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Abstract

Agricultural irrigation is the largest (80%) user of freshwater resources. With increasing freshwater demand, it isimportant to make
optimal use of water resources with improved agricultural productivity through objective and accurate information provided by
remote sensing.  This paper reviews the potential of applications of microwave remote sensing of soil moisture and vegetation for
agricultural application. Microwave remote sensing can be used to estimate soil moisture on the basis of large contrast that exists
between the dielectric constant values for dry and wet soils. Temporal monitoring of water availability at soil root zone during growth
periods of crop could prevent water stress and improve the productivity. At field scales, the high resolution soil moisture data can be
better used for irrigation scheduling through precision agriculture. At larger scales, low resolution soil moisture data as alternative to
vegetation index can be used to monitor and predict crop yield. Because microwaves penetrate cloud, microwave remote sensing
could be a good aternative to VIS/IR hyperspectral data for monitoring vegetation distribution, health and water needs for
agricultural applications.
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1. Introduction

Agricultural irrigation has a major impact on water
resources management as it accounts for more than
80% of total water withdrawn [1-3]. The global extent
of irrigated area has expanded during the last 30 years
by 1.6% per year [4] leading to a significant increase
in freshwater consumption and therefore to water
resource degradation and depletion. Further, the
emerging concern over climate and land use change
impact on agriculture needs accurate monitoring of
crop yield production. Precise use of fresh water
resources for irrigation is required for implementation
of sustainable water management policies and to
monitor high yields in a changing climate and rising
water demands. Soil moisture, water content in the
root zone, and vegetation indices are critical
parameters for crop yield forecasting, irrigation
management, and issuing early warning of droughts.

Soil moisture data with high spatial and temporal
resolution over the agricultural growing season have
potential for rational planning of irrigation
management and increased crop yields. Tempora
monitoring of soil moisture at different growth stages
of crop could prevent water stress and improve the
crop yield [5]. Soil moisture characteristics influence
the availability of nitrogen and water to the crop
during the growing season, strongly affecting the
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availability of soil nitrogen during periods of low
water availability [6]. On the other hand, excessive
irrigation leads to leaching of fertilizer (N and P),
inducing groundwater pollution and soil degradation
[7]. Using knowledge of soil moisture to manage
insects and plant disease [8] is a potential application
that needs more research. Information on spatia
distribution of soil moisture over the field will allow
pesticides to be applied sdlectively to achieve
economic and environmental benefits.

Currently, various crop monitoring schemes are
used to retrieve crop yield information from
visible/near IR remote sensing data. These schemes
could be improved with the addition of microwave
based soil moisture information to achieve greater
efficiency. Many studies carried out during past three
decades have successfully demonstrated the use of
active and passive microwave remote sensing
techniques to obtain spatial and tempora estimates of
soil moisture mapping over large regions [9-12]. In the
case of passive microwave system, the radiometric
emission measure as a brightness temperature
decreases with the increasing soil moisture. However,
in the case of active microwave system, the stronger
radar backscatter signals are observed at higher soil
moisture [13].

The gpatial heterogeneity soil moisture and
precipitation make it difficult to estimate soil moisture
a relevant scades from fidd soil moisture
measurements.  Lacking accurate  information,
farmers/managers often leave irrigation systems
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running to ensure that water is available to driest area.
This leads to wasteful water application to wet area
damaging crop growth and development. Field soil
moisture measurements are limited to a small fraction
of the total area because of the expense and logistical
constraints.  While field measurement using
gravimetric sampling, calibrated neutron attenuation,
or timedomain reflectometry (TDR) technique may be
quantitatively accurate, it poorly represents the spatial
and temporal distribution of soil moisture as a function
of variable soil surface characteristics.

Microwave remote sensing systems have shown
great potential in spatial soil moisture estimation for
crop vyield fluctuation forecasting at regional and
global scale. Spaceborne active microwave sensors,
synthetic aperture radar (SAR), are able to provide
high spatia resolution (up to 10 m), but have low
temporal resolution and are more sensitive to surface
characteristics than passive microwave sensors.
However, passive microwave sensors (radiometers)
provide low spatial resolutions (20 to 50 km) with a
higher temporal resolution (12 to 24 hrs). The low
resolution information of soil moisture and vegetation
anomalies at global scaleis critical for large-scale crop
yield monitoring and forecasting, which is needed, for
example for food crisis management. High spatia
resolution data from active microwave sensors have
larger application in the agricultural field through
precision farming, where crop growth and production
is highly dependent on available surface soil moisture
at small scales [5, 14]. Also high resolution imagery
can be very useful in assessing water fees and
establishing an equitable access to water resources.

Table 1 gives list of active and passive sensors that
have operated in space for at least a year. It aso lists
some Short lived satellite sensors such as SEASAT,
SIR-A/B have aso played a role in proof of concept
studies. Active microwave SAR sensors at C-band
(4.0-8.0 GHz) and L-band (1.0-2.0 GHz) frequencies
are commonly used for soil moisture estimation [15].
Fig.2, shows high resolution (30m pixel size) active
microwave SAR data from RADARSAT-1 satellite for
Southern Great Plains of Oklahoma State. Recently
launched sensors have quad-polarized capabilities to
acquire multiple co-polarized and cross-polarized
images simultaneously. Current passive microwave
sensors  like AMSR-E (Advanced Microwave
Scanning Radiometer), WindSAT and SMOS (Soil
Moisture and Ocean Salinity) are capable of providing
a global coverage soil moisture product with coarse
gpatial resolutions (a few 10s km) over lightly
vegetated areas. In vegetated area, these sensors are
sensitive to variations in vegetation properties in a
relatively thick layer of the canopy. Fig.2 shows the
global soil moisture product for February 2008 from
AMSR-E sensors. The greatest advantage of the
microwave sensors is its ability to observe the earth’s
surface under all weather conditions. Hydrological
experiment and observation campaigns such as FIFE
87-89, MANSOON 90, OXSOME 90, MACHYDRO
90, HAPEX 90-92, WASHITA 92, SGP 97 and 99,
SMOSREX’01-06, SMEX 02, SMEX 03, SMEX 04,
AgriSAR 2006, and SMAPVEX 08, have explored the
potential of microwave remote sensing for estimation
of soil moisture and other hydrological parameters [9,
16-19].

Fig.1 Active microwave remote sensing (RADARSAT-1) based high resolution backscatter data for Oklahoma, USA
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Fig.2 Passive microwave remote sensing (AM SR-E) based global soil moisture product for month February, 2008

Table 1 Details of C and L band Microwave Sensors have one objective to used for soil moisture retrieval

Sensors Period Band Polarization Type
SEASAT-SAR Jun-Oct 1978 L HH Active
ERS-1 1991 - 2000 C \AY% Active
JERS-1 1992 - 1998 L HH Active
SIR-C/X-SAR Apr-Oct 1994 L, C+ VV,HH,HV Active
ERS-2 1995 - 2003 L 'A% Active
RADARSAT-1 1995 - C HH Active
RADARSAT-2 2007 - C Quad Active
ENVISAT (ASAR) 2002 - 2010 C VV,HH,HV, VH Active
AMSR-E 2002 Cc+ V,H Passive
WindSAT 2003 C+ V,H Passive
PALSAR 2005 - L Quad Active
METOP-ASCAT 2007 - C \AY% Active
RISAT 2009 - C Quad Active
SMOS 2009 - L V,H Passive
SAOCom (1A-1B) 2011 - L Quad Active
Sentinel-1 (GMES) 2011 - C Quad Active
SMAP 2013 - L HH, HV,VV /V, H Active/Passive

* C+ Satellite has high frequency sensorsincluding C band.

The objective of this paper isto review the potential
of active and passive microwave remote sensing
application in the agriculture. Soil moisture retrieval
methodologies using active and passive microwave
remote sensing as well as applications for vegetation
monitoring and agriculture management are discussed.

2. Microwave remote sensing

Soil moisture response to microwave remote
sensing system from ground surface is influenced by
parameters such as land cover, vegetation density and
soil texture; which make the retrieval process more
complex. A large number of studies have been carried
out to investigate the relationship between emission
and backscatter and soil moisture and vegetation
parameters for different study aress.

2.1 Parameter s affecting soil moistureretrieval

2.1.1 Frequency or wavelength

The frequency of incident radiation has a direct
relationship with the penetration depth in the surface.
The L and C bandwidths are the most commonly used

wavelengths for soil moisture estimation. The longer
wavelengths (L-band) penetrate deeper in the soil
surface and/or vegetation canopy. L-band SAR sensor
is able to penetrate leaves and small branches and can
interact with tree trunks and branches as well as the
soil surface. In sparse vegetation, L band interacts
more with underlying surface rather than vegetation,
reducing its sensitivity to vegetation [20, 21].

2.1.2 Incidenceangle

The sensitivity of microwave sensor to soil moisture
decreases when the incidence angle increases [22]. At
higher incidence angle, the vegetation intercepts more
of the signa and attenuates it. The energy
backscattered by vegetation reduces the contribution
of soil to the total backscattering [22, 23]. The optimal
soil moisture can be derived using low incidence angle
because it is optimized for sensing soil properties and
minimizes the effect of vegetation and surface
roughness on backscatter or emission signals[13].

2.1.3 Polarization
Active and passive microwave systems are capable
of measuring the backscattering and emission response
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from the surface using different polarization
configurations.  Active sensors can  measure
backscatter as co-polarized (HH and VV) and
cross-polarized (HVY and VH). Passive sensors
measure the emission in V or H polarization. These
polarization configurations are used to retrieve more
accurate information from different layers of the target
surface. These polarizations can have different
penetration depths for the same frequency and the soil
surface characteristics and the ratio of response
between polarizations is valuable for inferring soil and
vegetation properties[10, 13].

2.1.4 Surface roughness

The surface roughness is a measure of the
irregularities of the surface geometry which has a
significant effect on the variation of radar
backscattering amount. The degree of roughness or
smoothness of a surface depends on the wavelength of
the incidence energy. Higher surface roughness
increases the backscattering by increasing the total
emitting surface. In SAR images water bodies have
dark tone (low backscatter) except where the water is
rough due to wind stress or current. This difference
between the respective properties of land and water
can be very useful for such applications as flood
extent measurement or coastal zones erosion aso this
sensitivity can yield information on canopy structure
[13].

2.1.5 Sail texture

The reliance of the dielectric constant on soil
texture is a function of variation of water retention by
soil particles. The sensitivity of soil texture to
dielectric constant is lower in dry soil, and higher in
wet soil conditions [24]. Different soil textures have
distinct patterns of soil moisture content and soil
drainage [25]. Soil texture is closely related to
dynamics of soil moisture spatiad and temporal
distribution. In general, precipitation is responsible for
soil moisture variability at a larger scale and soil
texture controls this variability at a smaller scale [26].
2.1.6 Topography

The local incidence angle due to variation in
topography modifies the backscattering from the soil
surface. The surface facing the sensor produces higher
radar backscatter due to its geometry. However, a
surface facing in the opposite direction to the sensor
produces a limited or no backscatter for similar
surface soil moisture conditions [20, 27]. For passive
microwave, topography roughness has lesser impact
on the signal because of the larger sensor footprint.

2.1.7 Observation depth

The penetration of microwave energy into the
ground depends on the dielectric constant of the upper
layer, frequency and radar polarization. A longer

wavelength beam penetrates deeper into the soil
medium provides information from the deeper soil
layer. The penetration depth is aso influenced by soil
moisture; the penetration depth decreases with
increased soil moisture content. VV polarization
penetrates deeper in the soil surface than HH
polarization for similar soil moisture content [13].

2.1.8 Vegetation characteristics

Vegetation cover is the most important factor that
influences the retrieval of soil moisture from
microwave remote sensing. The degree of its influence
on the retrieval of soil moisture depends upon physical
and structural properties of vegetation cover. Various
vegetation indices have been developed based on
multi-spectral  measurements from remote sensing
satellites, to study quantitative and qualitative status of
the vegetation. NDVI values are related to the optical
properties of vegetation and are mainly sensitive to
leaf chlorophyll content.

Vegetation optical depth is directly related to the
vegetation water content and vegetation constant (b
parameter). However, vegetation water content cannot
be derived directly from remotely sensed data. NDV |
in particular is used as a surrogate measure of
vegetation water content for microwave surface soil
moisture retrieval [28]. A quadratic relationship
between the ground-based vegetation water content
measurement and remotely sensed NDVI values was
used to specify the regional based vegetation water
content for the SGP97 mission. The relationship
between vegetation water content and remotely sensed
NDVI was established by optimizing a polynomial
function [9]. It was found [29] that the vegetation
water content and canopy heights are directly
correlated with leaf areaindex. In another study, it was
found [30] that leaf area index and vegetation optical
depth are more correlated for green vegetation
compared to mulch and standing biomass. Current
research focuses on wusing these vegetation
characteristics to improve estimates of the vegetation
impact on soil moisture retrieval.

2.2 Passive microwave remote sensing of Soil
moisture

The principle of passive microwave remote sensing
is based on the thermal radiation measurement from
the land surface, and depends on physical temperature
and the surface emissivity. The passive sensors
measure the natural thermal emission of the land
surface a microwave wavelength. The tota
backscatter and emission signals have relatively
significant levels of three contributions (vegetation,
soil surface, and interaction between soil and
vegetation emission) from vegetated surface. The
microwave brightness temperature of the land surface
as afunction of the thermodynamic temperature of the
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soil/vegetation and surface emissivity [31, 32] is given
by:

Te=&gi T 7% + (B0 “Toeg (1—977/ )
Hlob) -0 T e e

where, &g is the soil emissivity, w is the
single-scattering albedo within the canopy, T is the
optical depth of the vegetation canopy, 6 is the look
angle from nadir, T IS the soil temperature, and Teg
is the vegetation temperature. The soil emissivity
calculated from the Fresnel equations, is a function of
the soil dielectric constant.

Under the vegetation cover, the observed brightness
temperature is a composite of the soil and vegetation.
The microwave emission of soil surface will be
reduced by vegetation cover, which aso adds
microwave emission of its own to the measurement.
The vegetation effect on microwave emission is
described as a “cloud” which can absorb and re-emit
radiation. At C and L band the scattering effect is
minimal so that in a vegetated agricultura field, only
radiation from canopy will be observed. In that case,
the emission from vegetation canopy is function of
vegetation structure (v), polarization (p) and frequency
(f). The microwave emission of vegetation is function
of vegetation optical depth. The vegetation water
content contributes to the microwave emission of the
surface and also attenuates the emission of the soil [9,
33].

2.3 Active microwave remote sensing of soil
moisture

A number of studies have been carried out to
investigate the relationship  between  radar
backscattering and soil moisture for different study
areas. Various theoretical [34], empirical models [20,
35, 36] and non-parametric based model [37] have
been developed to retrieve the soil moisture from
active microwave data.

The theoretical models are based on the science of
diffraction of electromagnetic waves with the
observed surface, to predict the backscattering
coefficient for a given configuration (frequency,
polarization and incidence angle) and surface
characteristics (dielectric properties and surface
roughness). Developed in [34] is an Integral Equation
Model (IEM) based on a radiative transfer model for
bare soil surfaces. The IEM model has been used by
many researchers [38-44] to retrieve soil moisture
and/or surface roughness and to validate data obtained
from field studies. Simplified in [36] is the complex
IEM to infer soil moisture and surface roughness over
bare and short vegetated fields.

An empirical model [35] was proposed for
co-polarized and cross-polarized backscatter to relate

soil moisture to dielectric constant. Used in [20] is a
ground-based scatterometer data of [35] to generate
an empirical model for co-polarized SAR system. The
Dubois model claims best results with sparsely
vegetated area (NDVI < 0.4). The use of the Dubois
model for sparsely vegetated area, showed better
correlation between backscatter from C-band than
from L-band [45]. A detailed comparison between
these empirical models can be found in [46]. These
empirical models have used field experiments to
validate their results, but many of them are applicable
only to similar radar parameters and surface
conditions present at the time of the experiments.

The theoreticall and empirica models discussed
above are complex in nature and require many inputs
that are not always available. Many researchers used a
linear regression model to simplify the complex
relationship between radar backscattering and soil
moisture [27, 47-57]. It was proposed in [58] that the
Normalized Backscatter Soil Moisture Index (NBMI)
was proposed where the ratio of backscatter values
from two different days was used as explanatory
variable in a simple linear regression model to
estimate soil moisture.

The synergistic use of microwave and hyper-
spectral sensors allows a better understanding of the
interactions of the SAR signal with soil and plant
surfaces [59, 60]. The synergistic model developed by
Proposed in [61] is a temporal differential backscatter
coefficient as a function of NDVI for used in soil
moisture estimation. The synergistic use of the two
active microwave instruments (SAR and wind
scatterometer) on the ERS satellites has been used for
[44] soil moisture estimation over bare soil areas at a
larger scale. Non-parametric models, such as neural
networks and fuzzy logic have been shown to have
potential in soil moisture retrieval [37, 41, 42, 62-64].
The advantage of neura network and fuzzy logic is
that all surface parameters included and trained in
neural network acts as an empirical mapping relation
between radar backscatter and land surface parameters
[15].

The major challenge to the above theoretical and
empirical models is the modeling backscatter behavior
under the vegetation canopy. In addition, the
variability and heterogeneity that exist within a larger
footprint of passive microwave sensors make the
retrieval process complex [65]. The incorporation of
vegetation parameters in the above models introduces
large number of variables and makes their inversion
more difficult. A simple approach in the form a
semi-empirical  water-cloud model (WCM) was
developed in [66] based on a first-order solution of a
radiative transfer model chosen for simplicity in radar
data inversion and adequacy to represent plants with
leaf dimensions smaller than the sensor wavelength. In
the WCM, the canopy is represented as a cloud,
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uniformly distributed above the soil surface where
multiple scattering between canopy and soil can be
neglected. The canopy is represented by bulk variables
such as leaf area index or vegetation water content.
The cloud density is assumed to be proportiona to the
volumetric water content of the canopy.

The total backscatter from a vegetated soil surface
consists of three types of contributions. backscatter

from bare soil surface (ofoi,), direct backscatter of the
vegetation layer (afanopy) and multiple backscattering

(o;mmpy) involving the vegetation canopy and
ground surfaces[10, 66] is given by:

O'O=O'0 +O'O

2 0
canopy soil +canopy +tr7*0o

soil (2)

where 72 = g28Mwe)

and backscatter from canopy is given by:
O ooy = A* M, *COSO (1—12)

canopy

©)
where T2 is the two-way vegetation transmissivity, M,
is the volumetric soil moisture content, W; is the
vegetation water content in kg/m® and 6 is the radar
incidence angle. The vegetation related parameters (A
and B) are determined from experimental observations,
representing the vegetation scattering and the
vegetation attenuation, respectively. Further, WCM is
modified [68] by introducing a vegetation correlation
length, a, and neglecting soil-vegetation interaction.

3. Microwave remote sensing applications

Inference  of  vegetation  distribution and
characteristics from remote sensing has usually been
based on the difference between vegetation reflectance
in the red and near-infrared channels (which yields the
Normalized Difference Vegetation Index, NDVI [69].
Some other channels such as the shortwave infrared
and thermal infrared have been also used, yielding
other indices of vegetation status. For example, the
Normalized Difference Infrared Index (NDII) is a
widely employed measure of vegetation water status
based on near and shortwave infrared channels.
Compared with VIS/IR remote sensing, microwave
remote sensing has the advantage of not requiring
cloud-free conditions and also has unique applications
such as the ability to directly sense soil moisture.
While the relatively coarse spatial resolution (several
km) of satellite passive microwave instruments makes
them most useful for regional and globa studies,
active microwave instruments such as synthetic
aperture radar (SAR) offer spatial resolution similar to
that of high-resolution visible and infrared satellite
imaging (tens of m) and are suitable for field-scale
monitoring and precision agriculture applications.
Combining information from different microwave

bands and from microwave and visible/infrared bands
offers particularly promising avenues for maximizing
the usefulness of available and upcoming remote
sensing modalities.

3.1 Vegetation density and condition

Using Nimbus SMMR data at 37 GHz, Defined in
[70] is a microwave difference polarization index
(MDPI) from the difference in brightness temperatures
between vertical and horizontal polarization, an
indicator of vegetation water content. They showed
that MDPI offers a measure of vegetation density
comparable to NDVI, and is more sensitive than
NDVI in sparsely vegetated semiarid areas such as the
Sahel. It was shown [71] hat MDPI and NDVI
sensitivity ‘cross over' at NDVI = 0.13. Justice et al.
(1989) analyzed MDPI versus NDVI seasonality
across biomes in South America and Africa, finding
that unlike NDVI, MDPI did not show consistent
seasonal cycle in areas with dense vegetation (forests
and shrublands) but only in areas with sparse, seasonal
vegetation (steppe).

Used in [72] is a somewhat more sophisticated
processing approach, applying a physics-based
radiative transfer model to simultaneously retrieve
surface temperature, vegetation water content, and soil
moisture from nighttime Nimbus SMMR data at 6.6
and 37 GHz over lllinois, finding a good
correspondence  with in  situ  soil  moisture
measurements and that the inferred vegetation water
content did correlate well with NDVI, although with
less pronounced seasonality. New microwave
vegetation indices [73] were derived from C and X
band brightness temperatures that are suitable for use
with Agqua AMSR-E data, finding a high correlation
between this and NDV|I over sparsely vegetated Tibet
and Mongolia.

Active microwave technology can yield vegetation
properties with high spatial resolution. Experimental
results obtained in a pine plantation (Landes forest,
France) show that L- and especially P-band SAR is
useful for retrieving forest biomass, but this appears to
require calibration for each forest type [74]. A linear
relationship was shown [20] between the
cross-polarization ratios for L-band data and NDVI
over the range 0.2 < NDVI < 0.6 in an Oklahoma
grassland. Presented in [75] is a review of efforts to
guantify biomass using spaceborne and airborne SAR.

3.2 Crop yield monitoring and forecasting

Apart from soil moisture application, active
microwave remote sensing (RADARSAT, C-band
SAR) has been successfully used to map inter-annual
variation in rice planted area in India at low cost and
weeks in advance of harvest [76]. Similarly, C-band
SAR on ENVISAT has been assimilated into an
agricultural model coupled with a representation of
microwave radiative transfer (WCM) to predict rice
yield in east-central China at 30-m spatial resolution
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[77]. It was found [78] that ERS SAR images could be
used to determine the of sugar beet in fields in
England with about equal skill compared to an
NDVI-like vegetation index from high-resolution
(SPOT) satellite imagery. Discussions were made [79]
for assimilating the soil moisture product from
AMSR-E on the Aqua satellite into a global
agricultural model to improve seasona yield
predictions, finding in a preliminary assessment that
soil moisture from AMSR-E improves the quality of
the modeled soil moisture compared to basing the
modeled soil moisture solely on precipitation datasets.

3.3 Vegetation water content

Microwave wavelengths are sensitive to vegetation
water content (VWC) [31]; with multiple microwave
channels, it is possible to retrieve both soil moisture
and VWC. Early studies showed that microwave
polarization difference temperatures at 37 GHz were
highly correlated to NDVI in arid and semi-arid
regions and related to variations in leaf water content
[70, 80].

In areas with substantial vegetation cover,
vegetation water content can be retrieved using
multiple microwave channels with different sensitivity
to soil vs. vegetation layers. The sensitivity of MDPI
a the X-band to plant water content has been used to
improve the retrieval of the soil moisture in vegetated
fields from C-band data in an airborne campaign [80].
NDII is a measure of leaf water content based on
infrared remote sensing, but is only sensitive to water
close to leaf surfaces. In a study of corn and soybean
canopiesin lowa, VWC and NDII have been shown to
be closely related, but in a crop-specific manner; used
together, they may offer more information about crop
water status than either alone [82].

34 Irrigated area delineation

Remote sensing information on irrigated area is
useful for studies of global food production and land
and freshwater use as well as for more concrete
purposes such as planning and evaluation of water
projects [83]. A predefined threshold has been usually
applied to derived indices of vegetation density and
water content such as NDVI, NDWI, and VHI to
differentiate between irrigated and non-irrigated areas
[84-86]. More recently supervised and unsupervised
classification techniques have been proposed for
mapping irrigated areas [87, 88]. Supervised
classification techniques make use of training samples
to cluster the image pixels into predefined classes.
Unsupervised classification techniques, on the other
hand, do not require a set of predefined clusters nor a
training sample. They can automatically differentiate
between multiple classes using the appropriate
statistical methods and are effective for defining
irrigated area where there is a large contrast between it
and natural vegetation, such as summer persistence of

green vegetation in Mediterranean environments [4].

Microwave remote sensing can complement
information from visible and infrared bands in
determining irrigated area because it senses the
irrigation directly as higher soil water content, rather
than indirectly as higher vegetation density, water
content, and evapotranspiration rate, and because it is
insensitive to cloud cover. It was shown [89] that an
airborne L-band microwave radiometer could be used
to map irrigated fields in northern Texas. It was further.
found [90] that microwave sensing (the Spaceborne
ERS2 C-band SAR and an arborne P-band
scatterometer) was better able than visible and near
infrared spectra to quantify variations in soil moisture
over mostly bare, sandy desert soil in southern Israel.
Good correlations were aso found [91] between
microwave backscatter from the RADARSAT-1
satellite (C-band SAR) and soil moisture early in the
growing season in a mainly agricultural landscape in
Navarre, Spain.

3.5 Effect on fertilizer application

It was demonstrated [6] that plant responses to
growing-season rainfall and N fertilizer application are
both sensitively dependent on the soil's water holding
capacity, which governs its uptake and release of both
water and bio-available N. Measurements of the
spatial variability in soil moisture over field scales, as
enabled by SAR, can elucidate the response of soil
moisture to precipitation as modulated by variation in
soil composition and textures, and used to estimate
variables such as soil water capacity that are relevant
to the response of yield to N application. This could
offer opportunities for yield enhancement and cost
reduction by targeting both water and N application to
where they can do the most good.

3.6 Irrigation scheduling

Irrigation scheduling by the water balance approach
is based on estimating the soil water content. The
determination of irrigation water need is important for
promoting efficient water use, with large economic
and environmental impacts. Precision agriculture
regquires high spatial resolution to resolve individual
fields and local topographic variations; to attain this
resolution from space requires active microwave
instrumentation like SAR. Microwave wavelengths,
however, are only sensitive to soil moisture in the
uppermost soil layers (of the same order as the
wavelength) and are less sensitive to soil moisture
under dense vegetation. One approach for guiding
real-time irrigation would be to estimate root-zone soil
moisture indirectly from the vegetation water content
inferred from C or X band microwave remote sensing
[92], which can be combined with L-band direct
information about soil moisture near the surface for a
more comprehensive retrieval of the moisture
condition of both soil and vegetation [62, 93, 94].
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Another approach along the same lines combines Ku
with C band scattering [95]. Writing from a watershed
management perspective [96], it was advocated to use
a model of soil water transport to infer the soil
moisture vertical profile from near-surface soil
moisture measured at high resolution by spaceborne
SAR. Microwave remote sensing could aso be
combined with visible and infrared observations to
facilitate fuller understanding of crop and water
dynamics. It was shown [97] that combining thermal
infrared surface brightness temperature from AVHRR
on NOAA-18, which is an indicator of the
evapotranspiration rate, with microwave observations
from AMSR-E on the Aqua satdlite results in
substantially better soil moisture estimates over
heterogeneous landscapes in southeastern Australia
than either modality alone.

4. Summary

Microwave remote sensing techniques have shown
great potential in agricultural applications such as crop
yield forecasting, irrigation management, and issuing
early warning of droughts. Substantial progress has
been made in terms of vegetation classification and
monitoring from hyperspectral visible/infrared remote
sensing. However, considering the limitation of
hyperspectral remote sensing under cloud cover, its
combination with microwave based techniques for
routine measurement of soil moisture and vegetation
characteristics has great future potentia for
agriculturist and hydrologist. Agricultural irrigation
has not routinely considered in-situ or remote sensing
based soil moisture data in its many operational
decisions. However, considering the potential
discussed in the paper, microwave remote sensing can
play critical role inimproving agricultural production.

Research needs toward this goal are extensive and
include the calibration and validation of vegetation
and soil moisture retrieval  methodologies
corresponding to current (SMOS, AMSR-E) and
future (SMAP) soil moisture missions as well as a
better theoretical understanding of microwave
radiative transfer particularly in dense vegetation.
Some of these issues are being investigated using
ground based L-band radiometry to understand the
vegetation effect through temporal monitoring of
brightness temperature for complete growth cycle of
wheat, corn, and soybean [98].
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