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1 Introduction

Phase 1 of the North American Multi-Model Ensemble 
(NMME) provides hindcasts and real-time predictions for 
monthly mean climate fields at lead times of up to a year 
(Kirtman et al. 2014). These global climate model (GCM) 
outputs can be useful in constructing improved seasonal 
forecasts. The goal of this paper is to apply and evaluate 
methods of constructing fully probabilistic monthly mean 
temperature forecasts using NMME predicted fields as an 
input.

Much of the skill of operational seasonal tempera-
ture forecasts is due simply to accounting for the anthro-
pogenic warming trend compared to a past climatology 
period (Krakauer et  al. 2013). Skillful forecasts can in 
fact be based on only a time series of past temperatures 
(which allows estimation of the warming magnitude), 
without any use of predictions from elaborate numerical 
climate models, such as those in NMME (Krakauer 2012; 
Krakauer and Devineni 2015). On the other hand, mis-
estimation of trends can degrade the quality of seasonal 
forecasts (Krakauer et al. 2013; Jia and Lin 2013). Initial 
analysis found that NMME models tended to underesti-
mate the frequency of warm departures from climatol-
ogy and overestimate the frequency of cold departures, 
suggesting that they may not fully account for warming 
over recent decades (Kirtman et  al. 2014). Regression-
based forecast methods can combine information from 
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numerical climate model predictions and empirical trend 
estimates based on past observation time series, and 
potentially outperform forecast methods that only use one 
or the other (Krakauer and Fekete 2014; Aizenman et al. 
2016). Where predictions from multiple climate models 
are available, as for NMME, the simplest approach is to 
take the multi-model average, which generally is found to 
outperform most of the contributing models taken indi-
vidually (Kirtman et al. 2014; Infanti and Kirtman 2014; 
Becker et  al. 2014; Louise Slater et  al. 2016). If differ-
ent models exhibit consistently different levels of skill, 
a weighted average may outperform a simple average 
(Johnson and Swinbank 2009; Knutti et al. 2010; Du and 
Zhou 2011; DelSole et al. 2013; Ma et al. 2016; Wanders 
and Wood 2016).

While overall measures of skill at temperature pre-
diction are useful in evaluating forecasts, it may be of 
particular interest to assess the performance of fore-
casts under cold or hot extremes, as well as where tem-
peratures were near-normal (Barnston and Mason 2011; 
Becker et  al. 2013). In recent decades, the frequency of 
record-cold conditions has decreased globally, while the 
frequency of record heat has increased sharply (Tebaldi 
et  al. 2006; Rahmstorf and Coumou 2011; Tingley and 
Huybers 2013; Donat et al. 2013; Coumou and Robinson 
2013; Matthes et al. 2015; Krakauer and Devineni 2015; 
Mishra et  al. 2015). Extended heat waves are a major 
hazard to health (Fouillet et  al. 2006; Sherwood and 
Huber 2010; Peng et  al. 2011) and agriculture (Valtorta 
2002; Zaitchik et  al. 2006; Velde et  al. 2010), so better 
prediction of them may enable large benefits. Ideally, a 
model ensemble-based seasonal forecast would capture 
this systematic change in the frequency of cold versus 
hot extremes, as well as some of the dynamic variability 
which modulates monthly temperatures in any particular 
year.

Given these considerations, the remainder of this paper 
is structured as follows. First, the model outputs and 
observations used, analysis methods, and software imple-
mentation are briefly described. Next, the magnitude of 
linear warming trends in an observation-based dataset is 
compared to that seen in NMME outputs, and NMME 
prediction correlations with observations are calculated 
with and without detrending. Then, the performance of 
several forecast methods based on combinations of his-
torical observations and either mean or differentially 
weighted NMME predictions is compared for forecasting 
monthly temperatures over recent years. The ability of 
the forecast methods to predict different ranges of tem-
peratures (near-normal levels vs. cold and hot extremes) 
is then examined. The concluding sections summarize the 
results and suggest directions for follow-up work.

2  Methods

2.1  Temperature data

Monthly mean surface air temperatures for 1957–2015 
were taken from the Berkeley Earth Land + Ocean data-
set (http://berkeleyearth.org/data/). This uses several times 
more station records compared to other gridded tempera-
ture data sets. The station records undergo automated tests 
for homogeneity and station-specific change points, and 
are weighted using geostatistics methods to produce spatial 
fields for each month (Rohde et al. 2013). The station data 
are used to estimate the temperature field over land and sea 
ice, while the temperature field over the ocean is based on 
the Hadley Centre sea surface temperature dataset (Rayner 
et al. 2003). Despite differences in station data and meth-
odology, large-scale temperature trends (global warming 
and decadal and interannual variability) in Berkeley Earth 
are broadly similar to those of other gridded compilations 
(Rohde et  al. 2013; Muller et  al. 2013). Temperatures are 
given as anomalies relative to the 1951–1980 average on a 
global 1◦   grid. These were here regridded to the different 
1◦  grid used by NMME.

2.2  Predictions from NMME models

NMME seasonal predictions (Kirtman et  al. 2014) have 
been produced since 2011, with participating climate mod-
eling groups initializing their simulations at the begin-
ning of each calendar month and the predicted fields pub-
licly available online at the IRI Data Library (Blumenthal 
et  al. 2014) on the 8th of the month. These forecasts are 
for monthly mean surface air temperature (among other 
variables) on a 1◦ latitude-longitude grid. Lag-0.5 forecasts 
are for the month at whose beginning they were initial-
ized, lag-1.5 forecasts are for the following month, and so 
forth. Additionally, the participating climate models have 
made available hindcasts initialized at the beginning of 
past months, going back about 30 years, to provide a longer 
period for evaluating forecast skill.

For the current work, hindcasts and predictions of tem-
peratures for each month in 1982–2015 were used. Proba-
bilistic forecasts were constructed and their skill evaluated 
only for the end of this period, 2012–2015, approximately 
beginning with the transition from hindcasts to real-time 
predictions in NMME.

Lags of 0.5–11.5 months and all GCMs with NMME 
hindcasts/predictions for most months since 1982 and con-
tinuing up to the present were considered. This criterion 
resulted in 9 GCMs selected: CMC1-CanCM3, CMC2-
CanCM4, COLA-RSMAS-CCSM3, COLA-RSMAS-
CCSM4, GFDL-CM2p1-aer04, GFDL-CM2p5-FLOR-
A06, GFDL-CM2p5-FLOR-B01, NASA-GMAO-062012, 
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NCEP-CFSv2. All ensemble members for each GCM were 
averaged to get a mean prediction for that GCM. Where 
a GCM prediction was missing for a particular month, its 
mean was imputed based on the means of the available 
GCMs offset by an amount corresponding to the mean dis-
crepancy between them and the target GCM in past years. 
Such a strategy for handling occasional missing values is 
needed in the operational setting, when predictions from 
any one GCM may fail to be uploaded in time to be usable 
in constructing a forecast. NASA-GMAO-062012 only pre-
dicted for lags up to 8.5 months and NCEP-CFSv2 up to 
9.5 months, so analyses at the longest lags exclude these 
models.

2.3  Evaluation of warming trends

The global warming trend was calculated for global-mean 
BEST monthly 1982–2015 temperature anomalies using 
simple linear regression. The warming trend was similarly 
calculated for NMME models for their 1982–2015 hind-
casts/predictions at each of the 12 lags. Correlation coef-
ficients between the NMME prediction and Berkeley Earth 
temperature time series for each calendar month and grid 
point before and after removing a linear trend were also 
computed, in order to assess how much of each NMME 
model’s skill at reproducing observed temperatures (at vari-
ous forecast lags) is due to the long-term warming trend, 
versus successful simulation of interannual variability.

2.4  Forecast methods

We choose a set of relatively simple forecast methods 
which include ones based only on previous observations, 
previously intercompared for hindcasts of station monthly 
temperatures (Krakauer and Devineni 2015), as well as 
ones that use NMME outputs in a linear regression, with 
or without differential model weights or trend adjustment.

Each method assumes that the yearly time series of tem-
perature at a given calendar month T(t) can be represented 
as the sum of an explainable component T̄(t) and a zero-
mean, normally distributed unexplainable component �(t). 
The difference between the fitted T̄(t) and the observed 
value over past years is used to estimate the variance of �(t) 
(Krakauer and Fekete 2014).

Using this framework, our goal was to estimate a proba-
bility distribution for T at a given year tf  given observations 
from previous years or NMME predictions. Each method 
generates a probability distribution for the temperature at 
each forecast month and grid point which has the form of a 
t distribution (Krakauer and Devineni 2015).

(1)T(t) = T̄(t) + 𝜖(t).

The observation-only statistical forecast methods are 
(see Krakauer and Devineni (2015) for more details):

–– C: Climatology. Forecast probability distributions are 
based on the mean and standard deviation of observed 
temperature over a fixed past period, here taken to be 
1981–2010.

–– MA: Moving average. Forecast probability distribu-
tions are based on the mean and standard deviation of 
observed temperature over the previous 30 years. For 
the evaluation period here, this period will only differ 
from 1981–2010 by a few years.

–– EW: Exponentially weighted moving average. Forecast 
probability distributions are based on the mean and 
standard deviation of observed temperature over recent 
decades (in this case, since 1957) but with more recent 
observations given greater weight (with an e-folding 
weighting timescale � of 15 years). These forecasts still 
have a cool bias, but this tends to be less than seen in 
C or MA forecasts because the forecast expectation is 
closer to the more recently observed values.

–– EW-a: Adjusted exponentially weighted moving aver-
age. This applies an additive offset to the EW fore-
cast expectation based on a smoothing spline fit to the 
global-mean observation time series, in an attempt to 
better capture the warming of recent years.

The forecast methods which use NMME predictions 
employ either the multi-GCM mean M̄ or the individual 
GCM means Mi for the target forecast month as well as for 
previous years (since 1982).

–– M: NMME-mean. Only a constant offset o from the 
multi-GCM NMME mean M̄ is estimated for each grid 
point, so the linear regression model is 

–– MT: NMME-mean with trend. The regression model 
includes a linear trend (determined for each fore-
cast month globally by linear regression over all grid 
cells) to allow for NMME models not reproducing the 
observed trend: 

–– MS: Scaled NMME-mean. The NMME mean is multi-
plied by a scale factor � (determined for each forecast 
month globally by linear regression over all grid cells) 
to allow for NMME tending to over- or under-predict 
the magnitude of temperature anomalies. 

–– MST: Scaled NMME-mean with trend. Both scaling 
and a trend are applied. 

(2)T̄(t) = o + M̄(t).

(3)T̄(t) = o + M̄(t) + 𝛼t.

(4)T̄(t) = o + 𝛽M̄(t).
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–– MM: NMME-multimodel. A linear combination of the 
individual NMME GCM means is used to allow for dif-
ferential GCM skill. The weights �i are determined for 
each forecast month globally, by linear regression over 
all grid cells. 

–– MMT: NMME-multimodel with trend. Same as MM, 
but with a globally determined linear trend added. 

Preliminary testing also considered methods in which 
the weights � or trend � were determined separately for 
each grid cell instead of globally, but, given the relatively 
short period available for parameter estimation, these 
tended to perform worse.

Each of the forecast-based methods is evaluated using 
NMME fields at each lag from 0.5 to 11.5 months. Since 
the 0.5-month lag predictions include the short-range 
weather forecast period, at which dynamic predictability is 
well known to be high, the analysis below focuses more on 
the relative performances of the various methods at the 1.5 
month and longer lags.

2.5  Forecast skill metrics

Given a temperature forecast for given month and loca-
tion as a probability distribution p(y) with expectation y∗ 
and corresponding verifying observation y,   a common 
deterministic forecast metric is mean square error (MSE, 
(y∗ − y)2 averaged across a set of forecasts with available 
verifying observations), or its square root (RMSE). MSE 
can be decomposed into bias and variance components 
(Krakauer and Devineni 2015). These deterministic metrics 
however are only sensitive to the forecast expectation, not 
the full probability distribution.

A probabilistic skill score is given by the mean negative 
log likelihood:

where p is the forecast probability distribution, y is the 
observation, and ⟨⋅⟩ denotes averaging across a set of fore-
cast-observation pairs. The NLL values for different fore-
cast methods have units of information (e.g. bits or nats, 
depending on the base of the logarithm taken – natural 
logarithms are used here) and can be related to the meth-
ods’ ability to reduce uncertainty in a decision-making 
framework. The difference between the NLL of a given 
forecast and than of some baseline forecast for the same set 

(5)T̄(t) = o + 𝛽M̄(t) + 𝛼t.

(6)T̄(t) = o +
∑

i

𝛽iMi(t).

(7)T̄(t) = o +
∑

i

𝛽iMi(t) + 𝛼t.

(8)NLL = ⟨− log p(y)⟩,

of observations gives the information gain of the forecast 
relative to the baseline:

where NLL0 is for the baseline forecast. If the forecast 
is more skillful than the baseline, IG is expected to be 
positive.

Another probabilistic skill score is the continuous 
ranked probability score (CRPS), the mean square dif-
ference between the observed and the forecast cumu-
lative distribution functions (Matheson and Winkler 
1976; Bradley and Schwartz 2011). Unlike NLL, this is 
non-local, in that its value is affected by the probabili-
ties given to all possible outcomes, not just the observed 
outcome (Tödter et al. 2011; Smith et al. 2015), and it is 
less sensitive to departures from forecast model assump-
tions such as normal distribution of the prediction error 
(Pieroth 2014). CRPS was computed using the analytic 
expression for its value given a forecast t distribution 
(Jordan et al. 2016).

Here, skill metrics are averaged across months and grid 
cells (weighted by grid cell area) to produce global skill 
measures. We primarily compare averages over land, since 
skillful prediction of over-land temperatures is of greater 
interest for many applications, and since temperature pre-
diction for the land surface, with its shorter thermal mem-
ory, is intrinsically more challenging than for the sea sur-
face. We also show some results averaged over the ocean 
for comparison. The same metrics could also be averaged 
for different spatiotemporal subsets in order to study, for 
example, whether the ranking of methods is consistent 
across regions, seasons, or special conditions such as El 
Niño events.

We can ask whether the finding of one forecast model 
having a better mean skill value (e.g. lower NLL) than 
another model is likely to be robust, or whether the dif-
ference is small enough that it does  not constitute strong 
evidence for one forecast performing consistently better 
for other forecast times. As a measure of significance, the t 
test can be applied to the time series of mean monthly dif-
ference in the skill metric between two models of interest, 
with the null hypothesis being that the expected value of 
the difference is equal to zero. To reduce false positives, the 
number of degrees of freedom in the t test is adjusted for 
temporal correlation using a formula based on the empiri-
cal lag-1 autocorrelation of the time series (Krakauer et al. 
2013; Aizenman et al. 2016). It is found that for this evalu-
ation period (2012–2015) and data, global land mean dif-
ferences in NLL between forecast methods typically needed 
to be at least 0.03 nats, and differences in RMSE at least 
0.03 K, to be significantly different from zero at the 95% 
level, though these thresholds varied somewhat depending 
on which methods were being compared.

(9)IG = NLL0 − NLL,
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2.6  Forecast skill by category

In addition to measures that average across all forecasts in a 
given time period, we can consider how well particular out-
come categories, such as extremely cold or hot conditions, 
are forecast. To do this, we derive from the temperature cli-
matology for each location and calendar month 100 equal-
probability categories (percentiles) based on the mean and 
standard deviation of 1981–2010 observations (and assum-
ing a normal distribution). Then we can compute the mean 
forecast probability for each category, both unconditional 
(averaging across all months) and conditional on the obser-
vation turning out to fall in that category. A climatology-
based forecast for 2012–2015 will give approximately 
equal probability to each category, even though, due to the 
warming trend, hot months (relative to climatology) were 
in fact much more common than cold months. The obser-
vation-based forecast methods that include an adjustment 
for the warming trend (such as EW-a) will forecast higher 
probabilities for the hotter categories, largely independent 
of the category that was observed. The NMME-based fore-
cast methods may forecast higher conditional probabilities 
than the unconditional average, assuming that they can cap-
ture interannually-varying factors that increase the likeli-
hood of, for example, hot and cold extremes.

2.7  Software implementation

The NMME models and observations were read and pro-
cessed and forecasts generated and evaluated using ver-
sion 0.0.6 of the SeFo package for the free programming 
environment Octave (Eaton 2012). SeFo includes modules 
downloading and reading past observations and model 
ensemble output; producing forecast probability distribu-
tions; and diagnosing the performance of specified methods 
over any desired available verification period. The software 
architecture is described elsewhere (Krakauer 2016). The 
commands used to generate all analyses and plots presented 
in this paper are included in this version of SeFo as the 
script file sefo_script_2016a.m.

3  Results

3.1  Warming trends and correlation with observations

The over-land linear warming trend in Berkeley Earth 
over 1982-2015 was 0.29 K/decade (regression nominal 
95% confidence interval: 0.26–0.32). The warming trend 
for the NMME multi-GCM mean over the same period 
at 0.5 months lead was lower, 0.22 (0.20–0.24) K/dec-
ade (Table 1). In fact, the NMME mean warming trend 
remained very similar at all lead times, with a range of 

only 0.213–0.226 K/decade (Fig.  1). This consistency 
however seems to be fortuitous, as different NMME 
models’ simulated warming rates changed with lead 
time, for example decreasing from 0.27 to 0.17 K/decade 
in CMC2-CanCM4 as the lead time increased from 0.5 
to 11.5 months, while increasing from 0.22 to 0.34 K/
decade in all 3 GFDL models. The models for the most 
part reproduced, for example, the cooling seen after the 
Pinatubo eruption in 1991 and warming during strong 
El Niño events in 1998 and 2015 (Fig. 2). NCEP-CFSv2 
had the largest warming rate (close to observations) at 
short lags, with the GFDL models surpassing it at longer 
lags (Fig.  1). Over the oceans, the observed warming 
was slower, 0.15 (0.14–0.16) K/decade, and the NMME 
mean trend was again slightly less than observed, 
0.117–0.134 K/decade depending on the lag.

COLA-RSMAS-CCSM3 was unique in having little 
warming trend at any forecast lead time. One contributor to 
this lack of warming was an unusual cold excursion of sev-
eral K in a number of COLA-RSMAS-CCSM3 runs initial-
ized toward the end of the study period (late 2014 and early 
2015), though even with these outlier months excluded 
COLA-RSMAS-CCSM3 showed very little warming com-
pared to observations (Fig. 2).

All the NMME climate models showed positive 
mean associations between their temperature predic-
tion time series and the Berkeley Earth observations over 
1982–2015. At all lags, the multimodel mean had a higher 
mean correlation with observations than any of the indi-
vidual models. Correlation strength averaged over land grid 
cells decreased with prediction lead time, from 0.58 for the 
multimodel mean (with a range of 0.14–0.56 for individual 

Table 1  Warming trends in surface air temperature over land for 
NMME forecasts, 1982–2015, at two different forecast lead times

Units are K/decade, ranges in parentheses are regression 95% confi-
dence intervals
 The warming rate based on observations (BEST) was 0.29 K/decade 
(0.26–0.32)

Model 0.5 month 1.5 month

CMC1-CanCM3 0.20 (0.17–0.23) 0.17 (0.15–0.19)
CMC2-CanCM4 0.27 (0.24–0.30) 0.25 (0.23–0.27)
COLA-RSMAS-CCSM3 0.03 (0.01–0.05) −0.02 (−0.05 to +0.02)
COLA-RSMAS-CCSM4 0.28 (0.25–0.31) 0.28 (0.26–0.31)
GFDL-CM2p1-aer04 0.22 (0.19–0.25) 0.24 (0.22–0.26)
GFDL-CM2p5-FLOR-

A06
0.22 (0.20–0.24) 0.24 (0.22–0.26)

GFDL-CM2p5-FLOR-
B01

0.22 (0.20–0.24) 0.23 (0.21–0.25)

NASA-GMAO-062012 0.24 (0.21–0.26) 0.24 (0.23–0.26)
NCEP-CFSv2 0.29 (0.27–0.32) 0.30 (0.28–0.31)
Mean 0.22 (0.20–0.24) 0.21 (0.20–0.23)
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models) at lag 0.5  to 0.37 (0.09–0.31) at lag 1.5 and 0.26 
(0.04–0.23) at lag 11.5 (Fig.  3a). Correlations remained 
positive after detrending and again were better for the mul-
timodel mean than for the individual models, going from 
0.54 (0.13–0.52) at lag 0.5 and 0.28 (0.10–0.22) at lag 
1.5 to 0.21 (0.02–0.11) at lag 11.5 (Fig. 3b). Out of the indi-
vidual NMME models, COLA-RSMAS-CCSM3 showed 

the worst performance (lowest mean correlation) at all lags. 
The best model (highest mean correlation) was NCEP-
CFSv2 for lags 0.5, 1.5 and 2.5 and varied between CMC2-
CanCM4, GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-
FLOR-B01, NASA-GMAO-062012 for different longer 
lags. Random permutation of the forecast years showed 
that mean correlations of 0.05 and above can be considered 

Fig. 1  Global (surface air 
temperature over land) warm-
ing rate of NMME model and 
multimodel mean temperature 
forecasts for 1982–2015, as a 
function of forecast lag. The 
warming rate based on observa-
tions (BEST) is also shown for 
reference
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to be significantly greater than 0. Over-ocean correlations 
showed a similar decrease with increasing forecast lag but 
were higher than land correlations, for example 0.57 for the 
multimodel mean (0.27–0.53 for individual models) for lag 
1.5 before detrending and 0.52 (0.28–0.48) after detrend-
ing. Unlike over land, the CMC models were the ones that 
had the highest correlations with observations in the first 
few lags.

3.2  Mean performance of forecast methods

Of the observation-only forecast methods, EW-a performed 
the best for 2012–2015 (lowest NLL and RMSE) and C 
the worst. C, MA, EW forecasts had a pronounced cool 
bias of 0.3–0.4 K, as these methods do not fully account 
for the warming seen in recent decades. This cool bias 

was reduced to under 0.1 K in EW-a, indicating the global 
mean warming trend was successfully estimated in the bias 
adjustment step (Table 2).

Depending on the lag, the best-performing NMME-
based forecast method (lowest NLL) was usually MM 
or MMT, i.e. applying optimal linear combination of the 
NMME models (with globally-constant weights), either 
with or without bias adjustment. The difference between 
these two methods in NLL was not significant at any lag. 
These also had lowest RMSE. The trend term in MT, MST,

MMT resulted in smaller cool biases compared to the mod-
els without this term, consistent with the underestimation 
of the observed warming trend by the NMME ensemble 
average that was found above. Even without the trend term, 
however, NMME-based forecasts had a much smaller bias 
than for example the climatology forecast C, reflecting 
the ability of the NMME ensemble to capture the major-
ity of the observed warming amount. As expected, for each 
NMME-based method, forecast performance degraded 
(NLL and RMSE rose) as the NMME prediction lead time 
increased (longer lags; Fig. 4).

Comparing the observation-based and NMME-based 
forecast performance, at lag 1.5 all the NMME-based 
methods performed better than the best observation-based 
method EW-a in terms of land RMSE, NLL, and CRPS 
(Table 2), though the differences in NLL and RMSE were 
not statistically significant. As longer forecast lags, the 
performance of the NMME-based methods deteriorated, 
though the MST and MMT methods gave lower mean NLL 
than EW-a up to lag 6.5 (Fig. 4). Only at the shortest lag, 
0.5 months, did the NMME-based methods significantly 
outperform EW-a. On the other hand, over ocean, NMME-
based methods outperformed observation-based methods 
more convincingly, with all NMME-based methods having 
significantly lower NLL than EW-a at lags 1.5 (Table  3) 
and 2.5, and MMT having lower NLL than EW-a even at 
lag 11.5 (Fig. 5).

It is possible to map mean performance measures in 
order to offer additional insight, though given the relatively 
short verification period, too much should not be read into 
the detailed spatial patterns. As an example, Fig. 6 shows 
the distribution of information gain for MMT (at lag 1.5) 
relative to EW-a (i.e. NLLEW-a− NLLMMT). Positive infor-
mation gain from the NMME-based forecast is most pro-
nounced near the Equator, particularly in ocean areas such 
as the eastern Pacific and parts of the Atlantic. Given the 
geographic origin of the NMME models, it is encourag-
ing that the information gain is positive in much of North 
America, with the noteworthy exception of the southeast 
United States, as well as Central America. For many land 
areas the information gain is near zero, suggesting little 
added skill from the NMME-based forecast. The infor-
mation gain is negative over much of Antarctica (an area 
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where both observations and climate model simulations 
may be weak), which hurts the land average performance 
for MMT and the other NMME-based methods.
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Fig. 4  a Negative log likelihood for forecasts of surface air tem-
peratures over land, 2012–2015, using NMME predictions at differ-
ent lags. The performance of the EW-a method, which does not use 
any NMME predictions, is shown as a horizontal line. b Root mean 
square error
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Fig. 5  Same as Fig. 4, but averaged over ocean

Table 3  Skill measures as in Table 2, but averaged over ocean

Method NLL RMSE Bias CRPS

C 1.057 0.915 −0.253 0.4251
MA 1.017 0.893 −0.225 0.4134
EW 0.998 0.872 −0.204 0.4050
EW-a 0.944 0.848 +0.029 0.3902
M 0.795 0.755 −0.050 0.3374
MT 0.793 0.755 −0.003 0.3373
MS 0.795 0.754 −0.071 0.3371
MST 0.788 0.753 +0.001 0.3360
MM 0.766 0.749 −0.036 0.3321
MMT 0.769 0.749 +0.017 0.3330

Table 2  Skill measures for temperature forecast methods, 2012–
2015, averaged over land, with lag-1.5 month NMME predictions 
used as inputs

NLL mean negative log likelihood of observation (nats), RMSE root 
mean square error of forecast expectation (K), bias mean bias of fore-
cast expectation (K); CRPS continuous ranked probability score (K)

Method NLL RMSE Bias CRPS

C 1.614 1.682 −0.413 0.8088
MA 1.584 1.667 −0.363 0.7950
EW 1.558 1.655 −0.318 0.7849
EW-a 1.497 1.627 −0.085 0.7597
M 1.479 1.587 −0.057 0.7409
MT 1.477 1.587 −0.011 0.7405
MS 1.475 1.585 −0.094 0.7397
MST 1.468 1.583 −0.026 0.7373
MM 1.471 1.585 −0.058 0.7386
MMT 1.466 1.584 −0.005 0.7370
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3.3  Forecast performance by temperature departure 
category

Due to warming, observations for 2012–2015 showed 
low frequencies for the cold categories defined by the 
1981–2010 climatology and high frequencies for the hot 
categories, whereas in a stationary climate the observations 
would be expected to be roughly equally distributed across 
categories. In fact, over land, observations in the hottest 
percentile were over 6 times as common as observations in 
the coldest percentile (3.49 versus 0.57%). The EW-a fore-
cast is able to reproduce the observed asymmetry, whereas 
C, MA, EW forecast too-high probabilities for cold catego-
ries and too-low probabilities for hot categories (Fig. 7a). 
The NMME-based methods all more or less reproduced the 
asymmetry between categories (Fig. 7b).

Considering now the mean forecast probabilities of the 
category actually observed, even the observation-based 
methods were able to increase these relative to the uncon-
ditional probabilities, presumably by identifying spatial and 
seasonal differences in the warming trend that made warm 
extremes more likely, but the NMME methods (at least at 
reasonably short lags, such as 1.5 months) did better, show-
ing that the NMME models’ dynamic skill is useful for 
predicting hot and cold extremes, particularly the former, 
at seasonal lead times. For example, at lag 1.5 the MMT 
mean probability of the hottest percentile (3.49% of obser-
vations) went from 3.64% for all forecasts to 16.86% when 
this category was actually observed, while the mean prob-
ability of the coldest category (0.57% of observations) went 
from 0.62% for all forecasts to 1.40% when this category 
was actually observed (Fig. 8a). By contrast, for EW-a the 
increases were from 2.86 to 4.91 and 0.64 to 1.57%, so 
showing less skill at forecasting extremely hot conditions 

(Table 4). Considering the mean logarithm of the forecast 
probability (as used in the NLL skill score), which is more 
sensitive to forecasts of small probabilities, shows enhanced 
dynamic skill (conditional minus unconditional score) in 
MMT for both hot and cold extremes, whereas when condi-
tions are closer to the climatology period median, dynamic 
skill is small (Fig.  8b). When MMT forecasts are catego-
rized by the climatological absolute temperature, we see 
that forecast skill under all percentile outcomes, including 
the hot extremes, is greater in hot regions and seasons com-
pared to cold ones (Fig. 8c), consistent with positive infor-
mation gain for MMT over EW-a being seen more in the 
tropics compared to high latitudes (Fig.  6). Nevertheless, 
the pattern of greater dynamic skill for extreme outcomes 
compared to near-median ones is seen across the range of 
climatological temperatures (Fig. 8c).

0.4

0 100 200 300

-50

0

50

-0.4

-0.2

0

0.2

Fig. 6  Mean information gain (nats) of MMT over EW-a temperature 
forecast

0 20 40 60 80 100
0

1

2

3

Climatology percentile

M
e
a
n
 
p
r
o
b
a
b
i
l
i
t
y
 
(
%
)

C

MA

EW

EW-a

obs

0 20 40 60 80 100
0

1

2

3

4

Climatology percentile

M
e
a
n
 
p
r
o
b
a
b
i
l
i
t
y
 
(
%
)

M

MT

MS

MST

MM

MMT

obs

(a)

(b)

Fig. 7  a Mean probabilities of each climatology percentile of surface 
air temperature being forecast for the various observation-only (no 
NMME output) forecast methods. The observed frequency of each 
percentile is also shown. b Same, for the various forecast methods 
including NMME output (predictions at 1.5 month lag)



7210 N. Y. Krakauer 

1 3

4  Discussion

Similar to findings for purely statistical prediction of 
monthly station temperatures (Krakauer and Devineni 
2015), it was found here for gridded temperatures that 
global adjustment of climatology for the warming trend, 
as implemented in method EW-a, gives good calibration 
(low bias) and reduced variance (lower RMSE) compared 
to methods that do not fully factor in the ongoing warming, 
like MA and EW. Here, this work is extended to compare 
such statistical forecasts with forecasts that use the NMME 
dynamic climate model outputs at various lead times. This 
results in clear improvements in performance at forecast-
ing temperatures over ocean. However, over land, the 
simple NMME-based methods tried only result in clearly 
improved forecasts for the shortest lag, 0.5 months, which 
includes the short-range weather forecast period.

The hindcast/prediction series of most of the NMME 
models shows a warming trend, but the models’ warming is 
mostly weaker than observed. Empirical adjustment for this 
underestimation of warming, as in the MT, MST, MMT, 
generally reduces bias but does not always improve forecast 
performance (as measured by NLL or RMSE), presum-
ably because this underestimation is not strong enough or 
consistent enough to be accurately extrapolated given the 
number of available hindcast/prediction years. The NMME 
models’ ability to capture temperature variability is not 
solely due to the warming trend, but also reflects skill at 
representing interannual climate variability such as that due 
to El Niño events. Comparing the NMME models’ global 
temperature series to observations can serve to point out 
needs for improvement in model structure or initialization, 
as illustrated by the lack of warming and cold excursions 
seen for COLA-RSMAS-CCSM3.

Forecasts with differential climate model weighting 
(MM, MMT) tended to perform slightly better than a sim-
ple average of NMME models. Note that the weights were 
chosen using regression over all past hindcast and fore-
cast years and hence could not respond quickly to large 
excursions seen in COLA-RSMAS-CCSM3 in part of the 
2012-2015 evaluation period, which would have affected 
NMME-based forecast performance. Automated quality 
control checks might be useful for flagging outlier climate 
model outputs in an operational seasonal forecast system, 
with criteria perhaps based on the amount of deviation 
from previous years’ or other climate models’ simulations.

Averaging the forecast probability distributions from 
different methods (Ariely et al. 2000; Kim and Swanson 
2014; Moral-Benito 2015) could be considered as a way 
of potentially combining the strengths of each method, 
as already tried in the seasonal weather forecasting con-
text (Krishnamurti et  al. 1999; Casanova and Ahrens 
2009; Wang et al. 2012; Hawthorne et al. 2013; Dutton 
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et al. 2013; Ma et al. 2016). Given the statistically simi-
lar skill scores of the best-performing methods, simple 
averaging may lead to better results than Bayesian model 
averaging, where forecast weights must be estimated 
from scarce previous data (Claeskens et  al. 2016). The 
presence of statistically significant correlation between 
observed and NMME-modeled temperatures over both 
land and ocean at even the longest lag suggests that there 
may be scope to use more sophisticated methods than 
those evaluated here to produce more skillful seasonal 
probabilistic forecasts.

The forecasts show the most conditional skill for tem-
peratures that are extreme relative to the 1981–2010 
climatology, with NMME-based methods being particu-
larly good at forecasting hot extremes (Fig. 8). For thin-
tailed distributions like the normal and t,   it is expected 
that a shift in the mean or variance due to information 
from climate models would proportionally have the most 
impact on probabilities of extreme events. It is also pos-
sible that hot extremes are more likely to involve pre-
dictable dynamics, such as surface albedo and soil mois-
ture feedbacks (Zaitchik et al. 2007; Fischer et al. 2007; 
Zampieri et  al. 2009; Weisheimer et  al. 2011; Hirschi 
et al. 2011; Vogel et al. 2017). Given the growing impor-
tance to human health and agriculture of, particularly, 
hot extremes (Valtorta 2002; Tebaldi et  al. 2006; Sher-
wood and Huber 2010; Jentsch et al. 2011; Mishra et al. 
2015), this property may make NMME-based tempera-
ture forecasts even more useful than average skill scores 
like NLL and RMSE imply.

5  Conclusions

Several simple methods are developed and evaluated for 
forecasting monthly temperatures up to a year in advance 
based on either unweighted or weighted NMME outputs. 
It is found that these methods produce forecast tempera-
ture probability distributions that are appropriately shifted 
toward the warm end of past experience and also show skill 
at representing interannual variability. Seasonal forecasts 
may be particularly useful for giving early warning of heat 
waves, given their societal significance and the higher con-
ditional skill for those conditions.
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