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The United States Department of Agriculture classifies plant hardiness zones based on mean annual minimum temperatures over
some past period (currently 1976–2005). Since temperatures are changing, these values may benefit from updating. I outline a
multistep methodology involving imputation of missing station values, geostatistical interpolation, and time series smoothing
to update a climate variable’s expected value compared to a climatology period and apply it to estimating annual minimum
temperature change over the coterminous United States. I show using hindcast experiments that trend estimation gives more
accurate predictions of minimum temperatures 1-2 years in advance compared to the previous 30 years’ mean alone. I find that
annual minimum temperature increased roughly 2.5 times faster than mean temperature (∼2.0 K versus∼0.8 K since 1970), and
is already an average of 1.2± 0.5 K (regionally up to ∼2 K) above the 1976–2005 mean, so that much of the country belongs to
warmer hardiness zones compared to the current map. The methods developed may also be applied to estimate changes in other
climate variables and geographic regions.

1. Introduction

Expected values of various climate variables at particular
locations are used for decision making in many sectors.
Traditionally, these have been estimated based on the average
over some past period. If the variable is statistically station-
ary, averaging over a long period should result in an accurate
estimate of its expected value; however, in the presence of
trends, such as those associated with global warming, such
averages will not be optimal estimates for the expected value
going forward [1, 2].

In this paper, the climate variable considered is the
annual minimum temperature, an important determinant
of the range over which particular varieties of perennial
plants and overwintering insects may thrive. The United
States Department of Agriculture (USDA) first released
maps of plant hardiness zones for the coterminous United
States (USA) and southern Canada in 1960, where each
zone corresponded to a particular range of mean annual
minimum temperature; similar maps, with different num-
bering of hardiness zones, were published as early as 1938

by Harvard University’s Arnold Arboretum [3]. The most
recent USDA hardiness zone map revision for the United
States and Puerto Rico, published in January 2012, is based
on mean annual minimum temperatures over 1976–2005
at some 8,000 available weather stations, interpolated to a
resolution finer than 1 km taking into account factors such
as elevation and proximity to shorelines [4]. The annual
minimum temperature mapped over much of the USA is
of order 1.4 K warmer than that in the previous USDA
map, which was released in 1990 and based on 1974–1986
averages, although differences between the 1990 and 2012
releases are not necessarily the result of climate change
because the interpolation methodology has also changed.
That there has been warming is, however, confirmed by
comparing the maps prepared for the two halves of the
new climatology period, 1976–1990 versus 1991–2005 [4].
A global hardiness zone map has also been prepared, based
on 1973–2002 station averages and using gridded monthly
mean temperatures to interpolate areas with sparse station
coverage [5]. These hardiness zone maps are widely used
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in analyses of the ranges of plant and pest species and in the
formulation of planting recommendations [6–9].

There have been few systematic studies of observed
changes in annual minimum temperature, compared to
many studies of trends in mean temperatures. Karl et al. [10]
found increasing trends in annual minimum temperatures,
but not annual maximum temperatures, over the USA and
former USSR. Zhai et al. [11] found that winter minimum
temperatures in Chinese stations showed an increasing linear
trend amounting to 2.5 K over the period 1951–1990, while
summer temperatures did not increase. Knappenberger et al.
[12] found that the linear warming trend in daily minimum
temperature for USA stations over the period 1970–1997 was
strongest for the coldest part of the annual range. Mcken-
ney et al. [13] quantify linear trends in annual minimum
temperature over Canada during the period 1961–2000,
finding a mean increase of 2.2 K over the period (larger over
the western provinces), which they note exceeds reported
increases in annual mean temperature. Shen et al. [14]
studied trends in the first four moments of daily temperature
anomalies over the coterminous USA during 1901–2000,
finding that winter temperatures have increased more than
summer temperatures, daily minimum temperatures have
increased more than daily maximums, and the variance of
the temperature anomaly time series has decreased.

In this study, I sought to quantify trends in annual
minimum temperature since the early 20th century and
evaluate how currently mapped hardiness zones might be
adjusted to account for these trends. My interest here
was in trends (i.e., systematic shifts between time periods,
including nonlinear change patterns), rather than in actual
annual minimum temperature at a given location. While
temperatures show pronounced differences over small spatial
scales, as captured by the latest USDA map, trends in mean
temperature tend to have spatial scales of hundreds to
thousands of km [15], and here I will show that this is true
of trends in annual minimum temperatures as well. I show
results for the coterminous USA for comparison with earlier
work and because of the relatively high density of available
weather data there, although my methods could be applied
with little modification to any region with adequate station
data. I expressed changes in annual minimum temperature as
relative to the 1976–2005 average, to complement the recent
USDA release, and also examined the total change since the
beginning of the current warming period around 1970.

2. Methods

2.1. Station Data. The source of temperature observations
was a current version of the Daily Global Historical
Climatology Network (GHCN-Daily, ftp://ftp.ncdc.noaa
.gov/pub/data/ghcn/daily/). GHCN-Daily is a compilation of
ground weather observations from a variety of sources, going
as far back as the 18th Century, that is freely available and
updated in near real time by the USA National Climatic Data
Center (NCDC). Data flagged as failing any of the automatic
quality control tests [16, 17] were rejected. The provided
station locations were mapped by country code, detecting

10 cases of obviously erroneous longitudes or latitudes; these
were corrected for this analysis and reported to NCDC for
the benefit of future releases.

Annual minimum temperature over a year was calculated
as the lowest daily minimum temperature for that year in
a given station record. The annual minimum temperature
was considered missing if minimum temperature for any day
during the year was missing from a given station record. Years
were defined to begin in March because in the northern mid-
latitudes, the annual minimum temperature almost always
occurs between December and February. (Thus, the official
record minimum temperatures in each of the 48 contiguous
states (http://www.ncdc .noaa.gov/extremes/scec/) were set
on dates ranging between 22 December and 17 February.)
Ending the year in February allows computing a new data
point in annual minimum temperature time series as early
as March, taking advantage of the near real-time updating
of GHCN-Daily. Defining years instead as starting in July,
as done in computing the USDA hardiness zones [4], led
to almost identical results for the study region of the
coterminous USA.

Only stations with at least 30 years of annual minimum
temperature data were used. This gave 2733 available sta-
tions, of which 1065 were in the coterminous USA (Figure 1;
the interpolation utilized all the stations shown, not just
those in the coterminous USA). All years with at least
5 available stations were included in the analysis steps,
although because of the restricted number of stations at the
beginning of the analysis period (Figure 2), only results since
1900 will be shown.

While GHCN has developed an homogeneity-adjusted
monthly temperature product [18], the daily temperature
series used here are not adjusted for inhomogeneities that
may arise, for example, from changing station siting or
observation practices. As a partial check on the sensi-
tivity of my estimated trends to such inhomogeneities,
an additional analysis was conducted where the stations
used were restricted to those in the United States His-
torical Climatology Network (USHCN), a set of stations
specifically chosen for monitoring climate change over
the USA due to their long high-quality records (http://
cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html) [19]. Impos-
ing this restriction gave a subset of 421 available stations.

2.2. Gap Filling. For the selected stations, missing annual
mean temperature values were imputed, producing complete
time series of annual minimum temperature; this was done
to minimize the impact of changing station coverage over
time on the estimated regional trends. I chose an imputation
method based on singular value decomposition (SVD),
variants of which have been tested in genomics and data
mining applications [20, 21]. The method consisted of the
following.

(1) Construct an m × n matrix A of station annual
minimum temperatures, where m is the number of
stations and n the number of years, and m > n.
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Figure 1: Locations of GHCN-Daily stations used.
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Figure 2: GHCN-Daily stations with annual minimum tempera-
ture data per year.

(2) Center A by subtracting the mean from each
row. Record the maximum and minimum values
Amax,Amin of the centered matrix.

(3) Fill in missing values in A with the mean value for the
corresponding year. (This initializes with any long-
term trend that is suggested by the available stations.)

(4) Find the thin SVD [22, page 72] USVT of A.

(5) For each year index i, recalculate the corresponding
row of V by regression on the known station values
for that year; that is, if the set of indices of available
stations in the year i is given by j, solve the linear
problem (U( j, :)S)̂V(i, :) = A( j, i) for the unknown
row i of ̂V.

(6) Compute ̂A ≡ UŜVT . Limit the elements of ̂A to
range between Amin,Amax.

(7) Compute the iteration increment I as ‖̂A− A‖/‖̂A +
M‖, where the norm is the vector 2-norm (root mean

square) over the missing elements only and M is the
matrix of mean values subtracted from A in step (2).

(8) Set A ≡ ̂A. Set known elements in A to their observed
values. Recenter A.

(9) Iterate steps (4)–(8) until I is under a specified
tolerance level η. (Here η = 10−3, and convergence
occurred after about 30 iterations.)

The limiting in step (6) prevents occasional divergence
of the iterations. Presumably, it could be replaced by a
suitable regularization constraint in the regression step (5).
It may also be possible to refine the procedure by using
only a geographically nearby station subset to fill in each
value, analogous to the implementation of locality in data
assimilation for numerical weather prediction [23].

2.3. Interpolation. The empirical correlation of annual min-
imum temperatures between pairs of stations (using only
years for which both stations have data) was plotted as a
function of interstation distance (Figure 3). As noted for
mean temperatures and for hydroclimate variables [15, 24],
the correlation length scale was typically hundreds of km. A
sum of three Gaussians was fitted to model the interstation
covariances:

C(d) =
3
∑

i=1

aie
−bid2

, (1)

where d is the distance between two stations. Station
variances were taken to be

V = C(0) +
c

f
. (2)

Here, the second term represents the “nugget” component of
station variability due to effects not shared by nearby stations
(such as microclimate or measurement technique) and
includes an adjustment for the station observation coverage
f (as a fraction of the analysis period) that downweighs
stations with more values that are imputed rather than
observed. Values for the parameters ai, bi > 0, c ≥ 0
were determined to minimize the weighted sum of squares
of the difference between the modeled and the empirical
covariances for available pairs of stations (Figure 3), where
the empirical covariances were averaged over 0.25◦ (28 km)
distance ranges and weighted based on the standard error of
these averages.

Ordinary Kriging [25] was used to interpolate each
year’s annual minimum temperatures on a 1◦ grid over
the coterminous USA based on the gap-filled station values
and the modeled covariance matrix. A USA-wide annual
minimum temperature time series was also computed, using
an area-weighted average of the grid points.

2.4. Trend Estimation. For the annual minimum tempera-
ture time series T(y) obtained for each grid point or for the
USA, a decomposition was sought in the form

T
(

y
) = S

(

y
)

+ ε
(

y
)

, (3)



4 Advances in Meteorology

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000

M
ea

n
 c

or
re

la
ti

on

Between-station distance (km)

Empirical
Model

Figure 3: Correlation of annual minimum temperature time series
between pairs of stations as a function of the distance between them.

where S(y) is a smooth trend component and ε(y) is weather
variability that is basically uncorrelated from year to year.
S(y) was estimated using a smoothing cubic spline with
natural boundary conditions [26], where the regularization
parameter that determines the amount of smoothing was
chosen by the corrected Akaike information criterion (AICC)
[27]. Approximate pointwise standard errors for the esti-
mated trend S(y) were obtained following [28].

In order to check whether the results were sensitive
to the trend estimation method, an alternative smoothing
approach tried was a local linear regression estimator [29],
with a Gaussian weighting kernel whose scale parameter
was estimated via AICC. Additionally, generalized cross-
validation [30] was tried instead of AICC for choosing the
smoothing spline regularization parameter.

2.5. Hindcast Experiments: End-to-End Testing. Do the
trend estimates obtained on a 1◦ grid via the gap filling,
interpolating, and smoothing process improve predictions
of actual station-measured annual minimum temperatures,
compared with simply using (as in the current USDA
procedure) a climatology based on the mean of previous
years’ observations? To find out, I compared two methods
of hindcasting station’s annual minimum temperatures using
only observations from preceding years. The first method
(climatology hindcast) used the mean of the previous
30 years of available values as the predictor. The second
method (trend hindcast) added to the climatology predictor
a correction equal to the difference between the last year’s
trend value for the 1◦ grid cell in which the station is located
and its value over the climatology period. Only data from
years before the hindcast target were used in the gap-filling,
interpolation, and smoothing steps for obtaining the trend.

Hindcast values were obtained for all coterminous USA
stations with available observations for comparison and

for all years since 1980, for a total of 11,465 hindcast
opportunities at 1-year lag and 10,854 at 2-year lag. For
both hindcast methods, the root mean square, mean absolute
value, and mean (bias) of the error (hindcast minus actual
value) were computed.

3. Results

3.1. USA Temperature Trends. Figure 4 shows the annual
minimum temperature by year, averaged over the cotermi-
nous USA, relative to the 1976–2005 base period. At this
spatial scale, trends over recent decades are of the same
magnitude as year-to-year variability, which is ∼1.5 K. The
multidecade variability is qualitatively similar to that known
for mean temperatures, but with generally larger amplitude
(as will be shown below). Annual minimum temperatures
rose ∼0.7 K between 1900 and 1940 and then declined
∼0.1 K through 1970. Annual minimum temperatures have
increased ∼2.0 K since 1970 and as of 2011 are 1.2 ±
0.5 K above the 1976–2005 mean (1-σ uncertainty of trend)
(Figure 4). The higher trend annual minimum temperature
by 2011 compared to the 1976–2005 mean is consistent
across the coterminous USA, but the warming magnitude
ranges from ∼0.5 K in the southwest and upper midwest
to ∼2 K around the southern appalachians (Figure 5(a)).
Considering the period since 1970, the warming of annual
minimum temperatures is in the range 1.5–2.5 K over most
of the coterminous USA (Figure 5(b)).

It is also possible to look at annual minimum tempera-
ture anomalies for particular years, in addition to the trend.
Averaged across the coterminous USA, 2011-2012 seems
to have been the warmest since 1900 (in terms of annual
minimum temperature), at 3.8 K above the 1976–2005 mean;
the next warmest years were 1999-2000 (+3.2 K), 1930-1931
(+3.1 K), and 1991-1992 (+3.0 K) (Figure 4). The coldest
year since 1900 was 1962-1963, at 4.4 K below the 1976–
2005 mean (though, interestingly, no current state minimum
temperature records date to that winter), followed by 1984-
1985 (−3.7 K), 1961-1962 (−3.4 K), and 1911-1912 (−3.3 K).
The gridded anomalies can be mapped to show the regional
distribution of anomalies by year, as shown in Figure 6 for
the extreme years 1962-1963 and 2011-2012. Uncertainties
(1-σ) estimated from the Kriging correlation matrix for the
individual years’ values are about 1 K for individual grid
points and 0.1 K for the USA-wide mean.

The obtained increases in annual mean temperature since
1970 and since the 1976–2005 base period are very similar
if only the USHCN stations are used, at 2.1 K and 1.4 K,
respectively, compared to 2.0 K and 1.2 K when all HCDN-
Daily stations are used (Figure 7). Similarly, the increases are
similar if local linear regression instead of spline smoothing
is used for trend estimation, at 2.0 K and 1.4 K, respectively,
or if generalized cross-validation is used in the smoothing
spline parameter estimation instead of AICC (2.0 and 1.3 K;
not shown). This increase in annual minimum temperature
since 1970 has been greater than the increase in annual mean
temperature (computed with HCDN-Daily stations using the
same method employed for annual minimum temperature),
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Figure 4: Annual minimum temperature anomaly (relative to the
1976–2005 mean) averaged across the coterminous USA, along with
a fitted trend curve. Dashed curves show a 1-σ uncertainty envelope
for the trend.

which has been only 0.8 K (Figure 7). In general, annual
minimum temperatures have increased roughly 2.5 times
as fast as annual mean temperatures since 1900 (Figure 8).
Note that the linear relationship between minimum and
mean temperature shown in Figure 8 is entirely due to
the trend components of the two time series (shown in
Figure 7); if these trend components are subtracted, then
annual anomalies in annual minimum temperatures have
no significant correlation with anomalies in annual mean
temperature (R2 < 0.01, not plotted).

3.2. Hindcast Experiments. Averaged over the years since
1980, the climatology hindcasts of station minimum tem-
peratures as the average of the past 30 years have been
biased low by ∼1 K (Table 1), in line with the reconstructed
warming trend. The trend hindcast, which adds the trend
reconstructed based only on data 1 or 2 years prior to
the hindcast year, reduces the magnitude of the bias by
∼90% and also reduces the root mean square error by ∼2%
and the mean absolute error by ∼4% (Table 1). Inspection
of climatology and trend hindcasts for individual stations
reveals that after the 1980s trend forecasts tended to be
above climatology, and usually better tracked observations:
two examples, one in the south and one in the north
of the study region, are shown in Figure 9. Notice that
for individual stations, year-to-year variability in minimum
temperature is higher than that for the nationwide average
and dominates the hindcast error, so that although trend
adjustment improves hindcast quality by reducing bias, root
mean square and mean absolute errors are reduced by
relatively little.

4. Discussion

The approach outlined here to estimate trends from relatively
sparse, temporally incomplete station data should be of
general applicability to other climate variables such as
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Figure 5: (a) Gridded annual minimum temperature trend as that
of 2011-2012, relative to the 1976–2005 mean, over the coterminous
USA. (b) Change in trend annual minimum temperature between
1970-1971 and 2011-2012. Units are K; pointwise 1-σ uncertainties
are around 0.6 K.

maximum temperature or precipitation, though some details
such as the form of the falloff in interstation covariance with
distance may need adjusting when different climate variables
are considered. My approach may be useful in updating
climate-based quantities such as growing season length and
heating degree days which find a variety of applications and
which are also changing [31–34], as well as standards based
on expected climate extremes for infrastructure design and
adaptation [35]. This approach could similarly be extended
to tracking the migration of alternate measures of plant
hardiness, such as the Canadian one, or of climate envelopes
empirically determined for particular plant species; these
measures may include functions of climatic variables such
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Figure 6: Gridded annual minimum temperature (K), relative to
the 1976–2005 mean, over the coterminous USA, for individual cold
and warm winters: (a) 1962-1963, (b) 2011-2012.

as precipitation and wind speed in addition to annual
minimum temperature [36–39].

This approach compares favorably in generality to others
proposed for reducing the bias of climatology estimates of
expected values in a changing climate. Compared to the
“optimal climate normals” approach for finding expected
values, where the climatology averaging period is shortened
to reduce the trend-induced bias [40], my trend estimation
approach is able to mitigate bias without losing the infor-
mation contained in the longer-term record where this can
improve accuracy. Compared to the “hinge fit” extrapolation
for climate normals proposed by Livezey et al. [1], which
assumes a stationary expected value for the climate variable
before 1975 and a linear change thereafter, my approach of
trend estimation with a smoothing spline has the advantage
of allowing nonlinear trends in recent decades and of

0

1

2

1900 1920 1940 1960 1980 2000

Te
m

pe
ra

tu
re

 a
n

om
al

y 
(K

)

USHCN only

−3

−2

−1

Minimum T

Mean T

Figure 7: Annual minimum temperature trend (anomaly relative
to the 1976–2005 mean) over the coterminous USA, compared to
(1) the annual minimum temperature trend computed using only
USHCN stations, (2) the trend in annual mean temperature.

0

1

2

3

0 0.5

A
n

n
u

al
 m

in
im

u
m

 te
m

pe
ra

tu
re

 (
K

)

Annual mean temperature (K)

−4

−3

−2

−1

−1−1.5 −0.5

Figure 8: Coterminous USA mean annual minimum temperature
anomalies plotted against annual mean temperature anomalies,
relative to the 1976–2005, over years since 1900. The least-squares
regression line shown has the equation y = (2.50 ± 0.49)x (R2 =
0.44).

allowing estimation of earlier fluctuations in expected values
(such as the warming seen between 1900 and 1940).

In order to gauge how much confidence can be placed
on climate model simulations of future changes in derived
climate quantities of interest, such as hardiness zones and
species-specific climate envelopes [41], it may be useful
to explicitly compare the trends seen in these quantities
over recent decades with model simulations and deter-
mine whether climate models can reproduce, for example,
the some 2.5-fold faster increase in annual minimum
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Figure 9: Annual minimum temperatures since 1980 at sample
stations, compared to climatology and trend hindcasts (see Sec-
tion 2 for details on the hindcast procedures): (a) Miami, Florida
(25.8◦N, 80.3◦W), (b) Bismarck, North Dakota (46.8◦N, 100.8◦W).
Station-specific climatology/trend RMSE, MAE, and bias (K) were
(a) 2.89/2.89, 2.42/2.42, −0.63/+0.40; (b) 4.95/4.85, 4.02/3.99,
−1.48/−0.10.

temperature compared to mean temperature over the coter-
minous USA. Consistent with earlier studies [42, 43], a recent
analysis shows that the amplitude of the seasonal cycle of
monthly mean temperatures has decreased over the 1954–
2007 period in the extratropical continents—implying that
winters are warming up faster than summers—and that this
decrease is faster than that shown by most of the IPCC
AR4 ensemble of climate models [44]. More broadly, one
might consider comparing shifts in the entire probability
distribution of temperature across models and observation

Table 1: Results of hindcasts of station annual minimum tempera-
ture.

1 year ahead 2 years ahead

Climatology Trend Climatology Trend

RMSE 3.97 3.88 3.99 3.85

MAE 3.15 3.03 3.17 3.00

Bias −1.05 +0.11 −1.13 +0.01

RMSE: root mean square error; MAE: mean absolute error; units are K.

sets as a means of achieving deeper understanding of
greenhouse warming feedbacks across different conditions.

The physical explanation for the fast rise in annual
minimum temperature requires detailed investigation. Cer-
tainly snow albedo feedback is a likely contributing factor to
winter amplification of warming in parts of the USA that
have had significant winter snow cover [45]. Also, already
Charney et al. [46] mentioned that greenhouse warming
at the surface would be expected to be greater under cold
inversions, which are likely to be found during the coldest
days of the year; more recently, cold inversions have been
argued to be a factor in the disproportionate winter warming
of the Arctic [47].

In terms of the specific application of delineating USA
plant hardiness zones, I found that annual minimum
temperatures are already on average some 1.2 K higher than
at the 1976–2005 base period used in the most recent release.
Given that hardiness half-zones are defined at 2.8 K intervals
[4], this would suggest that over one-third of the country has
already shifted half-zones compared to the current release
and over one-fifth has shifted full zones. Since much of
the temporal variability in annual minimum temperature is
coherent over scales of several hundred km (Figure 3), the
resolution of the current analysis may be adequate to enable
regular adjustment of the fine-resolution annual minimum
temperature USDA map with estimated temporal trends,
providing up-to-date guidance for horticulturists.

In order to enable adoption and modification of the
procedures proposed here, the computer programs used
for downloading data, imputation of missing data, interpo-
lation, and smoothing, written in the computer language
Octave [48], are available under an open source license from
http://www-ce.ccny.cuny.edu/nir/sw/climfit/.

5. Conclusion

I have shown that the expected values of annual minimum
temperature over the coterminous USA have changed sub-
stantially over the past century, that interannual variability
and trends in annual minimum temperature can be mapped
from available daily station data, and that accounting for
estimated trends improves hindcasts of observed annual
minimum temperatures. This trend estimation procedure
may be used to provide yearly updates to hardiness zone
maps based on expected annual minimum temperature.
Similar or identical methods could be used to improve
forecasts of many other climatically derived quantities,
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compared to the alternative of using statistics from some past
baseline period without adjustment for trends.
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