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Remote sensing is used for monitoring the impacts of meteorological drought on ecosystems, but few large-scale comparisons
of the response timescale to drought of different vegetation remote sensing products are available. We correlated vegetation
health products derived from polar-orbiting radiometer observations with a meteorological drought indicator available at different
aggregation timescales, the Standardized Precipitation Evapotranspiration Index (SPEI), to evaluate responses averaged globally
and over latitude and biome.The remote sensing products are Vegetation Condition Index (VCI), which uses normalized difference
vegetation index (NDVI) to identify plant stress, Temperature Condition Index (TCI), based on thermal emission as a measure of
surface temperature, and Vegetation Health Index (VHI), the average of VCI and TCI. Globally, TCI correlated best with 2-month
timescale SPEI, VCI correlated best with longer timescale droughts (peak mean correlation at 13 months), and VHI correlated best
at an intermediate timescale of 4 months. Our results suggest that thermal emission (TCI) may better detect incipient drought than
vegetation color (VCI). VHI had the highest correlations with SPEI at aggregation times greater than 3 months and hence may be
the most suitable product for monitoring the effects of long droughts.

1. Introduction

Drought reduces access to water supplies, leading to malnu-
trition and famine as well as disturbances in ecosystems [1–3].
As a result of anthropogenic global warming, it is expected
that the frequency and intensity of drought will increase
in many areas of the world [1], driven by reductions in
precipitation and increased evapotranspiration from higher
temperatures [2]. An analysis of historic observations has
found increases in drought-affected land area [3], consistent
with climate model projections of increases in aridity and
droughts [4].

Amajor concern associatedwith drought effects is change
in ecosystem dynamics as a result of mortality of trees and
other plants [5–8], which can lead to alterations in plant com-
munity composition, species distributions, and carbon [9–11]
and water cycling [12]. The goal of this study is to determine
how long meteorological drought takes to manifest globally

and in croplands, grasslands, and evergreen broadleaf forest
ecosystems, based on remotely sensed Vegetation Health
Product (VHP) data. An advantage of drought monitoring
with remote sensing data compared to ground observations
is the ease with which global studies can be performed, since
the availability of data is not dependent onmonitoring station
distribution or international cooperation.

In general, remote sensing can be applied to drought
monitoring by choosing surface radiative properties related
to vegetation stress or soil moisture status [13]. The VHPs
include Temperature Condition Index (TCI) and Vegetation
Condition Index (VCI). VCI uses a ratio of land surface
reflectivity in visible and near infrared wavelengths, the
normalized difference vegetation index (NDVI), to assess
coverage of healthy vegetation, while TCI uses thermal
infrared emission to assess land surface temperature (LST).
These VHPs, obtained from NOAA’s Advanced Very High
Resolution Radiometer (AVHRR) sensor data, are available
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from the NOAA STAR Global Vegetation Health Products
website [14], with data since the early 1980s. Validation with
groundmeasurements in several parts of theworld has shown
these indices to be successful for assessing drought impact
[4].

The ecosystems chosen for special examination of the
effects of meteorological drought on remotely sensed VHPs
in this study include cropland, grassland, and evergreen
broadleaf forests. Croplands are important because people
utilize these 1.47–1.53 billion hectares of land [15] for food
consumption, livestock feed, bioenergy, chemical feedstocks,
and biopharmaceuticals [16]. Stagnation of the world’s grain
production and increases in drought occurrence with global
warming may make it harder for demands to be met [12].

Grassland ecosystems support grazing livestock, seques-
ter carbon, catch water, and preserve ecosystem biodiversity,
as well as creating livelihood formany low-income people [9].
Grasslands can act as carbon sources or sinks depending on
water availability, in that they release carbon in dry years but
store carbon during normal or wet years [17, 18].

Forest biomes contain about 80% of Earth’s total plant
biomass [19] and in 2010 it was estimated that the total carbon
stock in the world’s forests was 289Gt C [20]. When extreme
climate conditions prevail, evergreen broadleaf forests, which
include tropical rainforests, build less soil organic carbon [21]
and sequester less atmospheric carbon [10]. Estimates suggest
an average reduction of forest canopy photosynthetic capacity
due to unfavorable climate extremes of 6.3 Gt C per year over
2001–2010, with evergreen broadleaf forests contributing to
52% of the total reduction [10].

Most previous studies of drought response timescales
have been local (e.g., north-eastern Spain, parts of the United
States, Thailand) or limited to select ecosystems or plant
species (e.g., conifer forests in the southwest United States)
[22–28]. A number of these studies indicate that there is
variation in the strength and lag time of peak correlation
between precipitation and remotely sensed LST and land
surface reflectivity indices for different ecosystems. In the
Great Plains of the United States, the strongest correlation
betweenLST andDeparture fromNormal Precipitation index
was found at a 2-3-month timescale, as compared to a
timescale greater than 6 months for NDVI [23]. This was
observed for grassland, cropland, and the Great Plains area
as a whole [23]. In southern Africa, NDVI of trees was
less sensitive than NDVI of grass to interannual variations
in precipitation, a difference attributed to trees’ deep roots
affording them more steady access to soil moisture [29].

Additionally, humid and arid biomes have been found
to have shorter response times than semiarid and subhumid
biomes [30]. Some studies have shown a stronger correlation
between reflectivity remote sensing products and precipita-
tion indices than between thermal products and precipitation
indices [24, 25].

In terms of correlations with meteorology, TCI demon-
strates stronger correlation with above ground temperature
[4], while VCI is better correlated to cumulative seasonal
rainfall [26] and responds most to prolonged moisture stress
[27] as it affects photosynthetic activity and plant health. As
a result of the nature of the two indices, and the findings

of previous studies, it is hypothesized that the response
timescale to meteorological drought onset will be shorter
for TCI than for VCI and that the response of remote
sensing based indicators to drought will vary depending on
ecosystem.

A number of meteorological drought indicators have
been employed. The indicator used here is the Standard-
ized Precipitation Evapotranspiration Index (SPEI), which
is based on anomalies in monthly average precipitation (𝑃)
minus reference evapotranspiration (or atmospheric evap-
orative demand; ET0) [31–33]. ET0 can be calculated using
one of several available formulas, based on temperature
and possibly also wind speed, sunniness, and other climatic
variables. The aggregation of 𝑃 minus ET0 for a set of 𝑛
months, followed by standardization to a multiyear zero
mean and unit standard deviation, yields SPEI for different
timescales [32]. SPEI is available globally at aggregation
timescales 𝑛 ranging from 1 to 48 months in SPEIbase
[34], making it possible to assess both long- and short-
term drought [28]. The effects of evapotranspiration in the
water balance are important because temperature influences
water availability in the environment [35] and should also
be considered as contributing to meteorological drought [3,
36, 37]. The inclusion of evaporative demand in SPEI is an
improvement for drought assessment over earlier indicators
such as Standardized Precipitation Index [38] that do not
explicitly account for temperature, and SPEI is therefore used
in a number of recent studies of drought risk assessment and
seasonal prediction [28, 39, 40].

2. Methods

The datasets used in this investigation are summarized in
Table 1.

As mentioned above, TCI and VCI are two VHPs derived
from remote sensing that are commonly used for drought
monitoring. The TCI and VCI datasets used are based on
data from AVHRR as processed by the NOAA STAR Global
Vegetation Health Products group [14]. TCI is based on
thermal emissions measured at infrared wavelengths and is
calculated as

TCI𝑗 =
BTmax − BT

BTmax − BTmin
× 100, (1)

where TCI𝑗 is the TCI value for week 𝑗, BT is the smoothed
brightness temperature for week 𝑗, and BTmax and BTmin are
the multiyear maximum and minimum brightness tempera-
ture observed for that week (based on a 25-year climatology
that includes our study period) [4, 41, 42].

VCI is calculated using NDVI, which is based on the
difference in reflectivity of green vegetation cover between
red and near infrared wavelengths, according to the formula

VCI𝑗 =
NDVI −NDVImin

NDVImax −NDVImin
× 100, (2)

where VCI𝑗 is the VCI value for week 𝑗. NDVI is the
smoothed weekly NDVI, and NDVImin and NDVImax are the
multiyear minimum and maximum observed NDVI at the
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Table 1: Summary of the spatial and temporal characteristics of the products used.

Product Years available Space resolution Time resolution
SPEI (1–48 months’ timescale) 1901–2014 0.5∘ Monthly
VCI, TCI, VHI 1982–2016 0.144∘ Weekly
MODIS (MCD12Q1) 2000-2001 0.5∘ One time

sameweek. VCI andTCI range from0 to 100. Values below 40
indicate stressed vegetation conditions, often due to drought
[26]. See [4] for details of the preprocessing and smoothing of
the AVHRR NDVI and BT series used to construct TCI and
VCI.

A third VHP evaluated was Vegetation Health Index
(VHI). This is defined as the average of TCI and VCI and
hence combines information from surface reflectance and
brightness temperature [41].Weekly VHP data (for TCI, VCI,
and VHI) were obtained from the 0.144∘ (∼16 km resolution)
NOAA STAR Vegetation Health dataset.

Monthly SPEI data were acquired from the Global
SPEI Database, SPEIbase, for 1982–2014 and aggregation
timescales of 1–48 months at a spatial resolution of 0.5∘
[34]. The SPEI was calculated using University of East
Anglia Climate Research Unit (CRU) gridded monthly pre-
cipitation and reference evapotranspiration data [43], with
the 𝑃 minus ET0 values transformed to standard normal
distributions using the log-logistic distribution fitted with
the unbiased probability weighted moments method [33].
ET0 is calculated by CRU using the Food and Agricultural
Organization (FAO) Penman-Monteith method for poten-
tial evapotranspiration from a well-watered grass surface
[34].

To delineate ecosystem types, the Moderate Resolution
Imaging Spectroradiometer (MODIS) International Satellite
Land Surface Climatology (ISLSCP) Initiative II data collec-
tion land cover product [44, 45] with a 0.5∘ resolution was
used. This is based on the 1 km MODIS land use product
(MOD12Q1), which used remote sensing data collected from
October 2000 to October 2001 and a decision tree machine-
learning method for classification of each pixel into one of
18 land cover categories, including evergreen broadleaf forest,
grassland, and cropland. It was upscaled to 0.5∘ by choosing
the most common land cover within each 0.5∘ cell as the
descriptor for that cell.

The years for which VHP and SPEI data were both
available are 1982–2014. The VHP dataset has some gaps
(1984, 1985, 1988, 1994, and 2004) due to unavailable remote
sensing data. These missing values were simply not included
in the correlation analysis. The SPEI dataset did not have
missing values.

Because the monthly SPEI product reflects precipitation
and reference evaporation integrated over the whole month
(and, depending on aggregation time, also previous months),
it strictly speaking is ameasure ofmoisture status as of the end
of the month. Therefore, for the most consistent comparison
with SPEI, we used only the VHP values from the weeks
that include the end of each month, representing each VHP
index’s value at the end of the month.

Given the finer spatial resolution of the VHP datasets,
compared to the SPEI dataset, they were upscaled to a
final spatial resolution of 0.5∘ by area-weighted averaging
of all VHP pixels falling within an SPEI pixel. Pearson
correlations were then obtained for each pixel and calendar
month between TCI, VCI, or VHI and SPEI at different
aggregation timescales, and the correlations then averaged
across calendar months for each pixel and then across all
pixels in a biome (or globally). We also show maps of the
correlation of SPEI with TCI and VCI and figures of mean
correlation by latitude for the aggregation timescale when
the global mean correlation is maximal. Note that the global
means are averaged across all pixels with valid VHP values,
regardless of biome. We exclude from our analyses VHP
pixels flagged as (1) desert areas with little vegetation, (2)
snow and ice covered areas, or (3) cold-season months in
mountain andhigh-latitude areas that are outside the growing
season.

To check the sensitivity of our results to the averaging
process, a different Pearson correlation analysis was also
performed where values for each pixel were computed by
finding the correlation between SPEI and VHP across all
calendarmonths, rather than the correlation being computed
for each month separately. Similar results were found (not
shown).

Averaging correlations mean that negative correlations
offset positive ones in determining the mean. If plants grow
better when more moisture is available, we would expect
generally positive correlations between the VHPs and SPEI,
with any negative correlations obtained being only due to
sampling error. However, as will be discussed below, negative
correlations between VHPs and SPEI are also biophysically
plausible under some conditions. To assess the effect of
averaging across correlations of opposite sign, we conducted
a supplementary analysis where correlations were averaged
only after either setting all negative values to zero or setting
all positive values to zero. We refer to these as positive-only
and negative-only mean correlations.

To quantify the significance of the mean correlation coef-
ficients found, we conducted a Monte Carlo analysis where
these were computed (i.e., means by pixel, biome, latitude
band, and globally) for 100 random permutations of the
months of the SPEI time series. After random permutation of
the SPEI, the expected value of all correlations with VHPs is
zero. Therefore, we used the 95th percentile of the absolute
value of the mean correlations under permutation as the
threshold for determining that the actually observed corre-
lations were significantly different from zero (i.e., unlikely if
there was no underlying relationship between SPEI and the
VHPs).
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Figure 1: TCI, VCI, andVHImean correlation globally with SPEI at different aggregation timescales. (a) Globalmean, (b) evergreen broadleaf
forest, (c) grassland, and (d) cropland.The dotted lines show the range over whichmean correlations would be not significantly different from
zero, as estimated fromMonte Carlo simulations of sample correlation sizes.

3. Results

The mean global correlations of the VHPs with SPEI at
different timescales are shown in Figure 1(a). Correlationwith
TCI peaked at 0.25, for an SPEI aggregation timescale of 2
months, and decreased gradually as aggregation timescale
increased. Correlation with VCI increased more gradually
and was smaller, peaking at 0.14 at an SPEI aggregation
timescale of 13 months. Correlation with VHI peaked at
0.24 for a timescale of 4 months and for that timescale and
longer ones was consistently higher than the correlation of
SPEI at the same timescales with TCI or VCI, indicating that

the combination of TCI and VCI may be more consistently
sensitive to longer timescale moisture conditions than either
index alone.

For evergreen broadleaf forest, mean correlation with
TCI peaked at 0.23 at the 1-month SPEI timescale, while
correlation with VCI was consistently rather low, peaking
at 0.08 at 34 months, and VHI peaked at 0.24 at 3 months
(Figure 1(b)). For grassland, mean correlation with TCI
peaked at 0.28 at the 2-month SPEI timescale, while VCI
peaked at 0.17 at 11 months, and VHI peaked at 0.27 at 10
months (Figure 1(c)). For cropland, mean correlation with
TCI peaked at 0.26 at the 2-month SPEI timescale, while
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Figure 2: Map of TCI correlation with 2-month aggregation
timescale SPEI (when the peak TCI correlation occurred for the
global mean). Pixels with nonsignificant correlations are left gray.

VCI peaked at 0.14 at 15 months, and VHI peaked at 0.23
at 4 months (Figure 1(d)). While the mean correlations for
individual biomes thus showed some differences from the
global mean, TCI was consistently most strongly correlated
with short-term moisture status (1- or 2-month SPEI), while
VCI correlation was greatest with SPEI aggregation time
of 11 months or above. VHI correlation peaked at an SPEI
timescale of 3–10 months, intermediate between those of
TCI and VCI, and was higher than either the TCI or VCI
correlation at the longer SPEI aggregation times.

Mapping the TCI correlation with 2-month aggregation
timescale SPEI (Figure 2) indicates that most of the land sur-
face has a positive correlation, while areas at higher latitude
and some equatorial rainforests have near zero correlation
coefficients. It can be seen that western North America,
eastern South America, the eastern edge of Africa, and large
portions of Europe, Russia, and Australia have high positive
correlation coefficients of TCI with the moisture index SPEI,
in the range of 0.4–0.7.

Some of the highest correlations between VCI and 13-
month aggregation timescale SPEI are found in semiarid
portions of South America, North America, Africa, and
Central and Southwest Asia (Figure 3). VCI correlation with
SPEI is also high in Australia. However, north of 50∘N and
even in some moister areas at lower latitudes (such as the
southeast USA, portions of south China, Bangladesh, and
many equatorial rainforests), the correlation between SPEI
and VCI is more commonly near zero or negative.

It is also possible to map the VHP correlations with SPEI
at any other available aggregation timescale. For example,
VCI is generally less positively correlated with SPEI at the 2-
month aggregation timescale, compared with the 13-month
timescale (Figure 4). Large positive correlations are still found
in semiarid grasslands of South America, Africa, Australia,
North America, and Central Asia, but compared to the 13-
month timescale, significant negative correlations are more
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Figure 3: Map of VCI correlation with 13-month aggregation
timescale SPEI (when the peak VCI correlation occurred for the
global mean). Pixels with nonsignificant correlations are left gray.
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Figure 4: Map of VCI correlation with 2-month aggregation
timescale SPEI (when the peak TCI correlation occurred for the
global mean). Pixels with nonsignificant correlations are left gray.

widespread in temperate and boreal forest regions of Eurasia
and North America.

The TCI correlation with 2-month aggregation timescale
SPEI as averaged by latitude (Figure 5) increases from 50∘S
to 30∘S and then decreases from 30∘S to 10∘S latitude, where
the peak average correlation is above 0.4 around 30∘S. The
correlation then increases going northward from the Equator
and reaches above 0.3 before decreasing poleward of 40∘N.
This can be understood as vegetation in subtropical, arid,
or semiarid zones (which include much of the grassland
and cropland biomes) beingmore sensitive to meteorological
drought than vegetation in moist equatorial and cool high-
latitude ecosystems.
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Figure 5: Average correlation for TCI (with SPEI at 2-month
aggregation timescale), VCI (with 13-month timescale SPEI), and
VHI (with 4-month timescale SPEI) by latitude. The aggregation
times shown are those for which the global mean correlations
are highest. The dotted lines show the range over which mean
correlations would be not significantly different from zero. This
range broadens at high southern latitudes because fewer pixels are
available there for averaging.

Similar to TCI, VCI shows different average correlations
with SPEI according to latitude (Figure 5). In the latitudes
between 50∘S and 20∘S, the correlation increases from −0.1 to
a peak of ∼0.3. Continuing north, the correlation decreases
to under 0.1 near the Equator (consistent with the low mean
correlations with SPEI for VCI in evergreen broadleaf forests)
and then increases again to above 0.2 between 10 and 20∘N
and a smaller peak between 30 and 40∘N, before steadily
decreasing to reach zero near the Arctic Circle.

VHI shows more steady mean correlations with 4-month
timescale SPEI, staying in the range 0.2–0.3 between ∼15∘S
and∼50∘N, peaking at almost 0.5 around 30∘S, anddecreasing
toward zero going poleward (Figure 5).

The positive-only and negative-only global mean correla-
tions are shown in Figure 6. The positive-only mean was, as
would be expected, somewhat larger than the overall mean
shown in Figure 1. The pattern of correlation as a function
of SPEI aggregation time was similar to that of the overall
mean, with VHI and VCI peaking at successively longer
aggregation times compared to TCI. The peak positive-only
mean correlations were found at 2 months for TCI, 4 months
for VHI, and 11 months for VCI. The negative-only means
were smaller in magnitude and were most pronounced for
VCI and at short SPEI aggregation times. For VHI and
TCI, the magnitude of the negative-only means was within
the range inferred from Monte Carlo simulations where
all underlying correlations were zero, implying that their
negative correlations with SPEI are not widespread or large
enough to be easily discerned in our data.
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Figure 6: TCI, VCI, and VHI positive-only and negative-only mean
correlations globally with SPEI at different aggregation timescales.
For the positive-only average, all negative correlations were set to
zero, while, for the negative-only average, all positive correlations
were set to zero. The dotted lines show the range over which the
means would be not significantly different from zero.

4. Discussion

The findings of this study suggest that TCI globally responds
most to shorter-timescale drought (with mean correlation
with SPEI peaking at an aggregation timescale of 1 or 2
months for all biomes in this study) and had higher peak
correlations than VCI did, while VCI responded most to
long droughts (with higher correlations at longer aggrega-
tion timescales for SPEI). Differences between the shorter
response time of TCI and longer response time of VCI
can possibly be attributed to the biophysical changes that
vegetation must undergo for the effect of drought to be
detected by VCI, in contrast to changes in land surface tem-
perature detected by TCI that are largely due to physical and
physiological suppression of evaporation and transpiration
when less water is available and are thus more immediate.
TCI’s stronger correlation with SPEI can also be partly
attributed to the common temperature component the two
indices share, since higher temperature increases reference
evaporation in the SPEI calculation as well as increasing the
remotely sensed thermal emission.

Differences in the strength of the correlation between
VCI and TCI with SPEI between different biomes may
ultimately be the result of their different latitude and climate
zone distributions, which are associated with different plant
functional types and adaptations needed to endure drought.
For example, plants of arid regions have mechanisms that
make it possible for them to rapidly adapt to changing water
availability, while plants in humid biomes usually have poor
adaptability to water shortage, and plants of semiarid and
subhumid biomes may respond only to longer droughts
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because they are adapted to withstand frequent water deficits
[30]. SPEI has previously been shown to have low correlation
with NDVI in low latitudes [30], potentially a result of
the generally positive water balance in the deep tropics,
whichmeans that drought serious enough to affect vegetation
condition is not common. SPEI also has low correlation with
NDVI in the higher latitudes, where the primary limiting
factor for vegetation activity is sunlight and water limitation
tends to be less critical. The evergreen broadleaf forest
ecosystem was found here to have the lowest correlation with
SPEI for both VCI and TCI, consistent with it being mostly
located in the tropics, where mean precipitation is quite high
and therefore drought does not frequently reduce NDVI.
Additionally, the evergreen broadleaf forest ecosystems may
be more resistant to drought because the deep roots that the
trees in these forests have allow them to reach subsurface
water reservoirs to offset drought effects [46–48]. Deep soils
and roots can buffer plant response to lower water availability
[49, 50]. Shallow groundwater and fractured rocks offer
additional water stores that plant roots can tap [51, 52]. We
may hypothesize that in places where soil conditions and
plant type allow drawing on a large water reservoir, NDVI
would be disproportionately affected by long meteorological
droughts (reflected by SPEI at long aggregation periods) and
not by short droughts. Determining the sensitivity of VHPs
to drought of various timescales (as quantified by low SPEI)
could be used to map rooting depth of different vegetation
types [53, 54].

In places, we found negative correlations of VHPs with
SPEI, which means that in those places vegetation health
tends to be better under drier than average conditions. These
negative correlations were particularly widespread for VCI
correlated with short-timescale SPEI (Figure 4). In general,
depending on the prevailing climate, plant growth can be
limited by either water, cold temperature, or light availability
[55]. In water-limited climates, such as those found in many
grassland areas, we expect more plant growth when ample
moisture is available (high SPEI), resulting in a positive
correlation of VHPs with SPEI. In temperature or light
limited climates, such asmany evergreen broadleaf and boreal
forests, having more moisture than usual available would not
help plant growth andmay even impede it if wetter conditions
are associated with cooler temperatures and less incoming
sunlight. In such locations, we would expect a negative
correlation between VHPs and SPEI. Similarly, the cooling
and haze following volcanic eruptions are found to negatively
affect tree growth at high latitudes (temperature and light
limited conditions) but not at low latitudes (moisture limited
conditions) [56], and Amazon rainforest trees grow more
during the dry season, when more sunlight is available and
there is still adequate moisture compared to during the
wet season [57]. For TCI, which measures surface temper-
ature, the decreased correlation of surface air temperature
with antecedent precipitation as climate gets cooler and
more moist and evaporation becomes limited by energy
availability rather than water availability [58, 59] would
also make the correlation with SPEI less positive at high
latitudes and equatorial rain forests, consistent with what we
find.

We note that as a result of global warming, more regions
are projected to shift to moisture-limited growing conditions
[11, 60], which would imply that correlations of VHPs with
SPEI would becomemore positive over time.This hypothesis
could be tested in future work.

Our findings suggest that VHPs globally work best as
drought indicators in semiarid areas, most prevalent in the
midlatitudes (15–45∘N and S). We also observed that VHI,
which is the average of VCI and TCI, generally worked
better than both VCI and TCI as a drought indicator at
longer timescales (SPEI aggregation timescale greater than 3
months).

A source of uncertainty in this study is the resampling of
the VHP data to a coarser resolution of 0.5∘ (∼50 km), which
could be avoided by using finer resolutionmeteorological and
land cover datasets. Finer resolution would also allow better
differentiation between land covers that are intermixed. The
VHPs are available from NOAA at 0.04∘ (∼4 km) resolution,
a finer spatial scale which would be helpful for studies of
individual regions and ecosystems. VHPs becoming available
for the last few years offer even finer spatial resolution [61].
Climate data at finer temporal resolution would also enable
study of the climate response of VHPs over submonthly
timescales, which could be particularly relevant for better
understanding the fast TCI response. For cropland, it would
also be helpful to distinguish irrigated from rain-fed agricul-
ture [62, 63], as well as other cropping andmanagement prac-
tices [64–66] that would affect sensitivity to meteorological
drought.

Additionally, there are many other factors aside from
drought that can degrade vegetation, such as fires, pests, or
disease, which may not correlate with SPEI but still affect
the remote sensing vegetation health products. This can help
explain the low correlation magnitudes with SPEI seen with
TCI and especially VCI at many pixels.

5. Conclusions

This study aimed to determine the typical response of the
remotely sensed VCI, TCI, and VHI products to different
lengths of meteorological drought globally and for crop-
lands, grasslands, and evergreen broadleaf forest ecosystems.
Through analyses of their correlation with the meteorolog-
ical drought indicator SPEI, differences in the response to
drought of different lengths between TCI and VCI were
found globally and for the different ecosystems. At the
global and ecosystem scales, we observed that TCI had its
strongest correlation with SPEI for shorter drought periods,
while VCI’s sensitivity was greater for longer droughts.
This may make TCI better suited for earlier-stage drought
monitoring, while VHI, the average of VCI and TCI, may
be the most suitable for monitoring the effects of long
droughts.
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[33] S. Begueŕıa, S. M. Vicente-Serrano, F. Reig, and B. Latorre,
“Standardized precipitation evapotranspiration index (SPEI)
revisited: parameter fitting, evapotranspiration models, tools,
datasets and drought monitoring,” International Journal of
Climatology, vol. 34, no. 10, pp. 3001–3023, 2014.

[34] Global SPEI database, 2016.
[35] F. Abramopoulos, C. Rosenzweig, and B. Choudhury, “Im-

proved ground hydrology calculations for Global Climate
Models (GCMs): soil water movement and evapotranspiration,”
Journal of Climate, vol. 1, no. 9, pp. 921–941, 1988.

[36] A. Grundstein, “Evaluation of climate change over the conti-
nental United States using a moisture index,” Climatic Change,
vol. 93, no. 1-2, pp. 103–115, 2009.

[37] C. D. Allen, D. D. Breshears, andN. G.McDowell, “On underes-
timation of global vulnerability to tree mortality and forest die-
off from hotter drought in the Anthropocene,” Ecosphere, vol. 6,
no. 8, article 129, 2015.

[38] N. B. Guttman, “Accepting the standardized precipitation index:
a calculation algorithm,” JAWRA Journal of the AmericanWater
Resources Association, vol. 35, no. 2, pp. 311–322, 1999.

[39] M. Turco, A. Ceglar, C. Prodhomme, A. Soret, A. Toreti, and J.
Doblas-Reyes Francisco, “Summer drought predictability over
Europe: empirical versus dynamical forecasts,” Environmental
Research Letters, vol. 12, no. 8, p. 084006, 2017.

[40] C. F. Dewes, I. Rangwala, J. J. Barsugli, M. T. Hobbins, and
S. Kumar, “Drought risk assessment under climate change
is sensitive to methodological choices for the estimation of
evaporative demand,” PLoS ONE, vol. 12, no. 3, Article ID
e0174045, 2017.

[41] NOAA, Vegetation Health Product: Algorithm Description, 41
NOAA. Vegetation health product, Algorithm description,
2016, http://www.ospo.noaa.gov/Products/land/vhp/algo.html.

[42] F. N. Kogan, “Application of vegetation index and brightness
temperature for drought detection,”Advances in Space Research,
vol. 15, no. 11, pp. 91–100, 1995.

[43] I. Harris, P. D. Jones, T. J. Osborn, and D. H. Lister, “Updated
high-resolution grids of monthly climatic observations—the
CRU TS3.10 Dataset,” International Journal of Climatology, vol.
34, no. 3, pp. 623–642, 2014.

[44] M. A. Friedl, D. K. McIver, J. C. F. Hodges et al., “Global land
cover mapping from MODIS: algorithms and early results,”

Remote Sensing of Environment, vol. 83, no. 1-2, pp. 287–302,
2002.

[45] C. O. Justice, J. R. G. Townshend, E. F. Vermote et al., “An
overview of MODIS Land data processing and product status,”
Remote Sensing of Environment, vol. 83, no. 1-2, pp. 3–15, 2002.

[46] D. C. Nepstad, C. R. De Carvalho, E. A. Davidson et al., “The
role of deep roots in the hydrological and carbon cycles of
Amazonian forests and pastures,” Nature, vol. 372, no. 6507, pp.
666–669, 1994.

[47] I. T. Baker, L. Prihodko, A. S. Denning, M. Goulden, S. Miller,
and H. R. Da Rocha, “Seasonal drought stress in the amazon:
reconciling models and observations,” Journal of Geophysical
Research: Biogeosciences, vol. 113, no. 1, 2008.

[48] S. Abbas, J. E. Nichol, F. M. Qamer, and J. Xu, “Characterization
of drought development through remote sensing: a case study
in Central Yunnan, China,” Remote Sensing, vol. 6, no. 6, pp.
4998–5018, 2014.

[49] J.-E. Lee, R. S. Oliveira, T. E. Dawson, and I. Fung, “Root func-
tioning modifies seasonal climate,” Proceedings of the National
Acadamy of Sciences of the United States of America, vol. 102, no.
49, pp. 17576–17581, 2005.

[50] D. Markewitz, S. Devine, E. A. Davidson, P. Brando, and D. C.
Nepstad, “Soil moisture depletion under simulated drought in
theAmazon: impacts on deep root uptake,”NewPhytologist, vol.
187, no. 3, pp. 592–607, 2010.

[51] Y. Fan and G. Miguez-Macho, “Potential groundwater contri-
bution to Amazon evapotranspiration,” Hydrology and Earth
System Sciences, vol. 14, no. 10, pp. 2039–2056, 2010.

[52] M. D. Vrettas and I. Y. Fung, “Sensitivity of transpiration to
subsurface properties: exploration with a 1-Dmodel,” Journal of
Advances inModeling Earth Systems, vol. 9, no. 2, pp. 1030–1045,
2017.

[53] K. Ichii, H. Hashimoto, M. A. White et al., “Constraining
rooting depths in tropical rainforests using satellite data and
ecosystem modeling for accurate simulation of gross primary
production seasonality,”GCB Bioenergy, vol. 13, no. 1, pp. 67–77,
2007.

[54] K. Ichii, W. Wang, H. Hashimoto et al., “Refinement of rooting
depths using satellite-based evapotranspiration seasonality for
ecosystem modeling in California,” Agricultural and Forest
Meteorology, vol. 149, no. 11, pp. 1907–1918, 2009.

[55] R. R. Nemani, C. D. Keeling, H. Hashimoto et al., “Climate-
driven increases in global terrestrial net primary production
from 1982 to 1999,” Science, vol. 300, no. 5625, pp. 1560–1563,
2003.

[56] N. Y. Krakauer and J. T. Randerson, “Do volcanic eruptions
enhance or diminish net primary production? Evidence from
tree rings,” Global Biogeochemical Cycles, vol. 17, no. 4, pp. 29-1,
2003.

[57] A. R. Huete, K. Didan, Y. E. Shimabukuro et al., “Amazon
rainforests green-up with sunlight in dry season,” Geophysical
Research Letters, vol. 33, no. 6, 2006.

[58] N. Y. Krakauer, B. I. Cook, andM. J. Puma, “Contribution of soil
moisture feedback to hydroclimatic variability,” Hydrology and
Earth System Sciences, vol. 14, no. 3, pp. 505–520, 2010.

[59] B. I. Cook, M. J. Puma, and N. Y. Krakauer, “Irrigation
induced surface cooling in the context of modern and increased
greenhouse gas forcing,” Climate Dynamics, vol. 37, no. 7-8, pp.
1587–1600, 2011.

[60] C. Yi, R. Li, J. Wolbeck et al., “Climate control of terrestrial
carbon exchange across biomes and continents,” Environmental
Research Letters, vol. 5, no. 3, Article ID 034007, 2010.

http://www.ospo.noaa.gov/Products/land/vhp/algo.html


10 Advances in Meteorology

[61] F. Kogan,W. Guo, andW. Yang, “SNPP/VIIRS vegetation health
to assess 500 California drought,” Geomatics, Natural Hazards
and Risk, pp. 1–13, 2017.

[62] J. Rockström, “Resilience building and water demand man-
agement for drought mitigation,” Physics and Chemistry of the
Earth, Parts A/B/C, vol. 28, no. 20–27, pp. 869–877, 2003.

[63] M. van der Velde, G. Wriedt, and F. Bouraoui, “Estimating
irrigation use and effects on maize yield during the 2003
heatwave in France,” Agriculture, Ecosystems & Environment,
vol. 135, no. 1-2, pp. 90–97, 2010.

[64] J. R. Kosgei, G. P.W. Jewitt, V.M. Kongo, and S. A. Lorentz, “The
influence of tillage on field scale water fluxes and maize yields
in semi-arid environments: a case study of Potshini catchment,
South Africa,” Physics and Chemistry of the Earth, vol. 32, no.
15-18, pp. 1117–1126, 2007.

[65] R. Lal, “Managing soil water to improve rainfed agriculture in
India,” Journal of Sustainable Agriculture, vol. 32, no. 1, pp. 51–75,
2008.

[66] J. I. L. Morison, N. R. Baker, P. M. Mullineaux, and W. J.
Davies, “Improvingwater use in crop production,” Philosophical
Transactions of the Royal Society B, vol. 363, no. 1491, pp. 639–
658, 2008.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mining

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 201

 International Journal of

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geochemistry
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mineralogy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Paleontology Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geology  
Advances in


