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Abstract. The pattern of streamflow recession after rain
events offers clues about the relationship between watershed
runoff (observable as river discharge) and water storage (not
directly observable) and can help in water resource assess-
ment and prediction. However, there have been few system-
atic assessments of how streamflow recession varies across
flow rates and how it relates to independent assessments of
terrestrial water storage. We characterized the streamflow re-
cession pattern in 61 relatively undisturbed small watersheds
(1–100 km2) across the coterminous United States with mul-
tiyear records of hourly streamflow from automated gauges.
We used the North American Regional Reanalysis to help
identify periods where precipitation, snowmelt, and evap-
oration were small compared to streamflow. The order of
magnitude of the recession timescale increases from 1 day
at high flow rates (∼1 mm h−1) to 10 days at low flow rates
(∼0.01 mm h−1), leveling off at low flow rates. There is sig-
nificant variability in the recession timescale at a given flow
rate between basins, which correlates with climate and ge-
omorphic variables such as the ratio of mean streamflow to
precipitation and soil water infiltration capacity. Stepwise
multiple regression was used to construct a six-variable pre-
dictive model that explained some 80 % of the variance in re-
cession timescale at high flow rates and 30–50 % at low flow
rates. Seasonal and interannual variability in inferred storage
shows similar time evolution to regional-scale water storage
variability estimated from GRACE satellite gravity data and
from land surface modeling forced by observed meteorology,
but is up to a factor of 10 smaller. Study of this discrepancy
in the inferred storage amplitude may provide clues to the
range of validity of the recession curve approach to relating
runoff and storage.
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1 Introduction

The observation that river flow gradually decreases after a
rainstorm was modeled mathematically by the beginning of
the 20th century with the concept of a “recession curve” that
describes the characteristic decay of flow rate with time dur-
ing rainless periods. Such recession curves have been used
to forecast flows, estimate the probabilities of low flows, in-
fer groundwater storage or aquifer characteristics, and detect
change in watershed characteristics over time. Analytical ex-
pressions for the form of the recession curve could be de-
rived for idealized basin shapes and subsurface flow proper-
ties, or curves could be fit empirically from streamflow mea-
surements. Early applications were held back in part by the
lack of a systematic procedure for determining an appropri-
ate functional form and parameters for the recession curve
shape from river discharge measurements (for reviews, see
Hall, 1968; Tallaksen, 1995).

Brutsaert and Nieber(1977) developed a procedure for vi-
sualizing the recession curve for a given river that has been
widely used and adapted. A family of functions describing
river recessions is given by the power law

Q̇ = −aQb (1)

whereQ is river discharge,Q̇ is its rate of change (dQ/dt),
anda andb are parameters.b = 1 corresponds to exponential
decay of the flow,Q(t) = Q(0)·e−at , while forb 6= 1, Eq. (1)
implies

Q(t) = ((Q(0))1−b
−a(1−b)t)1/(1−b). (2)

For a river recession that follows this pattern, a scatter
plot of log(Q̇) vs. log(Q) should approximate a straight line,
since from Eq. (1),

log(−Q̇) = log(a)+b log(Q), (3)

whenQ > 0. This is convenient because values fora and
b can be fitted to recession data by linear regression. Fur-
ther, the appropriateness of the power law functional form
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can be assessed by how well the points in the scatter plot
are described by a straight line. In practice,Brutsaert and
Nieber(1977) took time series of daily streamflow for several
streams in New York state and plotteḋQ as the difference in
stream flow between consecutive days (that were at least 5
days after the most recent rain) against the correspondingQ

(estimated as the average of the two days).a and b were
then estimated by drawing lines to match the lower envelope
of the cloud of(log(Q),log(−Q̇)) points. The slope of this
lower envelope, corresponding tob, tended to be higher than
1 – around 1.5 at low flows, possibly increasing to about 3 at
high flows. Wittenberg(1999) fit a power law to data from
German watersheds, also finding thatb was around 1.5.

A number of studies have determined or assumed that, at
least well after rain events,b = 1 to acceptable accuracy, so
that only one parameter,a, must be estimated from measured
streamflow (e.g.Vogel and Kroll, 1992; Brandes et al., 2005;
Eng and Milly, 2007; van Dijk, 2010). In this case the recip-
rocal ofa is the recession timescaleτ , corresponding to the
ratio −Q/Q̇. In general, for other shapes of the recession
curve (functional relationships betweenQ andQ̇), this reces-
sion timescaleτ would vary as a function of the flow rateQ.
Brutsaert(2008) argued that the recession timescale is fairly
constant not only for a given stream but also across streams,
at least during summer low flows and for large basins, at
45±15 days.

A large number of studies have examined the variability
in recession timescale across streams, most often in small
regions (e.g.Bingham, 1986; Vogel and Kroll, 1992; Brut-
saert and Lopez, 1998; Wittenberg, 1999; Zhang et al., 2009;
Biswal and Marani, 2010; Zhu et al., 2010), but also on con-
tinental and larger scales (van Dijk, 2010; Pẽna-Arancibia
et al., 2010), and related inter-stream variability in the reces-
sion timescale to climate, topographic, or geologic factors.
However, these studies have tended to concentrate on low-
flow periods and fit a simple functional form of the recession
curve, generally the power law (Eq.1, often withb = 1 so
that the recession timescale is taken to be constant), to derive
the recession timescale. Therefore, it is not clear how the
recession timescale and its spatial distribution varies across
flow rates. Thus, one purpose of the current study is to exam-
ine the characteristics of recession curves derived with uni-
form procedures from hourly streamflow data across a range
of climate and terrain.

Kirchner(2009) refined the estimation of recession curves
based on measuredQ andQ̇. In the approach ofKirchner
(2009), the time series of hourly streamflowQ is sorted into
bins and the averagėQ is determined for each bin, using only
time periods when both measured precipitation and estimated
potential evaporation are small compared to streamflow, and
parameters describing the relationship betweenQ andQ̇ are
fit for the binned data. Excluding time periods when evapo-
ration might be a substantial part of the water budget avoids
possible bias in the recession curve due to evaporation, which
would be expected to increase the streamflow recession rate

−Q̇ at a givenQ (Weisman, 1977; Wittenberg, 2003). It
adds the complication of requiring hourly, rather than daily,
streamflow data, since in most tropical and temperate water-
sheds, potential evaporation under rainless conditions is only
likely to be much lower than streamflow at night; until re-
cently, only daily streamflow data have generally been made
available to the hydrological community.Kirchner (2009)
showed that for two small watersheds in Wales, an empiri-
cally chosen quadratic functional form

log(−Q̇) = log(a)+b log(Q)+c log2(Q) (4)

fits the binned hourly data well.b was found to be close to 2,
and the departure (expressed by the quadratic term) from the
log-linear power-law relationship was found to be small but
significantly different from zero.

We adopt the approach ofKirchner (2009) as a starting
point because it has the advantage of making use of all hours
for which streamflow data is available, excluding only those
where other fluxes such as precipitation and evaporation are
likely to be significant. Other common selection criteria,
such as fitting the lower envelope of log(−Q̇)) or exclud-
ing streamflow records from a certain number of days after
rain events, involve arbitrary thresholds and make it difficult
to estimate the error of the fitted recession timescale.Brut-
saert and Nieber(1977) chose to fit the lower envelope of
log(−Q̇) on physical grounds – to select conditions under
which groundwater flow is dominant, as opposed to other
modes of flow with shorter recession timescales. In this
study, our interest is in total streamflow, not in the ground-
water component as such. For this objective, averaging all
streamflow data that meet the selection criteria is more appro-
priate. Using hourly, as compared to daily, streamflow data
enables the selection of low-evaporation periods and avoids
bias in recession time estimates at higher flow rates when the
recession timescaleτ = −Q/Q̇ is 1 day or less (Rupp and
Selker, 2006a; Rupp and Woods, 2008). In this study, we
consider only small watersheds (<100 km2), so that the lag
between runoff generation within the watershed and stream-
flow at the gauge is not much more than an hour and the mea-
sured discharge gives a reasonable estimate of hourly runoff.

The recession curve, expressed as the functionτ(Q), can
relate the streamflowQ to the basin water storeS. The rate
of change of storage,̇S, is the sum of the water fluxes in
and out of the basin, namely streamflow, precipitationP , and
evaporationE:

Ṡ = P −E−Q. (5)

When streamflowQ is the major flux of water in or out of
the basin (precipitation and evaporation are small), we can
make the approximation

Ṡ = −Q (6)

and therefore

dQ

dS
=

Q̇

Ṡ
=

Q̇

−Q
= τ−1. (7)
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Having estimatedτ as a function ofQ for periods with
low P andE from recession curve analysis, one can there-
fore estimate the change in storageS −S0 corresponding to
observed streamflowsQ:

S(Q)−S0 =

∫ Q

Q0

dS =

∫ Q

Q0

τ(Q)dQ, (8)

where the reference streamflowQ0 and reference storage
level S0 = S(Q0) are arbitrary. Kirchner (2009) observed
that by invoking water balance, one can estimate not only
the rate of change in storage but also the net flow into the
watershedF = P −E:

F = Q+ Ṡ = Q+τQ̇. (9)

The fitted functionτ(Q) is derived from the recession
curve over hours with negligible precipitation and evapora-
tion; estimatingS andF for other conditions from the above
equations requires the assumption that the deduced relation-
ship betweenQ andS continues to hold.Kirchner(2009) ar-
gued that this is indeed the case for his two study watersheds,
as evidenced by the ability of the basin storage-discharge re-
lationship estimated using Eq. (7) to successfully infer rain-
fall using only streamflow observations, and to predict the
evolution of streamflow using measured precipitation and es-
timated evaporation. If so, streamflow time series could be
used to infer other water flows (precipitation, evaporation)
and stores at the catchment scale, whichKirchner (2009)
termed “doing hydrology backward” compared with the con-
ventional hydrology approach of deriving streamflow from
meteorological forcing and the basin characteristics, which
are often quite uncertain.

One recent application of “doing hydrology backward” is
by Palmroth et al.(2010), who applied recession curve anal-
ysis to construct storage-discharge relationships to estimate
evapotranspiration over parts of North Carolina state, al-
though correlation with independent (eddy covariance) mea-
surements of evapotranspiration was found to be poor.Brut-
saert(2010) quantified changes in summer terrestrial water
storage across the central United States in recent decades
based on changes in summer streamflows along with an as-
sumed recession timescaleτ based on previous studies. The
inferred changes in water storage were found to be consis-
tent with groundwater observations in Illinois state (Brut-
saert, 2008). To utilize this approach more widely, however,
the validity of water storage changes inferred from recession-
curve analysis warrants further testing and comparison with
available watershed-scale hydrometeorological data.

Multi-year time series of streamflow measurements at high
(sub-hourly) temporal resolution are now freely available for
many streams. Here, we employ these data to construct re-
cession curves across a range of topography, geology, and
climate in order to answer the following questions:

1. What is the variability across streams of the recession
timescale at different flow rates? How much of this
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Fig. 1. Locations of sample watersheds (circles,n = 61) within the
coterminous United States. Circle size shows mean streamflow per
unit area, an indication of local moisture conditions.

variability is correlated with factors such as climate and
topography?

2. How does the variability in basin water storage inferred
from streamflow recession curve analysis compare
to basin water storage variability inferred from other,
independent methods?

2 Methods

2.1 Streamflow data

The Hydroclimatic Data Network (HCDN) includes about
1500 stream gauge records from the United States Geolog-
ical Survey (USGS) stream gauge network chosen to rep-
resent streams with long monitoring histories and whose
flow has experienced minimal human disturbance (Slack and
Landwehr, 1992). For this study, we chose HCDN gauges
draining small watersheds (area under 100 km2) in the coter-
minous United States (i.e. the first 48 states, excluding
Alaska and Hawaii) which had daily records over at least 2/3
of the period 1979–2008. High-resolution streamflow mea-
surements for these streams were obtained from the USGS
Instantaneous Data Archive (IDA,http://ida.water.usgs.gov/
ida/; Showstack, 2007). The selection criteria yielded 75
streams, of which 61 had flow records at hourly or better
resolution available through IDA. The median basin area for
these 61 streams was 59 km2 (range: 6.1–98 km2), and basin
locations covered a wide range of climate as well as topogra-
phy, although most were in the wetter regions of the country,
near the Atlantic and Pacific coasts (Fig.1). Median stream-
flow per unit basin area was 1.17 mm day−1 (range: 0.14–
4.10 mm day−1) (Fig. 1), compared to an average of about
0.44 mm day−1 for the coterminous United States (USA)
over the same period (Krakauer and Fung, 2008).
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The IDA streamflow records, typically at 15-min resolu-
tion, were averaged to generate hourly streamflow series.
Streamflow values within one minute of the turn of the hour
were assigned half-weight for estimating both hours’ stream-
flow. Only hours with at least one streamflow measurement
(or two measurements at their borders) were used in the anal-
ysis. The 61 streams in this study had an average of 148
thousand usable hours (equivalent to 17 years; range: 87-
232 thousand). While these hours were not all consecutive
(records frequently had gaps), this is not a problem for our
analysis procedures.

2.2 Meteorology

Precipitation and evaporation records for the study water-
sheds were used to isolate hours with low/no precipitation
or evaporation to use for estimating recession curves. Since
sub-daily field measurements of precipitation and evapora-
tion for each of the watersheds were not in general available,
precipitation and evaporation were obtained from the Na-
tional Centers for Environmental Prediction (NCEP) North
American Regional Reanalysis (NARR) (Mesinger et al.,
2006) for 1979–2008, which uses the Eta Model to simu-
late regional atmospheric circulation at relatively high hori-
zontal resolution (32 km). For each watershed, meteorologi-
cal fields were taken from the closest grid cell to the stream
gauge – because the watersheds are all<100 km2 while a
NARR grid cell is∼103 km2, the entire watershed is likely
to lie within a single grid cell.

Precipitation in NARR assimilates rain gauge and satellite
observations and is therefore much more accurate than pre-
vious reanalyses. Evaporation in NARR is simulated by the
Noah land surface model and is only indirectly tied to obser-
vations (Mesinger et al., 2006).

2.3 Binning streamflow recession data

FollowingBrutsaert and Nieber(1977), hourly−Q̇ was esti-
mated as1

1t
(Qh−Qh+1), the difference between streamflow

in adjacent hours, while the corresponding hourlyQ was the
average for those hours,Q =

1
2(Qh +Qh+1). Pairs of hours

were selected for which both precipitation plus snowmelt
and evaporation were less than 10 % of average streamflow
(Fig. 2).

The NARR output fields include snowmelt, but the precip-
itation field is not divided into rain vs. snow. For determin-
ing rain-free hours, we required that the precipitation plus
snowmelt be less than 0.1 of streamflow. For determining
hours with low evaporation, we required that evaporation be
less than 0.1 of streamflow (cf.Kirchner, 2009).

NARR output fields are available at 3 h time resolution and
were matched to the corresponding hourly streamflow data.
To account for delay between runoff generation and stream-
flow at the gauge location, we followedKirchner (2009)
in estimating this lag for each basin from the position of
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Fig. 2. Scatter of hourlyQ̇ vs. Q, excluding periods with precip-
itation, high evaporation, or rising flow, at an example site (USGS
gauge 01384500, Ringwood Creek, New Jersey; nonnegativeQ̇ val-
ues not shown).

the maximum lagged cross-correlation between precipitation
andQ̇. The streamflow time series were then shifted rela-
tive to the precipitation and evaporation time series by that
amount before deciding what hours to exclude from the re-
cession curve analysis as affected by precipitation or evapo-
ration. The small size of the basins we analyzed kept this lag
small (0–2 h for 50/61 basins and 0–5 h for 59/61, ranging
up to 11 h).

Because the NARR grid size is bigger than the areas of our
watersheds, there remains the concern that localized bursts
of precipitation are not reflected in the NARR precipitation
record. To reduce the effect that such unrecorded precipi-
tation might have on the estimated recession curve, we fur-
ther excluded periods of two or more consecutive positive
hourly Q̇ (rising streamflow), on the assumption that these
correspond to precipitation or snowmelt events not neces-
sarily captured in NARR. Altogether, exclusion based on
NARR precipitation, snowmelt, and evaporation and on ob-
served rising flow left 0.6–27 % (median 7.3 %, or 10 thou-
sand hours) of the original number of hours for construct-
ing the streamflow recession curve, with the lower percent-
ages found in arid basins (where there was often very little
streamflow) and the higher percentages found in more humid
basins.

The selected values oḟQ (i.e. those when the lagged pre-
cipitation and snowmelt were small, and excluding periods
of rising streamflow) were then averaged over ranges ofQ.
These ranges were selected as follows (cf.Kirchner, 2009):
(1) begin with the top 1 % of the logarithmic range inQ; (2)
compute the mean and standard error ofQ̇ for all Q in that
range; (3) if the number of values in the range is less than
9 or the meanQ̇ is nonnegative or the standard error inQ̇

is more than half its absolute mean value, expand the bin by
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another 1 % of the logarithmic range; (4) otherwise, keep the
meanQ andQ̇ of the bin and continue with the next 1 % of
the logarithmic range. This resulted in typically 20–70 bins
(median 58 bins), each with a meanQ, meanQ̇, and stan-
dard error ofQ̇. Regression on the binned values is basically
equivalent to weighted regression on the original hourly data,
where weighting is by the inverse variance ofQ̇ over a small
range inQ.

Occasionally (1 of our 61 sites) this procedure did not con-
verge (i.e. the scatter iṅQ was large enough that the standard
error did not drop sufficiently even when the bins were ex-
panded). In such cases, the range inQ was divided into bins
each with roughly equal numbers of elements (approximately
the square root of the number of usable hours), and the mean
and the standard error oḟQ in each bin was calculated; bins
with nonnegativeQ̇ were simply discarded.

2.4 Fitting recession curves

We experimented with different functional forms for the re-
cession curve, as fit to the binned log(Q) and log(−Q̇), in-
cluding the linear-in-logs (power law) relationship (Eq.3)
and the quadratic-in-logs relationship (Eq.4). The goodness
of fit of different functional forms was assessed by fitting the
functional form to one half of each streamflow record and
calculating the misfit between the fitted values and the binned
values found for the other half of the same streamflow record.
We found that for our sample of watersheds, a nonparamet-
ric functional form corresponding to locally-weighted least
squares linear regression (similar to LOWESS,Cleveland,
1979) gave a better fit than the linear or quadratic relation-
ships. At each bin’s value of log(Q) (log(Qbin)), a smoothed
value of log(−Q̇) is obtained by weighted linear regression
with weights that favor adjacent bins, namely

wbin,i = w̄i ×exp(−|log(Qi)− log(Qbin)|/α) (10)

wherew̄i is weighting based on the standard error at each
bin (w̄i = (Ei/log(−Q̇i))

−2, whereEi is the standard error
of the binnedQ̇i) andα is a parameter that sets the size of
the neighborhood that is considered in the locally weighted
linear regression. Between the points log(Qi), the function
was taken to be piecewise linear in log(Q).

We used generalized cross validation (GCV,Craven and
Wahba, 1979; Krakauer et al., 2004) to estimate a suitable
value forα for each stream, which typically was around 0.3
log units. A lower limit of 0.1 log units was imposed onα
to limit the tendency of GCV to occasionally return under-
smoothed curves (Silverman, 1984). At the limit α → ∞,
the result approaches a straight line (Eq.3), while asα → 0
the fitted function becomes less smooth and approaches lin-
ear interpolation.

Given the above weights, uncertainties for the fitted func-
tion value were then calculated using standard linear regres-
sion methodology. IfEi/log(−Q̇i) in fact reflect the error
standard deviation of the binned values and if this error is

10-4

10-3

10-2

10-1

10-2 10-1 100

-
d
Q
/
d
t
 
(
m
m
/
h
2
)

Q (mm/h)

(a)

101

102

10-2 10-1 100

τ 
(
h
)

Q (mm/h)

(b)

Fig. 3. (a) Binned mean hourly−Q̇ vs. Q for the same exam-
ple site as in Fig.2, together with the piecewise linear functional
smoothed fit (middle line). Error bars are standard errors for each
bin; upper and lower lines show uncertainty of fit (± 1 standard
error). (b) Binned mean recession timeτ vs. Q for sample site,
together with the piecewise linear smoothed fit (error bars are stan-
dard errors for each bin; upper and lower lines show fit uncertainty
as± 1 standard error).

normally distributed, thenr, the weighted sum of squares of
the residuals from the fitted function,

r =

∑
i

(
(log(−Q̇i)− log(− ˆ̇Qi))

Ei/log(−Q̇i)

)2

(11)

(where log(− ˆ̇Qi) is the value of the fitted function at
log(Qi)), should be close to the effective number of degrees
of freedomn−m, wheren is the number of bins andm the ef-
fective number of fitted parameters (which will increase asα

decreases). In practice, we found that ther was often some-
what larger than this, presumably reflecting non-lognormal
errors in streamflow measurements that propagate to the cal-
culated−Q̇; the median ratior/(n−m) across our sample
was 1.5. Therefore, calculated uncertainties were multiplied

by
√

r
n−m

. This adjusted uncertainty for the fitted reces-

sion curve was found to be realistic: the difference between
the binned log(−Q̇) and log(Q) derived from one half of
a streamflow record and the fitted recession curve function
derived from the other half was consistent with the adjusted
uncertainty in the fit. Figure3 shows the fitted function and
its estimated uncertainty for an example site.

Alternative flexible functions to fit the recession curve are
available, and should perform similarly to the piecewise lin-
ear (LOWESS-like) method we used. As an example, Fig.4
shows a smoothing cubic spline fit (Cook and Peters, 1981)
to binned discharge data along with the piecewise linear fit,
with the smoothing parameter determined to approximate the
mean square misfit of the corresponding piecewise linear
curve (Woltring, 1986). (In this particular case, estimating
the cubic spline smoothing parameter with GCV resulted in a
clearly undersmoothed fit.) Both the piecewise linear and the
cubic spline functions fit the data acceptably. In this study,
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we chose to use the piecewise linear fit rather than the cubic
spline because the former gives straightforward estimates of
the local uncertainty of the fit and because it has more pre-
dictable behavior at the extremes of the range of available
streamflows. By contrast, linear regression does not repre-
sent the trend of the data well, while quadratic regression
gives reasonable results for most of the observed range but
does not capture the observed flattening of the recession time
at both extremes (Fig.4). Given that the slope of the rela-
tionship between log(−Q̇) and log(Q) is known to vary over
the period following a rain event (Mizumura, 2005), reflect-
ing changing saturated-zone thickness (Szilagyi, 2009), and
that the details of this response will be modulated by hetero-
geneity in hydraulic properties within the watershed (Har-
man et al., 2009) as well as drainage morphology (Biswal
and Marani, 2010), a linear or quadratic function with few
adjustable parameters is likely to be generally less suitable
for modeling the streamflow recession curve as compared to
a flexible locally smooth function.

Given the fitted recession curve, which gives log(−Q̇) as
a piecewise linear function of log(Q) with associated un-
certainty, the corresponding recession timeτ(Q) is −Q/Q̇,
with fractional uncertainty equal to that iṅQ (Fig. 3b). A
lookup table was generated for the estimated storageS corre-
sponding to various streamflow levels in the observed range
by numerically integratingτ(Q)dQ (Eq. 8). Monthly mean
watershed storage was then computed as the mean of hourly
S calculated from the observedQ, and the variability of this
monthly storage was compared with satellite and model esti-
mates of water storage variability.

2.5 Explaining inter-stream variability in recession
curves

For understanding the relationship between the recession
curve and watershed hydrological processes, analysis of fac-
tors correlated with variability in the recession curve, as ex-
pressed by the functionτ(Q), is helpful. For each stream,
the functionτ(Q) was expressed as 31 values forτ log-
arithmically spaced inQ for Q ranging between 0.0048
and 1.3 mm h−1, corresponding to the median range of the
streamflow bins used to fit the recession curves. Potential
predictor variables used were mean streamflow (calculated
from the streamflow time series); gauge longitude, latitude,
and elevation, basin area, precipitation, climatological Jan-
uary minimum temperature, mean elevation, percent forest
cover, percent lake cover, and soil water infiltration capac-
ity, and stream length and slope (taken from the HCDN data
files); and annual mean precipitation, snowfall, and evapo-
ration (taken from NARR). The nonparametric (Spearman)
correlation coefficient of each variable against log(τ ) at each
of the 31 flow rates was calculated, and the mean square cor-
relation coefficient across the 31 flow rates was compared to
that obtained from regressions with 1000 random permuta-
tions of the predictor values to assess whether this variable
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Fig. 4. Different functional fits to the binned mean recession time
τ vs.Q for the example site. The piecewise linear fit is the same as
that shown in Fig.3b.

is a significantly correlated toτ(Q) at the 0.05 level. Step-
wise multiple linear regression against log(τ ) (weighted by
its site-specific estimated uncertainty) was also performed,
where at each step the predictor variable was added whose
inclusion most increased the weighted meanR2 of the re-
gression model. The procedure was terminated when the in-
crease inR2 from another variable being added to the regres-
sion model was not significant at the 0.05 level, as quanti-
fied by comparing to the increase inR2 when values for that
variable were randomly permuted before being added to the
regression. Any missing values for predictor variables in the
HCDN data file were filled in with the average value for that
variable, to minimize bias in the estimated regression coeffi-
cients.

2.6 Water storage data

Monthly terrestrial water storage anomalies on a 1◦
× 1◦

grid for 2002–2008, estimated from gravitational anomalies
reflected in the GRACE satellite positions, were obtained
from the Jet Propulsion Laboratory (JPL). The water stor-
age anomalies were derived from gravitational fields esti-
mated from the satellite orbits by CSR (U. Texas/Center for
Space Research), destriped to minimize processing artifacts,
and rescaled based on a land surface model to minimize er-
ror in the storage anomaly magnitudes due to contributions
from adjacent areas to the measured gravity anomaly (Swen-
son and Wahr, 2006; Swenson, unpublished). Another set
of estimates of monthly terrestrial water storage anomalies
on a 1◦ × 1◦ grid for 2001–2008 from the Noah land surface
model run using observed meteorological forcing as part of
the Global Land Data Assimilation System (Ek et al., 2003;
Rodell et al., 2004) was also obtained from JPL.

Hydrol. Earth Syst. Sci., 15, 2377–2389, 2011 www.hydrol-earth-syst-sci.net/15/2377/2011/



N. Y. Krakauer and M. Temimi: Stream recession and basin storage 2383

100

101

102

103

10-2 10-1 100

τ 
(
h
)

Q (mm/h)

(a)

101

102

10-2 10-1 100
τ 
(
h
)

Q (mm/h)

(b)

Fig. 5. (a) Fitted recession timeτ vs. Q across the 61 streams.
(b) Inverse-variance weighted mean recession timescaleτ (solid
curve, with range from weighted within-site uncertainty shown
by upper and lower dashed curves) along with variability across
streams (weighted standard deviation shown by error bars). Vari-
ability in recession curves across streams is consistently much
greater than the uncertainty associated with recession-curve estima-
tion for individual streams, meaning that most of the variability in
recession times seen across streams is real.

Measures of water storage variability calculated from the
stream recession curves and for the corresponding grid cells
in the GRACE and Noah datasets included the seasonal cy-
cle amplitude (the standard deviation of the mean seasonal
cycle) and interannual variability (the standard deviation of
monthly storage anomalies once the mean seasonal cycle has
been removed). Additionally, we calculated correlation coef-
ficients to assess to what extent the spatial pattern of seasonal
to interannual variability magnitudes was consistent between
the streamflow-based, GRACE, and Noah storages, and to
compare the temporal variation in water storage during the
period of overlap of the different estimates.

3 Results

3.1 Recession curves

Recession time as a function of streamflowQ showed
broadly similar patterns across the sample of watersheds,
characteristically decreasing from∼ 10 days at the low-
est streamflow rates resolvable with our binning method
(∼ 0.005 mm h−1) to ∼ 1 day at high streamflow rates seen
soon after rain or snowmelt (∼ 1 mm h−1) (Fig. 5). These
timescales are similar to the pattern seen in stream recession
curves constructed in previous studies (Brutsaert and Nieber,
1977; Vogel and Kroll, 1992; Brandes et al., 2005; Kirch-
ner, 2009; van Dijk, 2010; Pẽna-Arancibia et al., 2010), al-
though notably smaller than the 45± 15 day timescale for
low-flow conditions seen in the studies cited byBrutsaert
(2008), perhaps because of differences in the estimation pro-
cedure. The lower-envelope approach would tend to give
smallerQ̇ and largerτ compared to an averaging like the
one used here. Note that the functionτ(Q) is on average al-
most flat at low streamflows (corresponding tob ≈ 1 in the
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Fig. 6. Inverse-variance weighted mean recession timescaleτ

across sites (as in Fig.5b) along with the mean recession timescale
for sensitivity analyses where the hours considered (1) included
periods of high evaporation, (2) included periods of rising flow,
(3) used an absolute rather than a relative precipitation-intensity
threshold for excluding hours with precipitation.

power-law relationship, Eq.1), while it decreases with in-
creasingQ at higher streamflows (corresponding tob ≈ 1.6);
thus, no single power-law relationship can represent accu-
rately the typical recession curve.

We see from Fig.5a that there is across-stream variabil-
ity of an order of magnitude in the recession timeτ for any
given flow rateQ. Comparing with Fig.3b suggests that this
variability is larger than the uncertainty in the fitted reces-
sion time curve for any one stream. This is confirmed by
comparing the weighted mean fit uncertainty (spread of lines
in Fig. 5b) with the total standard deviation across streams
(error bars in Fig.5b), which is much greater across flow
rates.

We performed three sensitivity analyses to understand
the impact of the criteria for choosing suitable hours on
the recession curve. In one analysis, we did not exclude
hours with high evaporation, as most previous analyses did
not. This typically resulted in little change in the recession
curve at high flows (when evaporation was likely small com-
pared to flow), but lowered the recession timescale by up to
40 % during low flow, qualitatively similar to the finding of
Weisman(1977) that flow diminished faster during periods
of high evaporation than during periods of low evaporation
(Fig. 6). In a second analysis, we did not exclude hours
with rising streamflow (but little precipitation according to
NARR). This resulted in a longer recession timescale at all
flow rates, with the recession timescale almost doubling at
low flow rates (Fig.6). In a third analysis, we excluded hours
with precipitation based on an absolute cutoff (precipitation
of 0.01 mm h−1 or more) rather than a relative cutoff (pre-
cipitation equal to 10 % of streamflow or more). This led to
small increases (up to 11 %) in the mean recession timescale
at low flow rates (where some hours with slight precipita-
tion were now included) and small decreases (up to 4 %) in
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the mean recession timescale at high flow rates (where some
hours with slight precipitation were now excluded) (Fig.6).

Given the variability across streams in recession
timescales, it is of interest to determine what basin-
specific factors could influence the recession timescale.
Longer recession timescales were significantly correlated (in
decreasing order of significance) with higher ratio of stream-
flow to precipitation, larger channel slope, higher elevation,
more forest cover, higher basin soil infiltration capacity,
lower longitude (i.e. western as compared to eastern USA),
lower temperature, higher latitude (i.e. northern as compared
to southern USA), and higher cold-season precipitation
fraction. Many of these predictor variables were highly
correlated with each other (for example, slope and elevation,
or latitude and temperature). Recession timescales for the
studied sample of small watersheds were not significantly
correlated with lake cover, channel length, watershed area,
or mean precipitation, streamflow, or evaporation. Ratios
of stream channel length to drainage area, which occur in
many analytical expressions for recession time constants
of idealized aquifers (Rupp and Selker, 2006b, Table 3),
also were not significant predictors in this sample of small
watersheds.

Stepwise multiple regression analysis yielded a model
with six predictor variables, in the order they were added the
model: (1) longitude, (2) soil infiltration capacity, (3) lati-
tude, (4) channel length, (5) forest cover, (6) HCDN precipi-
tation. Of these, (4) and (6) were not found to be significant
predictors in the univariate analysis, (cf. Fig.7a). The rela-
tionship of the predictor variables to the recession timescale
varied across flow rates: for example, the soil infiltration ca-
pacity showed a significant positive association with reces-
sion timescale only at low and moderate flow rates, while
forest cover showed a significant positive association with
recession timescale only at higher flow rates; the correlation
of recession timescale with latitude was positive only at high
flow rates (Fig.7a). The multivariate model best predicted
recession timescales at high flow rates, whereR2 was above
0.8, while at low flow ratesR2 was 0.3–0.5; the averageR2

across the range of flow rates was 0.57 (Fig.7b). (Modeling
recession timescale with the same predictor variables across
flow rates simplifies the determination of overall model sta-
tistical significance, since the recession timescales at differ-
ent flow rates are not assumed to be independent. We also
tried an alternative approach, where a multivariate regres-
sion model was fitted independently for each flow rate. The
significant predictor variables were different between flow
rates, as suggested by Fig.7a, and high flow rates tended to
have more significant predictor variables and higher model
R2 compared to low flow rates.)

Spatial semi-variograms of the recession timescale at par-
ticular flow rates (not shown) showed no evidence of spatial
clustering, beyond the continental-scale east-west and north-
south trends captured by the linear relationship with longi-
tude and latitude.
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Fig. 7. (a)Nonparametric (Spearman) correlation coefficient with
the recession timescale at different streamflows of the six variables
(1) longitude, (2) soil infiltration capacity, (3) latitude, (4) channel
length, (5) forest cover, (6) precipitation;|r| ≥ 0.3 is significantly
different from zero at the 0.05 level.(b) Coefficient of determina-
tion R2 for multivariate linear regression with these six predictor
variables;R2

≥ 0.3 is significant at the 0.05 level.

3.2 Basin storage

Seasonal variability in storage inferred from streamflow and
the recession curve showed good coherence with the variabil-
ity in terrestrial water storage inferred from GRACE, with a
median (across sites) coefficient of determination (R2) be-
tween the two of 0.69, compared with a medianR2 of 0.41
between the modeled (Noah) seasonal cycle and GRACE
over the same grid cells. This performance of the reces-
sion curve technique in matching the phase of the GRACE
seasonal cycle in water storage is particularly impressive be-
cause of the scale difference between the watershed size and
the GRACE data (tens of km2 versus∼ 104 km2), as com-
pared to the similarity in scale between GRACE and the
Noah simulations. Interannual variability in storage (com-
puted for each site over months when the two data sets
overlapped) was less coherent between the streamflow and
GRACE approaches, with a medianR2 of 0.22, but this was
better than the correlation of Noah interannual variability
with GRACE, where the medianR2 was only 0.06.

Both the seasonal and interannual variability in storage
as inferred from the recession curves were generally lower
than those derived from GRACE by around a factor of 10
(Fig. 8). The median ratio between streamflow-inferred and
GRACE standard deviation in storage was 0.081 for the an-
nual cycle and 0.106 for interannual variability. Storage
variability in the Noah model was lower than the results
from GRACE, because Noah does not represent variability
in groundwater and surface water (Syed et al., 2008), but
was still generally higher than the variability inferred from
the recession curves. The median ratio between streamflow-
inferred and Noah standard deviation in storage was 0.389
for the annual cycle and 0.227 for interannual variability.
Also, there was little correlation across watersheds between
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storage amplitude inferred from streamflow and that inferred
from GRACE (Fig.8).

4 Discussion

4.1 What accounts for variability in recession
timescales across streams?

In our sample, inter-stream variability in the recession
timescaleτ(Q) was correlated with measures of climate (ra-
tio of streamflow to precipitation, forest cover, temperature),
topography (elevation, channel slope), and soil (infiltration
capacity). The geographic patterns observed (with higher re-
cession timescales in the west and north) are probably re-
lated to the continental gradient in climate and geomorphol-
ogy. The influencing variables and the direction of corre-
lations between them and streamflow are largely consistent
with those found in previous studies.

In studies byvan Dijk (2010) in Australia andPẽna-
Arancibia et al.(2010) across the tropics and subtropics,
basin aridity was found to be a dominant control on re-
cession time, with more arid areas having shorter recession
timescales. In the current sample of temperate-zone water-
sheds, we found a similar pattern: a lower ratio of streamflow
to precipitation correlated with shorter recession timescale.

High forest cover, typically associated with moist condi-
tions, was associated with longer recession times, as also
found byPẽna-Arancibia et al.(2010). The positive correla-
tion between forest cover and recession timescale was found
only at relatively high flow rates. Vegetation cover and den-
sity has a major impact on the spatial organization of soil
moisture (Mohanty et al., 2000; Gómez-Plaza et al., 2000,
2001; Qiu et al., 2001; Cant́on et al., 2004; Temimi et al.,
2010). The presence of vegetation fosters the retention of
water in the canopy, litter layer, and root zone, which leads
to slower drainage and therefore longer recession timescales
immediately after storms.Roering et al.(2010) found that
trees modify the topography around them by promoting soil
formation and porosity and reducing erosion, which would
tend to enhance the percolation of precipitation. The reduc-
tion of surface evaporation by vegetation shading (Hébrard
et al., 2006) would also tend to increase recession timescale.
On the other hand, the high transpiration rates of forests tend
to drive down deep soil moisture during dry spells and re-
duce summer low flows, which would correspond to shorter
recession timescales (Federer, 1973; Johnson, 1998). These
evaporation-related impacts should be less pronounced in our
analysis because we excluded periods with high evaporation
when computing recession curves.

We found that channel slope and basin elevation were
positively correlated with the recession timescale.Pẽna-
Arancibia et al.(2010) also found a positive correlation be-
tween basin slope and recession timescale. This contradicts
the theoretical expectation of a negative correlation: if the
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Fig. 8. Scatter of the amplitude of(a) seasonal and(b) interannual
water storage variability inferred from the recession curve vs. that
inferred from GRACE gravimetry for the 61 watersheds, quantified
as the standard deviation of(a) the mean seasonal cycle and(b) de-
seasonalized monthly values. Amplitudes inferred from recession
curve analysis are generally low compared to GRACE (the solid
lines correspond to 1-1 relationships).

contributing aquifer has a larger slope, it would be expected
to drain faster, all else being equal (Brutsaert and Nieber,
1977; Vogel and Kroll, 1992). A negative correlation is also
seen in some observational studies covering smaller spatial
scales (Zecharias and Brutsaert, 1988; Brandes et al., 2005).
One possible explanation for this discrepancy is that local
or watershed-level attributes like channel slope and elevation
do not necessarily correspond to aquifer properties, which
would depend more on regional topography and geology
(Temimi et al., 2010). The positive correlation between soil
infiltration capacity and recession timescale is more intuitive,
althoughPẽna-Arancibia et al.(2010) found no correlation
between the recession timescale and mapped soil infiltrabil-
ity and drainage indices.

An original contribution of this study is the attempt to
quantify the factors controlling the recession timescale at dif-
ferent flow rates, rather than estimating a single recession
timescale for each watershed. We found that some variables
were significant predictors of the recession timescale only at
high or low flow rates, showing the value of explicitly includ-
ing flow rate in this sort of regression analysis. Particularly
at low flow rates, there also appeared to be substantial inter-
stream variability in the recession timescale not captured by
the set of predictor variables we used. Studies of variability
in recession timescales across smaller spatial scales of tens to
hundreds of km point to important geological controls associ-
ated with indicators such as bedrock porosity, drainage den-
sity (based on total channel length, including tributaries), and
soil group (e.g. Bingham, 1986; Brandes et al., 2005) that
were not available for our sample of watersheds.van Dijk
(2010) found that, after controlling for aridity, variability
in recession timescales in Australia was spatially correlated
over distances of 100–150 km, presumably reflecting geo-
logic or topographic controls on soil and bedrock properties
that was not reflected in the set of predictor variables used.
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Intensive studies of flow pathways in research watersheds as
well as studies of large samples of small gauged watersheds
with watershed properties estimated from remote sensing and
other distributed data sets can help characterize the link be-
tween watershed geology and morphology, on the one hand,
and stream hydrology as reflected in the recession timescale,
on the other, on a regional to global scale.

4.2 Why are storage amplitudes inferred from the
recession curve so small?

We found that recession timescales derived from the re-
cession curve constructed for periods of low precipitation,
evaporation, and snowmelt to estimate a watershed storage-
discharge relationship can be used to estimate monthly stor-
age fluctuations that are coherent with those inferred from
GRACE – more so, in fact, than those estimated by a state-of-
the-art land surface model forced by observed meteorology
(Noah/GLDAS). Thus, recession curve analysis is promising
for extending the GRACE record of terrestrial water storage
variability to higher spatial and temporal resolution or over
longer time periods. Additional study is required to extend
discharge-based storage estimates to larger basins with con-
centration times of days or weeks, where the method used
here to construct recession curves probably would not work,
for direct comparisons with GRACE and with models over a
regional spatial scale.

The annual cycle and the interannual variability estimated
from streamflow recession curve analysis prove to be similar
in time evolution to those measured by GRACE, but are typi-
cally smaller by a factor of 10. This suggests that quantitative
estimates of basin storage based on streamflow fluctuations
and recession analysis should be treated with caution. We see
several possible reasons for the small dynamic storage found
with the recession curve approach. No single reason appears
sufficient to explain the full magnitude of the disparity with
GRACE, but several of them taken together may do so.

1. Because of the scale mismatch between GRACE and
our study watersheds, the storage variability is being
compared over quite different spatial scales. It is
possible that our sample of watersheds represents
a subset of the coterminous USA with particularly
low water storage capacity, perhaps because these
are disproportionally mountainous watersheds with
high hydraulic gradients and limited soil profile de-
velopment. However, we see low storage amplitude,
as compared to GRACE, even in watersheds with
relatively little topographic relief. Further, we would
expect that if all things are equal, storage amplitude
measured over a small watershed would be larger than
the regional mean sensed by GRACE, because storage
variations in adjacent watersheds within a region partly

cancel out in the regional mean to the extent that they
are not completely in phase.

2. It is possible that our assumption is false that dur-
ing periods with low precipitation, evaporation, and
snowmelt (according to the reanalysis), streamflow is
the dominant flux of water in or out of the watershed.
If so, then the streamflow-storage relationship we con-
struct would be biased. It is clear from the streamflow
record that the reanalysis frequently misses periods
of heavy snowmelt in high-mountain basins, partly
because the large topographic relief in these basins
(which impacts the periods of snow accumulation and
melt) is not captured by the∼32 km grid spacing of
the reanalysis. The atmospheric model used in NARR
tends to underestimate mountain snowfall, so that snow
is added to the model land surface in the analysis steps
to nudge NARR toward observed snow cover (Luo
et al., 2007). However, this would not explain the low
storage amplitudes compared to GRACE observed in
basins where snow is not a major part of the water
budget.

3. Schaller and Fan(2009) suggested that groundwater
movement out of headwater basins that is not re-
flected in streamflow could be an important term in
basin-scale water balance over the USA, which would
also seriously bias the storage-discharge relationships
we constructed. However, given that basins with net
groundwater outflow must be largely balanced on the
continental scale by those with net groundwater inflow,
it is difficult to see how this effect could be large
and consistent enough to account for the systematic
underestimation of the storage amplitude seen in almost
our entire sample.

4. We assumed that when flow drops to zero, basin storage
remains constant at a minimum value extrapolated
from the storage-discharge relationship for periods
of positive flow. This unquestionably results in an
underestimate of the storage variability, since evapo-
ration will result in decreasing storage over periods of
zero flow. However, this cannot explain the disparity
seen, since only 15/61 of our sample basins have any
recorded hours of zero flow.

5. As we saw, assuming that a particular stream follows a
single recession curve can be taken to imply that dis-
charge for that stream is a single-valued function of
basin water storage. While this assumption holds in
analytical solution of some very simple aquifer models
and for flow systems dominated by deep, homogenous
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aquifers (Brutsaert and Nieber, 1977; Dewandel et al.,
2003; Rupp and Selker, 2006b), more complex water-
shed models show a clear dependence of flow rate on
the time history of water input (rainfall or snowmelt), so
that flow is not a single-valued function of basin storage
and a recession curve plot will show systematic scatter
(Sloan, 2000; Rupp et al., 2009). In such cases our ap-
proach to fitting a recession curve will produce averages
of the rate of change in floẇQ at given flow ratesQ.
However, using these averages may lead to biased esti-
mates of the recession timescaleτ(Q) = −Q/Q̇ (since

in general−Q/Q̇ 6= −Q(1/Q̇)). This bias propagates
to the dynamic storage, estimated by integratingτ(Q)

(Eq. 8). For example, if−Q̇ at a givenQ is dis-
tributed lognormally across recession events, our aver-
ageτ = −Q/Q̇ would be biased low, which would lead
to too-low calculated storage amplitude: specifically, if
the standard deviation of log(−Q̇) is σ , the actual aver-
ageτ would beeσ2

times the value estimated using our
method.

To roughly estimate the magnitude of this bias, we fit
power law curves (Eq.2) to individual recession events
(defined as at least 48 consecutive hours of declining
flow, with negligible rain and snowmelt, but including
hours with non-negligible evaporation) for streams in
our sample. We found that the standard deviationσ

across recession events was typically 0.3–0.6 log units
(Fig. 9), and inspection of published data for other
streams (e.g. Fig. 7 ofRupp et al., 2009) shows sim-
ilar spreads. If this spread is dominated by real vari-
ability rather than by measurement error or error arising
from our approximation of each recession event as fol-
lowing a power law, then the mean recession timescales
and storage amplitude may be some 10 %–40 % higher
(eσ2

−1) than estimated from the mean recession curve.
Further study of how best to quantify and correct for this
source of bias in recession curve analysis is needed.

6. Finally, the assumption that the storage-discharge re-
lationship as determined for hours of low precipita-
tion, evaporation, and snowmelt is valid for other pe-
riods, which is necessary for computing monthly-mean
storage, may not hold. For example, the pool of
water contributing to evaporation (largely soil mois-
ture) and the pool of water contributing to stream-
flow (largely groundwater) may be partly decoupled,
so that changes in basin storage due to evaporation
would not be reflected in streamflow to the same ex-
tent as changes in basin storage due to streamflow. Sim-
ilarly, when there is precipitation, streamflow gener-
ation is likely to be qualitatively different than dur-
ing periods without precipitation, with overland flow
and greater contributing area, resulting in a different
storage-discharge relationship than that inferred here.
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Fig. 9. (a) Scatter of flow recession timescales from power-law
curve fits to individual recession limbs over the record period at
the example site.(b) Standard deviationσ of the log recession
timescale at the example site (solid line) and its median across all
sites (dashed line).

This would mean that “doing hydrology backward”
based on the storage-discharge relationship inferred
from recession curve analysis using Eq. (9) does not
work for small watersheds generally, although the con-
cept may nevertheless have value when it is approxi-
mately valid, for example, over periods of light pre-
cipitation. Note, however, that explaining the majority
of the observed discrepancy as due to a non-constant
storage-discharge relationship would require this rela-
tionship to undergo very large fluctuations over peri-
ods of high precipitation, evaporation, and/or snowmelt
(enough to increase the mean recession timescale by a
factor of 10; cf. Eq.7), compared to the relatively mod-
est change seen when the subset of hours chosen for
constructing the recession curve is modified (Fig.6).

5 Conclusions

We have outlined a systematic method for constructing re-
cession curves for small watersheds based on high-frequency
streamflow measurements combined with reanalysis meteo-
rology. We found that for the selected continent-wide sam-
ple of small, undisturbed watersheds, recession curves, as
constructed by a uniform method intended to minimize the
impacts of precipitation, snowmelt, and evapotranspiration,
had broad similarities, with recession timescales typically in-
creasing by a factor of 10 going from high flows as seen im-
mediately after storms to flows near the median level, and
leveling off at low flows. We were able to quantify the un-
certainty in each recession curve, and linked variability in the
recession timescale across watersheds to known climatic and
geomorphological factors, but with a component of small-
scale variability (particularly at low flow rates) which needs
to be investigated in larger samples or with more explana-
tory variables. Storage variations inferred from the recession
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curve agree in terms of timing, but not amplitude, with in-
dependent gravimetric estimates. Study of the discrepancy
in the inferred storage amplitude may provide clues to the
range of validity of the recession curve constructed accord-
ing to the method used here.
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