomposition of Weijs et al. [17] by highlighting how the
amount of information “claimed” by the forecast compares
with its actual performance. e Con�dence term in the
decomposition can be used as the basis for a con�dence
score (Conf), which is again independent of the observed
outcomes:

Conf = 𝑖 −
∑𝑘𝑘

𝑖𝑖=𝑖 𝑓𝑓𝑖𝑖 log 𝑓𝑓𝑖𝑖

∑𝑘𝑘
𝑖𝑖=𝑖 𝑐𝑐𝑖𝑖 log 𝑐𝑐𝑖𝑖

. (7)

ISS is a local score, meaning that only the forecast
probability corresponding to the observed outcome has any
effect on the score. Locality may be in principle a desirable
property, as argued, for example, by Benedetti [16]. If it is
nevertheless desired to have forecast probabilities “close” to
the outcome to affect the skill score, there is a cumulative
variant of ISS, which may be called the ranked information
skill score or RISS [18, 30], where, assuming that the event
categories are ordered, the observation and forecast vectors
𝐨𝐨, 𝐟𝐟 are replaced by cumulative versions𝐎𝐎,𝐎𝐎 according to the
following general formula:

𝑉𝑉𝑗𝑗 ≡
𝑗𝑗


𝑖𝑖=𝑖
𝑣𝑣𝑖𝑖. (8)

e formula for RISS is

RISS = 𝑖 − ⟨RE (𝐎𝐎 || 𝐎𝐎)⟩
⟨RE (𝐎𝐎 || 𝐂𝐂)⟩

. (9)

Note that strictly speaking RE here is a misnomer, in that
in information theory entropies are functions of probability
distributions, while the cumulative vectors 𝐎𝐎,𝐎𝐎,𝐂𝐂 are not
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probability distributions. In (9), we retain RE to refer to
the function de�ned in (2), with the only formal difference
being that the probability distribution vectors are replaced by
cumulative versions.

Finally, we give the formulas for alternative metrics
for evaluating probabilistic seasonal forecasts that we will
compare with IG. e Brier score [31] is given by

BS =
𝑘𝑘

𝑖𝑖=𝑖
𝑓𝑓𝑖𝑖 − 𝑜𝑜𝑖𝑖

2. (10)

is can be considered as a second-order polynomial
approximation to RE(𝐨𝐨𝐨𝐨𝐨𝐨𝐨 [16, 17]. We average across a set
of forecasts and normalize by the reference forecast’s score to
produce a Brier skill score analogous to ISS𝑖 as follows:

BSS = 𝑖 −
∑𝑘𝑘

𝑖𝑖=𝑖 𝑓𝑓𝑖𝑖 − 𝑜𝑜𝑖𝑖
2

∑𝑘𝑘
𝑖𝑖=𝑖 𝑐𝑐𝑖𝑖 − 𝑜𝑜𝑖𝑖

2
. (11)

e cumulative variant of BS is called the ranked
probability score [32], which as with RISS replaces 𝐨𝐨𝐨 𝐨𝐨 by
cumulative versions𝐎𝐎𝐨𝐎𝐎 as follows:

RPSS = 𝑖 −
∑𝑘𝑘

𝑖𝑖=𝑖 𝐹𝐹𝑖𝑖 − 𝑂𝑂𝑖𝑖
2

∑𝑘𝑘
𝑖𝑖=𝑖 𝐶𝐶𝑖𝑖 − 𝑂𝑂𝑖𝑖

2
. (12)

RPSS may also be de�ned with other positive exponents
replacing 2 in (12) [33].

e Heidke score [34] was formulated for deterministic
forecasts and is used for probabilistic forecasts by replacing
these with deterministic forecasts for the most probable
outcome. e Heidke score HS for a forecast may be de�ned
to be 1 if the outcome predicted by the deterministic forecast
takes place and−𝑖/(𝑘𝑘−𝑖𝐨 if it does not (where 𝑘𝑘 is the number
of possible outcomes). If the probabilistic forecast has no
most probable category (e.g., an equal-chances forecast), HS
is taken to be 0. GivenHS, the corresponding normalized skill
score would be

HSS = ⟨HS (𝐨𝐨𝐨 𝐨𝐨𝐨 −HS (𝐜𝐜𝐨 𝐨𝐨𝐨⟩
⟨𝑖 −HS (𝐜𝐜𝐨 𝐨𝐨𝐨⟩

. (13)

Clearly, all nuance conveyed by the con�dence of a
probabilistic forecast is lost in HSS; a forecast vector 𝐨𝐨 of
(0.9𝐨 0.05𝐨 0.05𝐨, for example, would always get the same
Heidke score as one of (0.4𝐨 0.3𝐨 0.3𝐨.

2.2. Forecast and �eri�cation �ata. On the third ursday
of each month since the end of 1994, CPC releases forecast
probabilities of high, low, or near-normal temperature and
precipitation over the next 3 months on a 2∘ grid for the
coterminous US (232 grid points); for example, January-
February-March mean temperature and precipitation are
forecast in mid-December. e 3 categories of high, low,
and near normal are de�ned as thirds of a climatological
distribution based on a recent 30-year period, so that a priori
they are said to have equal chances; this was taken as our
reference probability distribution 𝐜𝐜. �eri�cation observations

are also taken from the CPC and are in the same categories
and grid as the forecast; we neglect any error in these
observations. Forecast-veri�cation sets were available for 209
consecutive start months, from January 1995 to May 2012.

2.3. A Trend-Following Baseline. Given signi�cant recent
trends in climate quantities that have led to substantial shis
in probability distributions compared to past climatology,
we considered improving on the equal-chances reference
forecast vector by updating the climatological probability
distribution each year since 1995 based on observations as

𝐨𝐨trend (𝑡𝑡 𝑡 𝑖𝐨 = (𝑖 − 𝛼𝛼𝐨 𝐨𝐨trend (𝑡𝑡𝐨 𝑡 𝛼𝛼𝐨𝐨 (𝑡𝑡𝐨 . (14)

us, the Trend forecast 𝐨𝐨trend evolves with time to follow
observations. e parameter 𝛼𝛼 sets the weight given to an
individual observation in the forecast for next year, and its
optimal value is related to the ratio between the magnitude
of the climate trend to the magnitude of the year-to-year
variability [35]. In practice, we determine a value for 𝛼𝛼 for
each year and separately for temperature and precipitation
(but uniform across grid points and seasons) based on
maximizing the log likelihood (i.e., minimizing the RE) for
prediction over previous periods within the range 0.02 < 𝛼𝛼 <
0.08. is corresponds to a characteristic averaging timescale
𝑖/𝛼𝛼 of 12.5 to 50 years, similar to that typically used for
the construction of optimal climate normals [36]. e initial
distribution 𝐨𝐨trend (𝑡𝑡 = 𝑖995𝐨 was set to equal chances, and
for the �rst year, a default value of 𝛼𝛼 = 0.04 was used. We
found that aer several years, the optimized 𝛼𝛼 stabilized at
about 0.06 for temperature and 0.03 for precipitation.

To explore whether CPC forecasts 𝐨𝐨CPC could bene�t
from incorporating information from 𝐨𝐨trend, we constructed
a simple Combined forecast via the naive Bayesian approach
as follows:

𝑓𝑓comb
𝑖𝑖 =

𝑓𝑓CPC
𝑖𝑖 𝑓𝑓trend

𝑖𝑖

∑𝑘𝑘
𝑗𝑗=𝑖 𝑓𝑓

CPC
𝑗𝑗 𝑓𝑓trend

𝑗𝑗

. (15)

2.4. Statistical Inference. Any measure of forecast skill is
expected to vary from event to event. In order to declare
a forecast system as having positive average skill, or one
forecast system as having more skill than another, it is
necessary to estimate the uncertainty of the average skill,
with the set of available forecast-observation pairs viewed
as samples from the stochastic forecast and climate systems
[37]. is task is complicated by the expected temporal
correlation of forecast skill, since forecast periods overlap
and since climate events that affect the observed values, such
as El Niño episodes, persist for multiple months [38]. We
estimated the uncertainty in the mean skill of a forecast as
the standard error of the mean term in a �t of a low-order
seasonal autoregressive moving average (SARMA) process to
the time series. To determine whether there was a signi�cant
monotonic (not necessarily linear) trend in forecast skill over
the study period, we used the nonparametric Mann-Kendall
test on the SARMA residuals. 𝑃𝑃 < 0.05 (two-tailed) was set
as the threshold for signi�cance.
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F 1: (a) Mean con�dence score for the temperature forecasts (markers� lines are smoothed based on local linear regression with a
bandwidth of 24months). (b)Mean information skill score for the temperature forecasts, (c)-(d) same as (a)-(b), but for precipitation forecasts.
e color scheme is blue for the CPC forecast, green for the Trend forecast, and red for the Combined forecast.

T 1: Average con�dence and information gain for forecasts and trend extrapolation.

Temperature Precipitation
CPC Trend Comb CPC Trend Comb

1995–2012
Conf 0.0144 0.0227 0.0463 0.0068 0.0072 0.0150
ISS 0.0236 0.0215 0.0332 0.0031 0.0071 0.0090

2003–2012
Conf 0.0164 0.0326 0.0627 0.0060 0.0094 0.0170
ISS 0.0241 0.0402 0.0461 0.0047 0.0130 0.0159

3. Results

Figure 1
shows the con�dence score Conf and the information skill
score ISS1 averaged over all grid points for each month. e
con�dence of the trend-based probability distribution is �ero
for the �rst year and gradually increases as more years of

history become available to allow estimation of trends, gener-
ally surpassing the CPC forecast over recent years. e CPC
forecasts� con�dence is more variable, peaking on occasions
such as strong El Niño episodes when the forecasters believed
that seasonal climate had more predictability. e combined
forecast, as expected from its construction, consistently has
more con�dence than either of its components.
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F 2: Histogram of mean monthly ISS for temperature forecasts: (a) CPC; (b) Trend; (c) Combined.

ISS is more variable than Conf since it depends on
observations as well as on the forecast system; for many
months, ISS is negative,meaning that the forecasts performed
worse than an equal-chances prediction (Figures 1(b) and
1(d)). Overall, the CPC temperature forecasts have positive
ISS for 73% of months since 2003, and the precipitation
forecasts have positive ISS only for 58% of months; the
corresponding �gures for the Trend forecast are 72% and 73%
(Figures 2 and 3). For temperature, the warming picked up
by the Trend forecast gives it generally more skill than the
CPC forecast since around 2004, with a dip in 2009 when a
cool period led trend to be a poor basis for forecasting. For
precipitation, skill as well as con�dence is lower than that
for temperature, since both trends and the persistent factors
considered by the CPC forecasters are less strong indicators.
Here also Trend on average outperforms the CPC forecast
since 2004, with a noteworthy exception since late 2011 when

dry conditions have broken with a trend toward increasing
precipitation in the north-central USA.

Overall average values for Conf and ISS are given in
Table 1. Since the Trend has built up con�dence over time,
averages since 2003 as well as for the entire CPC forecast
period (since 1995) are given. For temperature, the CPC
forecast has higher ISS than Conf suggesting that the CPC
forecasters have tended to be undercon�dent. �e Trend
forecast has almost the same mean ISS for the entire period
and higher ISS since 2003, and seems to be fairly well
calibrated (ISS is similar to Conf), suggesting that the RE-
based optimization of the parameter 𝛼𝛼 has been successful in
choosing appropriate values. For precipitation, the CPC fore-
cast has less con�dence than for temperature, but ISS is even
lower, suggesting overcon�dence for the CPC precipitation
forecasts. Trend also gave less con�dence for precipitation
than for temperature, but higher con�dence and ISS than
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F 3: Same as Figure 2, but for precipitation forecasts.

that for CPC. e Combined forecast ISS was on average
better than either CPC or Trend, suggesting that the two
contain some independent information, but less than the
combined forecast�s con�dence. is overcon�dence for the
combined forecast is expected since naive Bayesian com-
bination assumes that the different components (CPC and
Trend) are entirely uncorrelated; in fact, the CPC forecasters
do make some use of trends, so the two forecasts are not
independent and their optimal combination should have
lower con�dence to re�ect this. e Combined forecast also
had a somewhat lower percentage ofmonths with positive ISS
than the Trend forecast—69% for temperature and 62% for
precipitation—again plausibly re�ecting its overcon�dence.

It is of interest
to see what regions have accounted for the CPC forecast and
Trend con�dence and skill. Figures 4 and 5 show mean Conf
and ISS for the two probability distributions by grid cell,

averaged since 2003.eCPC temperature forecasts show the
highest con�dence in an area stretching from the Great Basin
to the Texas coast, largely overlapping with where the Trend
con�dence is the highest, although the Trend shows some
con�dence and skill for parts of the east. For precipitation, the
CPC forecast con�dence is concentrated along the southern
margin of the US from Arizona to Florida, where winter
warm, dry conditions are associated with La Niña and cool,
wet conditions with El Niño. e Trend forecast focuses on
the northern Rockies and Great Plains, where there has been
wetting.

As another depiction of the geographic variation in
forecast skill, Figure 6 shows the mean ISS (since 2003)
for quarters of the coterminous USA, split at 39∘N and
99∘W. For temperature, the CPC forecasts have the most
skill for the southeast and southwest, and combining then
with the Trend yields improved forecasts for all quarters. For
precipitation, the CPC forecasts on average only have skill in
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F 4: Mean con�dence score for the CPC forecasts of (a) temperature and (b) precipitation. (c)-(d) Same, but for Trend forecast. (e)-(f)
Same, but for Combined forecast.

the southwest whereas the Trend has skill in the northwest,
and the Combined forecast has both these areas of strength.

3.3. Comparison across Skill Metrics. Table 2 shows how
the CPC forecast compares with the Trend and Combined
forecasts as judged by the different skill metrics introduced
in Section 2 (all averaged since 2003). ISS is generally the
most demanding skill score (with lower values than the
other metrics). BSS is very similar to but slightly higher
than ISS, which is consistent with the Brier score being

a second-order approximation to IG that penalizes wrong
predictions less. e ranked versions of ISS and BSS mostly
give higher skill scores, which makes sense since the ranking
gives credit for being “closer” to the observed outcome even
if the observed outcomewas not forecasted as being probable.
HSS has the highest skill score of all the metrics considered.
All skill scores agreed in �nding the Trend more skillful
than the CPC forecast for both temperature and precipi-
tation, and the combined forecast somewhat more skillful
still.
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T 2: Skill scores for forecasts and trend extrapolation.

Temperature Precipitation
CPC Trend Comb CPC Trend Comb

ISS 0.0241 0.0402 0.0461 0.0047 0.0130 0.0159
RISS 0.1341 0.2518 0.3506 0.0012 0.0523 0.0505
BSS 0.0274 0.0458 0.0529 0.0053 0.0152 0.0185
RPSS 0.0407 0.0725 0.0825 0.0080 0.0226 0.0276
HSS 0.2163 0.3705 0.3714 0.0895 0.2980 0.3071
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Fitting seasonal autoregressive models to the skill score
time series showed that there was no signi�cant trend in the
CPC forecast skill either since 1995 or since 2003, regardless
of the metric chosen (not shown). e mean CPC forecast
skill for precipitation was not signi�cantly different from zero
under all metrics except HSS while the mean Trend skill was
greater than zero for the period since 2003 under all metrics;
for temperature, both CPC and Trend had signi�cant skill
under all metrics (not shown).

4. Discussion

4.1. Seasonal Forecast Skill: Comparison with Previous Assess-
ments. Many of our results—for example, that skill for
precipitation is lower than that for temperature and that
CPC does not optimally account for trends—are largely
consistent with previous assessments of the CPC seasonal
forecasts [24–27], albeit these did not conduct a quantitative
comparison with a probabilistic trend extrapolation. (Peng
et al. [27] compared CPC with a deterministic trend forecast
based on the most common category seen over the previous
few years, but such a deterministic forecast cannot be used
for comparing probabilistic skill scores.) Underestimation
of trends also appears to be characteristic of some other
operational seasonal forecasts [39]. e lack of a signi�cant
improvement in the CPC forecasts over time is discouraging,
particularly since over the last few years the CPC forecast
methodology has been revised to more objectively weight the
different potential sources of predictability [25]. We show
that the CPC forecast is indeed quantitatively dominated by a
trend extrapolation (our Trend forecast), and that adjusting
the CPC forecast to include the trend, even in a simplistic
way, results in substantially improved average skill relative to
an equal-chances baseline.

If there is speci�c reason to believe either that no trend
in the variable being forecast exists or that trends observed
over recent years have now reversed, then this information
should be incorporated into the reference forecast instead of
relying on trend extrapolation blindly. For example, while
temperature increased rather linearly since the 1970s [21],
precipitation may not be well characterized by a consistent
trend, as hinted by the poor performance of our trend extrap-
olation for precipitation during the 2011-2012 drought.
Further research on the performance of trend extrapolation
for different climate variables, regions, and time periods is
warranted.

Once seasonal forecasts do incorporate trends appropri-
ately, the time-varying trend extrapolation may in fact be a
more appropriate reference probability distribution 𝐜𝐜 than
equal chances based on climatology, since the expectation
is that a seasonal forecasting system should be able to use
knowledge of speci�c current conditions to outperformmere
trend extrapolation. e con�dence score we introduced,
based on our decomposition of the information gain into
Con�dence, Forecast Miscalibration, and Climatology Mis-
calibration components, could be used in conjunction with
ISS to help calibrate probabilistic forecasts such as CPC’s.

4.2. Information Skill Scores for Assessing Seasonal Forecasts.
e comparisons shown here suggest that there is great,
relatively systematic variation in the skill score generated by
different metrics, even when normalized to a common scale
(where 0 corresponds to no skill and 1 to a perfect forecast).
ISS is generally the more stringent skill score; for example,
HSS averages more than a factor of 10 greater than ISS for
the CPC seasonal forecasts. is suggests the need for more
exploration of how well the different skill scores correspond
to user requirements; in general, no single skill score can be
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expected to capture all aspects of forecast performance, which
can only be completely described by the full joint probability
distribution of forecasts and observations [40]. Information
measures of forecast skill have the advantage of a clear
theoretical basis in terms of the underlying joint probability
distribution [41] and should be added to forecast veri�cation
soware tools such as the Ensemble Veri�cation System [42]
in order to facilitate comparing them with currently used
metrics.

5. Conclusions

Information gain measures show that at least the CPC
seasonal temperature forecast has measurable skill, but that
for it and the precipitation forecast the skill can be at least
doubled by adjusting the probability distribution based on
recent trends. Comparing seasonal forecasts to probabilistic
trend extrapolation and comparing con�dence scores to
information gain (where the two should on average be equal
for a well-calibrated forecast) are tools introduced here that
should help improve seasonal forecasts substantially.
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