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ABSTRACT

Meteorological forecasts of incident solar radiation are
valuable for solar resource owners and others. Most
previously described forecast methods provide a single
predicted value. However, a well-calibrated forecast
probability distribution is more useful in that it could be used
to make optimum decisions under any decision rule. We
demonstrate methods of constructing and evaluating
probabilistic forecasts of cloudiness (as observed from
geostationary satellites) for a given location by combining
climatology with weather prediction model output. We use
metrics from information theory for forecast skill
assessment. We consider two locations, New York City
(representing a moist temperate climate) and Nevada
(representing a sunny desert climate). We find that
probabilistic forecasts conditioned on weather prediction
model output improve on climatology at both locations. At
Nevada the key limitation for accurate forecasts appears to
be the weather model’s representation of cloudiness, while at
New York weather predictability is also important.

1. INTRODUCTION

An increasingly integrated power grid together with
enhanced computational and load management capabilities
increase the value and necessity for supply and demand
forecasts. Meteorology plays a particularly critical role in
solar and wind power generation [1]. Here, we concentrate
on deriving one-day-ahead forecasts of cloudiness, based on
combining climatology and numerical weather prediction, to

aid in solar power deployment.
Most previous studies of cloudiness forecasts for solar
applications have assessed deterministic (point) forecasts.
Such studies used for forecast calibration and assessment
measures of accuracy such as mean square error and bias that
are suitable for comparing point forecasts with subsequent
observations [2–10]. However, in recognition of the value
for decision making of explicit, well-calibrated assessments
of uncertainty, here we construct fully probabilistic
forecasts. We use measures of accuracy suitable for
assessing the correspondence of a forecast probability
distribution (PDF) with the subsequent observation, notably
the information gain (IG; measured in bits) of a forecast
PDF compared to a baseline “no-skill” PDF [11, 12].

2. BACKGROUND AND NOTATION

Consider a probabilistic forecast p(x) for the value of a
meteorological quantity of interest x (at a specific place and
time). This forecast is a probability mass function if the
possible range of x (perhaps suitably discretized) has finitely
many values, in which case p(x) can be expressed as a
vector, the elements of which are nonnegative and sum to 1,
containing the probability of each possible outcome xi. If x
is a continuous variable, its forecast p(x) would be a
probability density function. Here, we will assume that the
variables of interest have finitely many possible values and
forecasts are in the form of probability mass functions,
though generalization to continuous variables is possible.
Let xo be the observed outcome. A perfect probabilistic
forecast pperfect(x) would be one where p(xo) = 1 and
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p(xi) = 0 for all other xi 6= xo. Also, a baseline or little-skill
forecast pbaseline(x) can be defined, perhaps one that specifies
equal chances for each possible outcome or one that is based
on previous experience at the site (climatology). In general,
how good a probabilistic forecast is can be quantified by
evaluating how close p(xo) is to 1 – that is, how much
confidence is put on the forecast of the right event. A
measure based on information theory is relative entropy
(RE), equivalent to the Kullback-Liebler divergence between
the forecast and observation:

RE =− log(p(xo)), (1)

RE is nonnegative; it is zero for a perfect forecast, and in
general should be “small” for a good forecast. We define the
forecast system’s mean information gain or IG as the
expected difference in RE between it and a baseline forecast,
which in practice is estimated by averaging RE over many
forecast times or places:

〈IG〉= 〈REbaseline−RE〉. (2)

〈IG〉 has information units such as bits (depending on the
base of the logarithm taken in Eq. 1), and should be positive
for a forecast system that is skillful (that is, better than the
baseline forecast). A normalized measure of forecast skill
relative to a hypothetical perfect forecast is offered by the
information skill score (ISS):

ISS =
〈IG〉

〈IGbaseline〉
. (3)

ISS is zero for the baseline forecast and 1 for a perfect
forecast.

3. DATA AND METHODS

As an example of generating and evaluating probabilistic
forecasts for solar energy application, we consider
forecasting daytime cloudiness, defined as
C = 1− exp(−COD), where COD is cloud optical depth. C
ranges from 0 for clear skies to almost 1 under thick clouds,
and 1−C is the factor by which clouds are expected to
decrease direct solar irradiance at the surface. We chose
locations in Nevada (NV, 38◦N 118◦W) and near New York
City (NYC, 40.8◦N 74◦W), representing desert (less cloudy)
and temperate midlatitude (more cloudy) conditions
respectively. We considered data from 2005-2007, with the
first two years used for forecast calibration and the last year
for forecast validation. COD data were obtained from
geostationary satellite images at visible wavelengths as
processed by the International Satellite Cloud Climatology
Project (ISCCP). For this exploratory study we used ISCCP
cloudiness data as our ‘observations’ since ground-based
cloudiness data are not publicly available for many locations

of interest, while ISCCP data are available almost globally
over the period 1983-2009 at a horizontal resolution of about
30 km (though here we averaged pixels adjacent to the
closest one to our study sites, so the effective resolution was
closer to 90 km) and a time resolution of 3 hours and have
been validated against surface observations [13, 14]. The
ISCCP algorithm (or other, similar ones) could be applied in
near real time to estimate cloudiness for locations of interest
from geostationary satellite feeds [15]. Cloudiness is well
correlated with surface solar irradiance and therefore has a
strong impact on solar power output, although other factors
such as haze could also play a role at particular sites, and
global solar irradiance decreases less rapidly than 1−C for
high values of COD [2, 16].
The North American Mesoscale Model (NAM) is a
numerical weather prediction model run every 6 hours on a
12 km grid by the National Environment and Climate
Prediction (NCEP) center (http:
//www.emc.ncep.noaa.gov/index.php?branch=NAM).
It is useful for climatological work due to its long
operational history dating back to 1979. When a weather
model field is combined with current observational data, the
result is called an ‘analysis’; it is considered the best
representation of the atmosphere possible for the set of
incorporated observations, and is used to initialize forecasts.
In this work, cloud fraction in the NAM analysis is used to
compare current conditions captured by the model to cloud
observations from ISCCP, serving as a baseline for
comparisons with NAM forecasts. Since satellite
observations of cloud cover are not currently included in
weather model analysis [17], the work described below is a
comparison of two independent data sets.
The ISCCP cloudiness was discretized into 10 bins each of
width 0.1. To test the developed methodology, we
considered ‘forecasting’ cloudiness for the validation period
based on either (a) climatology – the calibration period
frequency distribution; (b) analysis – the calibration period
frequency distribution conditional on NAM analysis
(nowcast) cloud fraction category; or (c) 24-hour prediction
– the calibration period frequency distribution conditional on
NAM cloud fraction category as probabilistically forecast
using the 24-hour NAM forecast. These three hindcasts are
designated Climatology, Analysis, Prediction respectively.
Since archived 24-hour NAM forecasts were not available
for the 2005-2007 period, they were simulated based on the
analysis-forecast confusion matrix derived for pairs of
forecasts and validating analyses from July-November 2013.

4. RESULTS AND DISCUSSION

The climatological frequency distribution of cloudiness
according to ISCCP is shown in Figure 1ab. Cloudy skies
are much more common in NYC, but slightly cloudy
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Figure 1: (a, c) Histograms of ISCCP cloudiness and NWP analysis cloud fraction, respectively, over 2005-2006 for NYC. (b,
d) Same, but for NV.

conditions (C between 0.1 and 0.2) are more common in the
NV site, perhaps due to the mountain ranges nearby. The
NAM analysis cloud fraction frequencies largely reproduce
the difference between the locations (Figure 1cd).

NWP analysis cloud fraction is imperfectly correlated with
ISCCP cloudiness at the same location (Figure 2ab). In
particular, there are many times for which the analysis shows
cloud cover while ISCCP does not. The correlation in cloud
fraction between the NAM analysis and the previous day’s
forecast tends to be better but is also imperfect, with
occasional times where the analysis shows full cloud cover
although clear conditions were forecast or vice versa (Figure
2cd).

Despite the inconsistent ability of the NAM analysis to
capture cloudiness as seen by ISCCP, the conditional
frequency distribution of ISCCP cloudiness for analysis
predictions of clear versus cloudy conditions are quite
different (Figure 3ab). In particular, ISCCP cloudiness is
very unlikely if the analysis indicates clear conditions,

although even if the analysis indicates cloudy conditions,
ISCCP may not show much cloudiness (Figure 3ab).
Accounting for the degradation in NAM accuracy caused by
predicting 24 hours ahead slightly weakens these
differences, particularly for NYC (Figure 3cd), but there
remains a difference in the conditional frequency that can be
exploited for improving the skill of probabilistic forecasts.

Applying RE to quantify the probabilistic forecast skill over
the validation period, we find that the two locations have
similar variability in cloudiness, as reflected in the larger RE
for Climatology compared to the desert location (Table 1).
The ISS for the Analysis-based ‘forecast’, which quantifies
the degree to which the NWP analysis captures the
cloudiness, is somewhat greater for the desert site, and
similar in magnitude to that previous found for probabilistic
seasonal forecasts of temperature and precipitation [12]. The
ISS for the Prediction-based forecast, which also includes
the effect of weather-prediction error, was degraded by only
about 10% compared to analysis at the desert location, but
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Figure 2: (a, c) Scatter plots of NAM analysis cloud fraction versus ISCCP cloudiness (for 2005-2006) and NAM 24-hour
forecast versus analysis cloud fraction (for 2013), respectively, for NYC. (b, d) Same, but for NV.

reduced by over two-thirds at NYC, perhaps reflecting
greater synoptic variability and lower predictability in
weather there (Table 1).

Cloudiness has a strong seasonal cycle at both locations,
with more clouds in winter (Figure 4ab). More interestingly,
when plotted by month over the one-year validation period,
the mean IG for the Analysis and Prediction forecasts
appears to show pronounced variability between months
(Figure 4cd), and is for example at NYC much lower in
January, February, March, and August than in other months.
If this variability is confirmed over more validation years, it
would suggest the need for seasonally specific conditional
distributions of cloudiness. Basing forecasts on an ensemble
of weather model predictions may also improve skill
compared to using a single model run, similar to what is
found for climate prediction [18]. In the longer term,
improving the representation of clouds in weather models
via comparison with cloud and radiation observations [19]
should also improve forecast skill for solar applications.

5. CONCLUSIONS

We have presented a methodology for constructing
probabilistic forecasts of cloudiness based on climatology
and on numerical weather prediction model outputs. Our
Prediction forecast could be generated almost 24 hours in
advance from current model output and appears to be
informative particularly in desert locations. Depending on
the availability of calibration data, forecasts employing this
methodology could be tailored to site-specific conditions and
variables that affect solar power decision making. Such
probabilistic forecasts are well suited for risk assessment and
optimization of complex renewable energy supply and
demand systems.
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Figure 3: (a, c) Frequency distributions of ISCCP cloudiness for clear versus cloudy conditions as indicated by the NAM
analysis and forecast, respectively, for NYC. (b, d) Same, but for NV.
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Figure 4: (a, c) Seasonal cycle of cloudiness (2005-2006) and of forecast mean information gain (2007), respectively, for NYC.
(b, d) Same, but for NV.
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