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Highlights 

• Post-2015 regime shift in the Gulf of Guinea reveals ocean mass gain as the dominant sea-

level rise driver, surpassing steric effects. 

• GRACE data show localized ocean mass accumulation exceeding 10 mm yr⁻¹ due to 

intensified river discharge and estuarine retention. 

• Wind pattern reorganization weakened Rossby wave reflection at the eastern boundary, 

enhancing coastal water mass convergence. 

• Global SLR models may underestimate 20–45% of the future rise in tropical deltas by 

neglecting land-based manometric contributions. 

Abstract 

The Gulf of Guinea is experiencing accelerated sea-level rise (SLR), with localized rates exceeding 

10 mm yr⁻¹, more than twice the global average. Integrated analysis of GRACE/FO ocean mass data, 

reanalysis products, and machine learning reveals a fundamental regime shift in the regional sea-

level budget after 2015. Ocean mass increase, primarily driven by intensified terrestrial hydrological 

discharge, accounts for over 60% of observed SLR near major riverine outlets, indicating a transition 

from steric to barystatic-manometric dominance. This transition aligns with increased monsoonal 

precipitation, wind-driven changes in equatorial wave dynamics, and coupled Atlantic-Pacific 

climate variability. Piecewise regression identifies a significant 2015 breakpoint, with mean coastal 

SLR rates rising from 2.93 ± 0.1 to 5.4 ± 0.25 mm yr⁻¹. GRACE data show extreme mass accumulation 

(>10 mm yr⁻¹) along the eastern Gulf coast, strongly linked to elevated river discharge and estuarine 

retention. Physical analysis indicates that intensified wind stress curl has altered Rossby wave 

dispersion, enhancing zonal water mass convergence. Random Forest modeling attributes 16% of 

extreme SLR variance to terrestrial runoff, close to wind stress’s 19%, highlighting underestimated 

land-ocean coupling. Current global climate models underrepresent these manometric 

contributions by 20–45%, causing critical biases in projections for high-runoff regions. The societal 

impact is severe, with over 400 km² of urban land in Lagos and Abidjan at risk of inundation by 

2050. These findings expose a hybrid steric-manometric regime in the Gulf of Guinea, challenging 

existing paradigms and indicating similar dynamics may affect tropical margins globally. This calls 

for urgent model recalibration and tailored regional adaptation strategies. 

Keywords: sea level rise; Gulf of Guinea; ocean mass redistribution; terrestrial hydrology; climate 

teleconnections 
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1. Introduction 

Sea-level rise (SLR) represents one of the most consequential and spatially heterogeneous 

impacts of climate change, with global mean sea level (GMSL) increasing by approximately 20 cm 

since 1900, a trend that has accelerated by over 60% since 1990 (Dangendorf et al., 2019). While GMSL 

provides a planetary-scale benchmark, regional deviations from this average often prove more 

critical for coastal adaptation, particularly in low-lying regions where dynamic oceanic and 

hydrological processes contribute to the local rates (Oppenheimer et al., 2019). The Gulf of Guinea 

(GoG), a densely populated tropical Atlantic basin spanning 12 West African nations (Figure 1), 

illustrates this disparity: recent altimetry data reveal localized coastal SLR rates exceeding 10 

mm/year, more than double the global mean, yet the precise mechanisms driving this acceleration 

remain unresolved. This knowledge gap impedes evidence-based adaptation for a region where over 

30 million people face escalating risks of permanent inundation, saltwater intrusion, and climate-

driven displacement (IPCC, 2023). 

 

Figure 1. Bathymetric map of the Gulf of Guinea based on the GEBCO 15-arc-second global dataset 

(https://www.gebco.net), showing seafloor depths >10 m. Major surface currents influencing regional ocean 

dynamics are overlaid. National boundaries and labels provide geographic context. 

Regional SLR is governed by a complex interplay of steric (thermal expansion, salinity changes) 

and mass-related contributions (barystatic, manometric), exhibiting distinct spatial signatures. In the 

GoG, the interplay is further modulated by its equatorial location and position across both 

hemispheres, subjecting it to a mix of equatorial and off-equatorial forcings. The basin is influenced 

by five major currents, the Canary, Guinea, South Equatorial, Equatorial Counter, and Benguela 

currents (Figure 1), which regulate thermohaline structure and regional circulation. Its narrow 

continental shelf (~100 km) amplifies the coastal trapping of dynamic sea-level anomalies (Longhurst, 

1974). Superimposed on these physical drivers, rapid coastal urbanization, especially in megacities 

such as Lagos and Abidjan, expanding at 3–5% annually, has sharply increased regional vulnerability 

to rising seas (Aman et al., 2019). Despite this clear vulnerability, the current understanding of GoG 

sea-level variability remains fragmented across traditional research boundaries. Previous studies 

have examined steric effects (Ayinde et al., 2023; Ghomsi et al., 2024), equatorial Kelvin wave 

dynamics (Dieng et al., 2021), and climate teleconnections (Evadzi et al., 2019) in isolation, without 

developing a unified framework that captures their interactions. Most critically, the potential role of 

ocean mass redistribution (OMR), particularly from local mass inputs such as terrestrial runoff, has 

been largely neglected in regional sea-level assessments, despite the GoG’s extensive river systems 

and changing precipitation regimes. This knowledge gap is particularly concerning given the region’s 
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recent acceleration in sea-level rise rates, the physical drivers of which remain poorly understood and 

underexamined in the literature. 

This study addresses that gap using an integrated, multi-platform framework. We combine three 

decades of satellite altimetry (1993-2023), GRACE/GRACE-FO ocean mass data, capturing both 

barystatic (global) and manometric (local) mass contributions, reanalysis products, and machine 

learning to examine the drivers of accelerating sea-level trends in the GoG. We aim to quantify the 

relative contributions of steric and mass components, identify the mechanisms underlying the 

observed post-2015 acceleration, and determine whether this shift reflects a fundamental change in 

the regional sea-level budget. We specifically evaluate how wind stress curl, monsoonal runoff, and 

Atlantic–Pacific climate teleconnections interact to modulate sea level in the region. Using relevant 

statistical and machine learning methods, we assess the spatial and temporal evolution of forcing 

mechanisms and their predictive significance. A central question is whether current global models—

designed around steric dominance—adequately capture the land-ocean-atmosphere coupling now 

emerging in tropical coastal systems. 

By addressing these objectives, this study establishes a unified, process-based framework for 

understanding sea-level rise in the Gulf of Guinea. The approach applies to other low-lying tropical 

regions experiencing rapid coastal changes that deviate from global trends. The findings enhance 

understanding of the evolving nature of sea-level change in the region and provide a scientific basis 

for future projections and coastal risk assessments. Given the socio-economic and environmental 

vulnerability of West African coastal zones, the results hold relevance for informing climate 

adaptation strategies and coastal protection planning. This aligns with the IPCC AR6 

recommendation for regionally specific, mechanistic assessments to improve adaptation responses to 

accelerating sea-level risks (Fox-Kemper et al., 2021). 

2. Data and Methods 

The primary dataset used in the study is the monthly sea level anomaly SLA (1993–2023) 

obtained from CMEMS (product: SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047). This 

dataset integrates multi-mission altimetry observations with corrections for tides, atmospheric 

pressure, and instrumental biases. Gridded at 1/12°, the SLA field includes coastal and open-ocean 

signals. Thermosteric and halosteric components of SLA were derived from EN4 (Good et al., 2013) 

and CMEMS subsurface data using 0–2000 m profiles of temperature and salinity. These components 

isolate contributions from thermal expansion and salinity-driven density changes, respectively. 

Ocean Heat Content (OHC) was computed over the same depth. Glacial isostatic adjustment (GIA) 

corrections were applied using the ICE-6G_C (VM5a) model (Peltier et al., 2015). To quantify mass-

related contributions, GRACE and GRACE-FO mascon solutions (CSR RL06, 1° × 1° resolution) were 

used to derive ocean bottom pressure and steric-adjusted mass change from 2002–2023 

(https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACGRFO_MASCON_CRI_GRID_RL06_V2). Ocean 

surface forcing variables include wind speed, sea surface temperature (SST), mean sea level pressure 

(MSLP), precipitation, evaporation, and runoff from ERA5 and NCEP/NCAR Reanalysis. 

2.1. Decomposition of Sea Level Signal 

The spatial linear trends of SLA were computed at each grid point using the OLS regression 

method. The regression equation used to determine the linear trend at a given grid point is given by: 

SLA (t) =  βo + β1t + εt (1) 

Where SLA(t) is the sea level anomaly at time t, β𝑜 is the intercept, β1is the regression coefficient 

representing the linear trend, and ε𝑡is the residual term. To test the statistical significance of these 

trends, the non-parametric MK trend test was employed at a 99% confidence level (Mann, 1945; 

Kendall, 1975). The MK test evaluates whether a monotonic trend exists in the time series by 

computing the test statistic S: 
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𝑆 =  ∑ ∑ 𝑠𝑔𝑛(𝑆𝐿𝐴𝑗 − 𝑆𝐿𝐴𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ,     (2) 

where 𝑠𝑔𝑛(𝑆𝐿𝐴𝑗 − 𝑆𝐿𝐴𝑖) is defined as:   

𝑠𝑔𝑛(𝑆𝐿𝐴𝑗 − 𝑆𝐿𝐴𝑖)  = {
+1 𝑖𝑓 𝑆𝐿𝐴𝑗 − 𝑆𝐿𝐴𝑖 > 0, 0, 𝑖𝑓 𝑆𝐿𝐴𝑗 − 𝑆𝐿𝐴𝑖 =  0

−1 𝑖𝑓 𝑆𝐿𝐴𝑗 − 𝑆𝐿𝐴 < 0
 

The magnitude of the trends was estimated using the Theil-Sen slope estimator (Theil, 1950; Sen, 

1968), which computes the median of all possible pairwise slopes: 

β = median𝑓(𝑥) = (
𝑆𝐿𝐴𝑗−𝑆𝐿𝐴𝑖

𝑗−𝑖
) , ∀𝑖<𝑗.      (3)   

This approach is less sensitive to outliers and provides a reliable estimate of the trend magnitude 

and direction. 

The interannual variability was isolated by extracting monthly mean SLA values across the 

study domain. The climatological mean was removed from the time series to eliminate seasonal 

effects, and the data were detrended to focus on interannual fluctuations. A 13-month running mean 

was applied as a low-pass filter to smooth out short-term noise, enabling a clearer focus on long-term 

patterns.: 

𝑆𝐿𝐴𝑡
′ =  𝑆𝐿𝐴𝑡 −  

1

𝑁
∑ 𝑆𝐿𝐴𝑖

𝑁
𝑖=1 − 𝑡𝑟𝑒𝑛𝑑,     (4)   

where 𝑆𝐿𝐴𝑡
′  is the deseasonalized SLA, 𝑆𝐿𝐴𝑡 is the actual SLA, 𝑆𝐿𝐴𝑖 is the climatological mean and 

N represents the number of years in the dataset. This filtering method isolates interannual variations 

by smoothing out short-term fluctuations (Iler et al., 2017). 

The seasonal signal was extracted by averaging SLA values for each month across the record at 

every grid point: 

𝑆𝐿𝐴𝑚𝑚 =  
1

𝑁
∑ 𝑆𝐿𝐴𝑚𝑚,𝑖

𝑁
𝑖=1       (5) 

where 𝑆𝐿𝐴𝑚𝑚 is the seasonal mean for month mm, 𝑆𝐿𝐴𝑚𝑚,𝑖 represents SLA for month mm in year 

i, and N is the number of years. Furthermore, a basin-wide seasonal signal was extracted by averaging 

the SLA over the entire study region for each month. 

2.2. Spatiotemporal and Frequency Analysis of SLA 

EOF analysis decomposed the SLA dataset into dominant spatial patterns EOFs and their 

corresponding temporal principal components (PCs), reducing dimensionality while identifying key 

variability modes (Lorenz, 1956). The SLA field X was reconstructed as:  

𝑥 =  ∑ 𝐸𝑂𝐹𝑘  ×  𝑃𝐶𝐾
𝐾
𝐾−1 ,       (6) 

where EOFₖ represents the k-th spatial pattern, PCₖ is its corresponding time series, and K is the 

number of retained modes. The orthogonal EOFs and uncorrelated PCs ensure distinct separation of 

variability modes. Following covariance matrix decomposition into eigenvectors and eigenvalues, 

we analyzed the first few modes that explained most variance for their temporal evolution and spatial 

coherence. We assess the statistical significance of the explained variance between epochs by 

conducting a bootstrapping procedure. We resampled the SLA anomalies 1,000 times with 

replacement and performed EOF decomposition on each resampled dataset. The explained variance 

for each mode was computed per realization, yielding empirical distributions from which 95% 

confidence intervals were derived. This approach follows the framework of North et al. (1982) and 

von Storch and Zwiers (1999), accounting for sampling variability and temporal correlation in SLA 

fields. 

We assessed SLA fluctuation persistence using autocorrelation analysis. The lag-k 

autocorrelation function is: 

𝛒 =  
∑ (𝑺𝑳𝑨(𝐭)−𝑺𝑳𝑨′)(𝑺𝑳𝑨(𝒕+𝒌)−𝑺𝑳𝑨′)𝒏−𝒌

𝒕=𝟏

∑ (𝑺𝑳𝑨(𝒕)−𝑺𝑳𝑨′)𝟐𝒏
𝒕=𝟏

 ,    (7) 
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where μ is the mean SLA. The significance was tested using Monte Carlo simulations of red-noise 

series with matching variance and spectrum. This reveals SLA temporal memory and potential 

periodicities by quantifying current-past value relationships. 

The frequency characteristics of SLA were investigated using Power Spectral Density (PSD) 

analysis to identify periodic components. PSD was estimated using Welch’s method: 

P (f) =
1

𝑁
|∑ SLAte

−i2πftT−1
t=0 |

2
,    (8) 

where P(f) is the spectral power at frequency f, and T is the number of time steps. This method 

highlights cyclic patterns such as seasonal and interannual oscillations, offering insight into the 

dominant frequencies driving SLA variability. 

2.3. Nonlinear Modeling and Machine Learning of SLA 

Nonlinear variations in SLA were modeled using Generalized Additive Mixed Models 

(GAMMs). These models extend generalized linear frameworks by incorporating smooth functions 

of predictor variables, allowing for flexible temporal modeling without assuming a predefined shape. 

The model is expressed as: 

𝑆𝐿𝐴 (𝑡) =  𝛼 + ∑ fi
p
j−1 (𝑥𝑗(𝑡)) +  ε(t),   (9) 

Where fᵢ are smooth functions of predictors xⱼ(t), and ε(t) represents the residual error. This structure 

enables the model to capture complex temporal dynamics in SLA. 

Random Forest Regression (RFR), a supervised machine learning technique, was used to 

quantify the nonlinear relationships between SLA and its environmental drivers in the GoG. The RFR 

model was trained on environmental datasets preprocessed using a 13-month running mean and 

detrending approach. This removed long-term climate variability and enhanced the model’s ability 

to capture shorter-term fluctuations in SLA. The input features included TSLA, HSLA, ocean heat 

content (OHC), wind stress curl (WSC), net heat flux (NHF), precipitation, evaporation, freshwater 

runoff, and atmospheric pressure. Data were split into training and testing sets using an 80:20 ratio. 

A Grid Search method was applied to optimize the hyperparameters and improve model 

performance, reducing overfitting risk. Once trained, the model learned the underlying relationships 

and variable interactions driving SLA. Variable importance was assessed using the Mean Decrease 

in Impurity (MDI) metric. MDI ranks the influence of each predictor by measuring its contribution to 

impurity reduction across decision trees, highlighting the dominant environmental drivers of SLA in 

the GoG. 

2.4. Ocean Mass Change and Regional Sea Level Budget Closure 

GRACE-FO Level-3 (L3) gridded mass concentration (mascon) data from NASA’s Jet Propulsion 

Laboratory (JPL), specifically the RL06 mascon solution, was used to assess ocean mass change in the 

Gulf of Guinea. This dataset offers high temporal resolution and improved signal accuracy, enabling 

detailed monitoring of regional mass anomalies. We isolated oceanic signals by applying an ocean 

mask during preprocessing to remove land-based mass variations. GIA corrections were applied 

using the ICE-6G_C (VM5a) model (Peltier et al., 2015) to account for post-glacial crustal rebound. 

Further corrections addressed degree-1 (geocenter motion) and degree-2 (Earth’s flattening) spherical 

harmonic terms, which are typically under-constrained in GRACE-derived estimates (Swenson et al., 

2008). Ocean mass variations were derived by converting mascon data into equivalent water height 

(EWH) using a scaling factor that links mass anomalies to sea-level change (Wahr et al., 1998). The 

regional EWH time series was extracted and filtered to reduce noise. Long-term trends in ocean mass 

change were quantified using OLS regression. Spatial trends were similarly derived at each grid point 

to map mass change distributions across the study area. 

To ensure a closed regional sea-level budget, the geocentric sea-level (RSL) components were 

reconciled from 2002 to 2023 based on: 
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𝑅𝑆𝐿𝑡𝑜𝑡𝑎𝑙 −  𝑅𝑆𝐿𝐺𝐼𝐴  =  𝑅𝑆𝐿𝑆𝐷 +  𝑅𝑆𝐿𝑂𝑀𝑅  + 𝑅𝑆𝐿𝑅𝑒𝑠 ,   (10) 

where 𝑅𝑆𝐿𝑡𝑜𝑡𝑎𝑙 is the observed regional sea-level change, 𝑅𝑆𝐿𝐺𝐼𝐴 is the contribution from glacial 

isostatic adjustment, 𝑅𝑆𝐿𝑆𝐷  represents the sterodynamic component (thermosteric + halosteric), 

𝑅𝑆𝐿𝑂𝑀𝑅  reflects ocean mass redistribution, and 𝑅𝑆𝐿𝑅𝑒𝑠  captures residual terms, VLM, and other 

unmodeled effects. This framework enables sea level budget closure over the GRACE/GRACE-FO 

period and improves understanding of the physical drivers influencing SLR in the GoG. We 

quantified the ocean mass contribution to SLR by comparing GRACE-derived mass anomalies with 

contemporaneous altimetry data. The percentage was calculated as (ΔMass/ΔSLR) × 100, where 

ΔMass and ΔSLR represent 13-month running means. Model biases were assessed by differencing 

CMIP6 ensemble-mean projections from observations. Random Forest feature importance was 

normalized to sum to 100% across all predictors. 

3. Results 

3.1. Temporal Trends and Physical Attribution 

Satellite altimetry analysis reveals a marked acceleration in SLR across the Gulf of Guinea. 

Piecewise linear regression applied to monthly sea level anomalies identifies a statistically significant 

breakpoint in 2015 (Figure 2a). Before this breakpoint (1993–2014), the regional trend averaged 2.93 ± 

0.10 mm/year, below the global mean of 3.3 ± 0.3 mm/year (Chen et al., 2017). Following 2015, the rate 

increased sharply to 5.4 ± 0.25 mm/year, exceeding the concurrent global trend of 4.3 mm/year 

(AVISO, https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-

level.html). The full-period linear trend from 1993 to 2023 yields a mean rate of 3.82 ± 0.34 mm/year, 

consistent with the range of 3.47 to 3.89 ± 0.10 mm/year reported for 1993–2021 by Ghomsi et al. (2024) 

in the region, and confirming the presence of a recent acceleration phase (Figure 2b). This trend aligns 

with broader global patterns but shows enhanced regional variability. Component decomposition 

(Figure 2c) illustrates a shift in the dominant contributors to SLR. From 1993 to 2023, sterodynamic 

processes, primarily thermosteric, contributed an average of 1.24 ± 0.10 mm/year. During the early 

period of GRACE measurements (pre-2007), the steric trend was higher, measured at 1.71 ± 0.20 

mm/year, accounting for approximately 65% of the total sea-level rise. This trend subsequently 

slowed, approaching zero, and remained nearly stagnant for eight years before peaking in 2015. 

Between 2002 and 2023, thermosteric contributions increased slightly to 1.36 ± 0.28 mm/year, while 

halosteric effects added 0.21 ± 0.13 mm/year. In contrast, the OMR component exhibited a significant 

increase. GRACE/GRACE-FO mascon solutions estimate an OMR contribution of 1.92 ± 0.42 mm/year 

between 2002 and 2023, exceeding the regional steric contribution over the same interval. This 

estimate closely aligns with but remains slightly below the 2.6 mm/year value reported by McGirr et 

al. for the same region and period (2002–2023). The residual term, accounting for vertical land motion 

(VLM) and other unmodeled signals, explained approximately 0.53 mm/year. 
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Figure 2. The temporal heterogeneity in the rate of sea level rise, derived from gridded CMEMS satellite 

altimetry data, showing a notable shift in the rate of increase from 1993–2014 to 2015–2023 (a); the long-term 

temporal evolution of regional sea level rise (red) is presented alongside its dominant contributing components: 

ocean mass redistribution (OMR) derived from GRACE-FO data (2002–2023) (blue) and sterodynamic sea level 

change (1993–2023) (green) (b). All components are smoothed using a 3-year moving average filter. 

The GAMM model fitted to the deseasonalized SLA time series from 1993 to 2023, using a B-

spline basis, effectively captures the low-frequency structure of the trend while preserving high-

frequency variability in the observed data (Figure 2a). The model identifies distinct nonlinear phases, 

including a sustained negative anomaly during the 1990s, near-zero anomalies around 2008, and a 

pronounced acceleration in sea level rise following 2015, indicating a significant shift in the long-term 

SLA trajectory. This nonlinear characteristic of SLA reflects temporally heterogeneous drivers, with 

dominant factors varying over time. The post-2015 inflection coincides with enhanced wind stress 

curl variability, supporting the interpretation of a dynamical transition in regional sea-level drivers. 

Model residuals (Figure 3b) exhibit a symmetric, near-normal distribution with no apparent 

skewness or kurtosis. The absence of autocorrelation or heteroscedasticity indicates that the GAMM 

effectively isolates the deterministic trend, leaving residuals consistent with stochastic variability. 

Temporal diagnostics further support the presence of structured variability. The autocorrelation 

function (ACF; Figure 4a) shows significant persistence at 12-, 24-, and 36-month lags, indicating 

seasonal and triennial memory. The first-lag autocorrelation exceeds 0.9, confirming strong internal 

continuity in SLA dynamics. These patterns suggest modulation by both seasonal and interannual 

forcing. The power spectral density (PSD; Figure 4b) quantifies periodic components. A dominant 

annual peak—marked by a sharp spectral spike—reflects dynamic steric and mass-driven changes 

associated with regional hydrodynamic cycles. The sub-annual spectral peak and its adjacent trough 

indicate the presence of sub-seasonal oscillatory forcing, characterized by distinct high- and low-

frequency components associated with ENSO variability and the West African Monsoon (WAM). The 

intervening spectral slope follows a red-noise pattern, reflecting integrative system dynamics 

consistent with oceanic memory effects that modulate intra-annual sea level variability. The final 

spectral peak, marked by a green dashed line near the decadal band (~10 years), suggests the presence 

of low-frequency variability such as the Atlantic Multidecadal Oscillation (AMO) embedded within 

the regional sea level signal. 
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Figure 3. The observed the observed SLA (blue line) with the fitted trend using B-spline smoothing (red line) 

from the Generalized Additive Mixed Model (GAMM) (a); the residual distribution from the model, represented 

as a histogram (sky blue) with an overlaid kernel density estimate (KDE) curve, highlighting the residual pattern 

(b). 

 

Figure 4. The autocorrelation function (ACF) of mean SLA values over 40 monthly lags highlights significant 

peaks at 12, 24, and 36 months (red-blue arrows). The black dashed line represents zero autocorrelation, while 

the red dashed lines denote the 95% confidence interval. The gradual decay of autocorrelation values indicates 

the persistence of temporal correlations (a). The Power Spectral Density (PSD) of SLA shows variance 

distribution across log-scaled periods (x-axis, in years) and PSD values (y-axis). Log-period scaling, following 

oceanographic convention, enhances resolution of seasonal to decadal variability and highlights dominant 

climate modes (b). 

3.2. Spatial Disaggregation and Forcing Shifts 

Spatial trends in sea level and its components, based on OLS regression analysis, reveal notable 

differences between the pre- and post-2015 periods (Figure 5). During 1993–2014, sea-level rise 

exhibited a coherent spatial pattern, with moderate increases of approximately 2.7 mm/year across 

the equatorial Atlantic (Figure 5 a-c). Enhanced trends were observed toward the western Gulf of 
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Guinea, particularly near the Bight of Benin and along the Cameroonian coast, where values reached 

up to 3.8 mm/year. OMR contributions remained relatively low along the immediate coastline (~1.0 

mm/year) but increased offshore (~2.5 mm/year), suggesting barystatic dominance during this 

period. The sterodynamic component exhibited a meridional gradient, with values rising from 

approximately 1.0 mm/year in the southern basin to 3.0 mm/year along the northern shelf. 

 

Figure 5. Linear sea level trends derived from the ordinary least squares (OLS) method, illustrating spatial 

variability across the Gulf of Guinea. (a) OMR trend (2002–2023), highlighting its strong influence in the southern 

basin. (b) Sterodynamic sea level change (1993–2023), showing its dominance in the northern Gulf. (c) Sea level 

anomaly (SLA) trend (1993–2023) reveals variability and rapid acceleration along the northern basin. (d–f) Recent 

linear trends for 2015–2023: (d) OMR, (e) sterodynamic sea level, and (f) SLA, which exceeds the global mean 

sea level (GSML). 

In contrast, from 2015 to 2023, SLR in the Gulf of Guinea intensified and became more spatially 

heterogeneous (Figure 5d-f). Localized coastal SLR rates reached ~10 mm/year along the eastern 

coasts (particularly off Cameroon/Equatorial Guinea), contrasting with offshore rates <5 mm/year. 

This increase reflects stronger contributions from both mass and steric components. OMR trends 

revealed a spatial reorganization, marking a transition from earlier barystatic dominance to emerging 

manometric control. Significant positive values were observed along the Niger Delta, Bight of Benin, 

and Gabon coasts, indicating increased coastal mass accumulation. This pattern likely results from 

elevated runoff or shifts in regional circulation. Sterodynamic trends became more uniformly 

distributed than in the earlier period but showed higher values along the same eastern coastal 

corridor, ranging from 4.0 to 6.0 mm/year. This steric intensification implies stronger thermal 

expansion and potential coupling with mass-driven processes. The spatial coincidence of elevated 

OMR and sterodynamic trends after 2015 indicates increased coupling between terrestrial 

hydrological input and oceanic processes, contributing to the observed recent increase in sea-level 

rise in the GoG. 

The EOF analysis of SLA reveals consistent spatial patterns in the leading three modes for 1993–

2014 and 2015–2023, with notable shifts in explained variance (Figure 6a–b). Between 1993 and 2014, 

EOF1 explained 56.76% of the total variance and captured a dominant eastward-propagating SLA 

signal from the equatorial Atlantic into the Gulf of Guinea, driven by equatorial Kelvin waves (EKWs) 

transitioning into coastal trapped waves (CTWs) upon shelf interaction, leading to elevated sea levels 

at the coast. EOF2 (18.58%) exhibited an equatorial westward-propagating reflected Rossby wave 
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(RRW) structure associated with coastal sea-level depression and enhanced SLA in both hemispheres, 

influenced by regional current dynamics. EOF3 (11.27%) displayed a dipolar structure centered off 

the equatorial coast and the southern Gulf of Guinea, consistent with the spatial signature of AMOC 

variability. 

 

Figure 6. The first three leading Empirical Orthogonal Function (EOF) modes of interannual SLA variability in 

the Gulf of Guinea (GoG) highlight dynamic sea level changes over two distinct periods. (a) EOF modes for 

1993–2014, explaining 57%, 19%, and 11% of the total variance, respectively. (b) EOF modes for 2015–2023, 

capturing 59%, 16%, and 12% of the variance, respectively. (c) The trend and correlation between the principal 

component of the third EOF mode (PC3) and the Atlantic Meridional Overturning Circulation (AMOC) index 

(1993-2021). (d) The corresponding bottom bar plots include 95% confidence intervals derived from 1,000 

bootstrap resamples, quantifying uncertainty in the variance estimates. 

During 2015–2023, the three leading EOF modes retained their spatial structures, indicating 

persistence of the underlying dynamical processes. EOF1 (57.95%) preserved its coastal-dominant 

pattern, with enhanced coherence along the central Gulf of Guinea, suggesting a more organized 

large-scale coastal response. EOF2 (16.09%) also retained its RRW-like structure but exhibited a 

statistically significant decline in explained variance compared to the earlier period (16.31%). This 

change was evaluated using 1,000 bootstrap realizations, which yielded non-overlapping 95% 

confidence intervals: [15.42%, 16.95%] for 1993–2014 and [12.87%, 14.83%] for 2015–2023 (Figure 6d). 

The separation between these intervals confirms that the ~2.7 percentage point reduction in explained 

variance is statistically significant. This decline suggests a weakening of the RRW’s contribution to 
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sea-level variability, consistent with reduced offshore transport and diminished coastal sea-level 

depression. Since RRWs typically push water away from the coast, their reduced variability during 

the later period implies weaker offshore flux, which would favor local SLA amplification. The 

persistence of the RRW-like structure despite reduced explained variance indicates continued activity 

of the mechanism with diminished energy contribution. This attenuation likely reflects a 

reorganization of equatorial wind stress, with increasingly zonal and coastward orientation (Figure 

10a1–a2), suppressing westward RRW propagation. Concurrent modifications in wave–mean flow 

interactions and reduced thermocline tilting may have further limited basin-scale adjustment 

processes, leading to a weaker dynamical imprint on interannual SLA variability. EOF3 (11.64%) 

remained structurally similar, but with a more pronounced off-equatorial signal in the southeastern 

basin, potentially linked to evolving large-scale forcing. The strengthening of EOF1 and concurrent 

weakening of EOF2 during 2015–2023 coincide with the observed regional sea-level rise, indicating 

that reduced interannual offshore energy export via RRW dynamics may have contributed to the 

sustained coastal SLA increase in the Gulf of Guinea. 

The physical drivers of the leading EOF modes were resolved through combined spectral and 

Hovmöller analyses of equatorial SLA variability. The 2D power spectrum revealed a dominant 

westward-propagating Rossby wave signal with a 60-day periodicity (0.0167 cycles/day) and a 30° 

wavelength, consistent with first baroclinic-mode dynamics (Figure 7a). This spectral signature was 

contextualized using two complementary Hovmöller representations: detrended SLA (±5°N) 

captured eastward-propagating Kelvin waves at theoretical phase speeds of 2.8 m/s, phase-locked 

with major El Niño events (Figure 7b), while raw SLA (±2°N) resolved the full amplitude of the 

subsequent westward-propagating Rossby waves (~0.6 m/s) generated via boundary reflection 

(Figure 7c). The tandem diagnostics show how equatorial Atlantic Kelvin waves, evident in the 

processed Hovmöller plots during ENSO events (1997–1998, 2009–2010, 2019–2020), reflect into 

Rossby waves that dominate EOF2’s intraseasonal variability and spatial pattern, particularly 

between 5°W and 10°E. These wind-forced wave dynamics operate alongside slower AMOC-related 

influences (r = 0.51 with the AMOC index, p < 0.01 in PC3 of EOF3) (Figure 6c), demonstrating that 

regional SLA variability results from the superposition of fast equatorial wave adjustments and 

thermohaline-driven mass redistribution across timescales. Although earlier studies have attributed 

SLA variability in the Gulf of Guinea to equatorial Kelvin wave propagation (Guiavarc’h et al., 2009; 

Wiafe & Nyadjro, 2015; Ayinde et al., 2023; Ghomsi et al., 2024) and to AMOC-related forcing in the 

broader Atlantic basin (Bouttes et al., 2014; Chafik et al., 2019), to the best of our knowledge, no study 

has explicitly linked westward-propagating Rossby waves to SLA variability in the Gulf of Guinea. 
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Figure 7. (a) Two-dimensional power spectral density of SLA along the equatorial band (5°S–5°N), derived from 

Fast Fourier Transform (FFT) analysis. The left panel shows log-scaled spectral power as a function of frequency 

(cycles/day) and zonal wavenumber (cycles/degree); the right panel isolates westward-propagating signals 

(negative wavenumbers, k < 0). The red marker highlights the dominant mode with a 59.9-day period and ~30° 

wavelength, consistent with first-mode equatorial Rossby wave dynamics. (b) Hovmöller diagram of equatorial 

SLA showing eastward-propagating features. Horizontal dashed lines indicate the theoretical phase speed (2.8 

m/s) of first-mode baroclinic Kelvin waves. (c) Hovmöller diagram emphasizing westward-propagating SLA 

signals. Diagonal trajectories align with the spectral mode identified in (a), supporting the presence of Rossby 

wave activity across the equatorial Atlantic. 

The RFR model precisely reconstructs SLA variability from 1993 to 2023, capturing both 

interannual peaks and low-frequency trends with high skill (Figure 8a). Model predictions closely 

track observed SLA, yielding R² = 0.97 with minimal residual error, demonstrating strong temporal 

generalization. Feature importance analysis (Figure 8b) highlights surface currents and WSC as 

dominant predictors, contributing 21% and 19%, respectively. Hydrological drivers such as terrestrial 

runoff (16%) and evaporation (11%) also exert a substantial influence. Thermal variables, including 

TSLA, NHF, and HSLA, contribute less than 10% each. The dominance of dynamical features aligns 

with the physical mechanisms identified in EOF modes 1 and 2, reflecting the influence of EKWs, 

CTWs, and RRWs on SLA variability. Runoff acts as a significant regional driver of coastal SLA 

variability, especially along segments influenced by spatially coherent rainfall patterns and major 

river discharges. 

 

Figure 8. The comparison between the observed SLA (solid blue line) and the predicted SLA (dashed orange 

line) is derived using a Random Forest Regression (RFR) model with forcing variables as predictors. It also 

presents the feature importance of the RFR model, displayed as a horizontal bar chart, illustrating the magnitude 

of the contribution of each predictor to the model. Adapted from Ayinde et al., 2023. 

EOF decomposition of atmospheric forcing fields reveals a structural reorganization between 

the early (1993–2014) and recent (2015–2023) epochs (Figure 9). During 1993–2014, eastward-

propagating zonal wind anomalies dominated, with amplitude diminishing toward the eastern basin, 

favoring EKW generation. Post-2015, zonal wind anomalies intensified and expanded spatially across 

the equatorial belt while maintaining their fundamental dynamical symmetry (Figure 9a2). 

Concurrently, precipitation shifted from a meridionally diffuse to an equatorially concentrated 

pattern (Figure 9b1–b2). Statistical analysis confirms the primary influence of zonal wind stress (PC1) 

and runoff on SLA variability (r = 0.69 and r = 0.63, respectively). Precipitation shows a moderate, 

episodic correlation with SLA (r = 0.51), reflecting a secondary mechanistic role. Although 
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precipitation’s direct association with SLA is moderate, its influence operates both locally through 

immediate runoff and upstream via catchment discharge, rendering it an effective proxy for the 

basin-integrated hydrological flux that modulates coastal sea-level variability. Lagged correlations 

reveal distinct response timescales: SLA anomalies lag wind PC1 by 2–4 months (peak r ≈ 0.45), 

consistent with ocean adjustment through baroclinic wave dynamics, whereas precipitation–SLA 

coupling peaks at zero lag (r ≈ 0.57), indicating an immediate hydrological response (Figure 9c). 

 

Figure 9. First empirical orthogonal function (EOF1) modes of zonal wind stress and precipitation over the Gulf 

of Guinea, shown separately for two periods: (a1–a2) Zonal wind EOF1 spatial patterns for 1993–2014 and 2015–

2023; (b1–b2) Precipitation EOF1 spatial patterns for 1993–2014 and 2015–2023. (c) Normalized time series of 

PC1 for wind and precipitation, alongside total runoff, compared with regional SLA anomalies over 1993–2023. 

(d) Cross-correlation functions between SLA and wind PC1 (blue), and SLA and precipitation PC1 (green), 

showing leading-lagging relationships. 

Linear trends in wind speed and direction reveal a clear atmospheric shift between 1993–2014 

and 2015–2023 (Figures 10a1–a2). The earlier period featured modest offshore wind strengthening, 

dominated by meridional flow and weak divergence along the northern coast. After 2015, winds 

intensified zonally along the eastern Gulf of Guinea, with stronger equatorward and eastward 

components indicating large-scale circulation changes. This reorganization aligns with the emerging 

SLA pattern along the eastern margin, where strengthened zonal wind stress opposes RRW 

propagation. The resulting water mass convergence drives accelerated coastal sea-level rise, 

consistent with observed post-2015 SLA trends (Figures 5d, 6b, and 10a2). 

Precipitation trends show contrasting patterns between epochs. From 1993–2014 (Figure 10b1), 

rainfall anomalies were weak and spatially incoherent. In 2015–2023 (Figure 10b2), a pronounced 

wetting trend exceeding +6 mm/year emerges along the eastern coast, including the Niger Delta, 

Bight of Benin, and coastal Cameroon. This regional intensification coincides with enhanced wind 

convergence zones (Figures 10a2 and b2) and rising sea levels (Figure 5d), suggesting links to 

monsoonal strengthening or a southward shift of the Intertropical Convergence Zone (ITCZ). 

Seasonal WSC variability clarifies these dynamics (Figure 10c). DJF exhibits weak cyclonic anomalies, 

indicating a quiescent wind regime with minimal upwelling. MAM shows moderate negative curl 

anomalies west of Nigeria, favoring downwelling conditions. JJA is marked by strong positive curl 

anomalies between 5°S and the equator, driving Ekman divergence and reinforcing coastal 

upwelling; this pattern persists, though weaker, into SON. These seasonal WSC patterns align with 
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previously documented upwelling cycles in the region (Adamec and O’Brien 1978; Verstraete 1992), 

underscoring the tightly coupled ocean-atmosphere interactions that regulate sea-level variability 

and marine productivity in the Gulf of Guinea. 

 

Figure 10. Linear trends in surface wind and precipitation over the Gulf of Guinea during two periods: (a1–a2) 

Wind vector magnitude and direction trends for 1993–2014 and 2015–2023; (b1–b2) Precipitation trends for 1993–

2014 and 2015–2023. Red boxes indicate regions of statistically significant change, highlighting zones of recent 

intensification in atmospheric dynamics. (c) Cross-correlation functions between SLA and wind PC1 (blue), and 

SLA and precipitation PC1 (green), showing lagged responses and temporal coupling with sea-level variability. 

3.3. Climate Variability and Regional Teleconnections 

3.3.1. Seasonal SLA Variability and Hydroclimatic Forcing 

Seasonal variability in SLA across the GoG reflects a tightly coupled response to regional 

hydroclimatic forcing. Composite SLA–precipitation fields for DJF, MAM, JJA, and SON (Figure 11a–

b) highlight distinct seasonal patterns that correspond with shifts in atmospheric dynamics and 

freshwater flux. SON exhibits the strongest positive SLA anomalies along the northern coastal 

margin, coinciding with peak rainfall in the region. This alignment indicates a strong coupling 

between SLA and the West African Monsoon (WAM) system during late boreal summer to early 

autumn (Thorncroft et al, 2011; Vellinga et al., 2013). During JJA, the northward migration of the ITCZ 

intensifies southwesterly low-level winds, which drive increased precipitation over coastal West 
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Africa. Enhanced freshwater input from direct precipitation, fluvial discharge, and catchment runoff 

raises local sea levels through ocean mass loading and dynamic adjustment. During SON, sustained 

rainfall, river overflow, and reduced soil infiltration—resulting from antecedent soil moisture 

saturation—maintain elevated runoff, reinforcing coastal SLAs. This cumulative hydrological forcing 

sustains high SLA anomalies into the late monsoon season, with sea levels along the coast. 

 

Figure 11. Spatial trends in seasonal variability of (a) sea level anomaly (SLA) and (b) precipitation across the 

Gulf of Guinea from 1993 to 2023, derived from monthly mean values at each grid point. The panels reveal strong 

seasonal heterogeneity between the northern and southern sub-basins. Red boxes indicate zones of pronounced 

SLA and rainfall divergence, reflecting spatially distinct ocean–atmosphere interactions across the basin. 

To assess the relative contributions of thermohaline and mass-driven processes to regional SLA, 

spatial correlations were computed between SLA and its two dominant components—sterodynamic 

height (combined steric and dynamic) and OMR—across two epochs: 1993–2014 and 2015–2023. 

During 1993–2014, SLA showed a strong correlation with sterodynamic height (r ≈ 0.7) throughout 

the equatorial and northern GoG (Figure 12a1). This spatial pattern matches the leading mode of SLA 

variability captured in EOF1 (Figure 6a–b), dominated by eastward-propagating equatorial Kelvin 

waves (EKW) and associated steric effects. The coherence reflects a basin-scale dynamical regime in 

which wave adjustment redistributes subsurface heat and modulates density structure. Concurrent 

SLA–OMR correlations ranged from r = 0.4–0.6 and were broadly distributed across the basin (Figure 

12b1). Although weaker than the steric signal, the OMR pattern follows the same zonal structure as 

the EKW pathway, suggesting complementary hydrological modulation. 
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Figure 12. Spatial Pearson correlation between SLA and sterodynamic components for (a1) 1993–2014 and (a2) 

2015–2023, and between SLA and OMR for (b1) 1993–2014 and (b2) 2015–2023. 

The post-2015 period marks a structural shift in SLA forcing. SLA–sterodynamic correlations 

weaken basin-wide, indicating diminished steric influence (Figure 12a2). In contrast, SLA–OMR 

correlations intensify, particularly in coastal and estuarine zones of the eastern GoG, most notably 

near the Niger Delta, Bight of Benin, and southern Cameroon. Offshore correlations decline, reflecting 

a spatial decoupling between large-scale ocean dynamics and coastal SLA variability (Figure 12b2). 

This transition signals a shift toward nearshore dominance, where enhanced precipitation and 

terrestrial runoff exert stronger control on SLA via localized mass loading. The amplification of OMR 

influence coincides with post-2015 atmospheric changes: intensified zonal wind stress, low-level 

convergence, and elevated rainfall (Figures 5f, 9a2, 10a2, and b2). These conditions favor regional 

water mass accumulation and dynamic convergence, displacing the earlier steric-driven regime. 

3.3.2. ENSO and AMO Teleconnections 

Sea level anomalies in the GoG are strongly modulated by large-scale climate modes, 

particularly ENSO and the AMO (Figure 13). The Oceanic Niño Index (ONI) reveals that major El 

Niño events (e.g., 2020–2023) coincide with elevated SLA in the northern GoG, peaking during boreal 

spring and autumn (Figure 13a). This response stems from a well-established teleconnection: positive 

SST anomalies in the equatorial Pacific weaken the Atlantic zonal SST gradient, displacing the ITCZ 

southward and enhancing rainfall and runoff over the GoG. The combined effect of freshwater input 

and wind-driven steric adjustments modulates SLA, producing seasonal maxima in April in the 

southern GoG and November in the northern GoG. These peaks primarily result from the lagged 

response to cumulative freshwater input, enhanced upper-ocean stratification, and fluvial discharge 

maxima. 
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Figure 13. Time series of the Atlantic Niño Index (ONI) from 1993 to 2023, representing the sea surface 

temperature anomaly in the Atlantic Ocean region (5°S to 5°N, 30°W to 10°W), positive values indicate Niño 

conditions (red shading), while negative values correspond to Niña conditions (blue shading). The dashed red 

and blue lines represent threshold values for Niño and Niña events, respectively (a); Monthly time series of the 

ONI. Positive values (shown in red) represent Niño conditions, while negative values (shown in blue) 

correspond to Niña conditions. The red dashed lines at 0.5, 1.0, and 1.5 denote weak, moderate, and strong Niño 

thresholds, respectively, while the blue dashed lines at -0.5, -1.0, and -1.5 indicate weak, moderate, and strong 

Niña conditions (b); Monthly time series of the SLA along the northern basin with positive anomalies (shown in 

red) indicate regions of higher-than-average sea level, while negative anomalies (shown in blue) represent lower-

than-average sea level (c); and along the southern basin (d). 

Hydrological amplification is most pronounced in coastal zones with narrow shelves (e.g., Niger 

Delta, Bight of Benin), where saturated soils and dense river networks exacerbate runoff during El 

Niño. Conversely, La Niña phases suppress convection and SLA through cooler SSTs, strengthened 

easterlies, and reduced precipitation. This asymmetry underscores the nonlinearity of ENSO–SLA 

interactions, with El Niño generating larger, spatially coherent anomalies compared to La Niña’s 

weaker, diffuse signals (Figures 13b–d). Seasonal SLA patterns further reflect these dynamics, with 

March–May (southern GoG) and September–November (northern GoG) maxima aligning with 

ENSO-driven hydroclimatic forcing. 

The AMO introduces a low-frequency modulation of SLA by altering North Atlantic SSTs, 

thereby affecting ITCZ position and WAM intensity (Figure 13f). Positive AMO phases, observed 

during 1993–2003 and 2018–2023, correspond with higher SLA in the GoG. These intervals align with 

strengthened WAM activity, increased moisture flux, and elevated runoff. In contrast, the intervening 

cool AMO phase (2005–2017) coincides with depressed SLA, weaker monsoon circulation, and 

reduced freshwater inflow. The SLA response to AMO operates through both steric and barotropic 
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pathways, with long-term SST anomalies modulating wind stress, rainfall, and upper-ocean 

stratification across the tropical Atlantic. The co-occurrence of warm ENSO and AMO phases post-

2015 contributed to record-high SLA anomalies in the GoG. This constructive interference illustrates 

the compounding effects of multiscale climate drivers, wherein interannual ENSO pulses are 

superimposed on the multidecadal AMO background. These compound forcing regimes contribute 

to SLA variability through synergistic effects on rainfall, runoff, wind stress, and stratification. 

 

Figure 14. (a) Global mean sea-level (GMSL) projections under SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission 

scenarios based on IPCC AR6, illustrating the spread of median and upper-bound trajectories through 2100. (b) 

Vulnerability map of the Gulf of Guinea, indicating major coastal cities (red circles), oil infrastructure (green 

rectangles), and key fishery zones (blue triangles). (c) Coastal inundation in fishing communities, leading to land 

loss, cultural disruption, and inland migration along the Gulf of Guinea (Image credit: DW/Martina 

Schwikowski, 2022). (d) Artisanal fishing along the Gulf of Guinea coastline, a livelihood increasingly at risk 

from sea-level rise and coastal degradation (Image credit: Lagos State Government). 

4. Discussion and Conclusion 

The Gulf of Guinea has emerged as a hotspot of accelerated SLR, with satellite altimetry 

indicating a significant increase (p < 0.01) in the regional trend from 2.93 ± 0.1 mm yr⁻¹ (1993–2014) to 

5.4 ± 0.25 mm yr⁻¹ (2015–2023). This shift reflects a transition from steric-dominated variability to a 

hybrid steric–manometric regime, where ocean mass redistribution now dominates the regional sea-

level budget. GRACE/GRACE-FO data show an increase in mass contributions from 42 ± 4% to 58 ± 

5% since 2015. Localized mass loading exceeds 10 mm yr⁻¹ near the Niger Delta and Cameroon coast, 

aligning with intensified precipitation over adjacent catchments. Post-2015 rainfall trends exceed 6 

mm yr⁻¹, sustaining soil moisture saturation and enhancing terrestrial freshwater discharge. The GoG 

was recently identified as the global maximum in ocean mass increase driven by continental 

hydrology (McGirr et al., 2024). 

The transition to mass-dominated sea-level rise has been facilitated by a reorganization of 

regional atmospheric circulation. ERA5 reanalysis shows a marked intensification of zonal winds (18 

± 4% increase in wind stress) and the development of a cyclonic wind stress curl anomaly in the 

eastern Gulf, which together have modified coastal dynamics through three primary mechanisms: (1) 

enhanced equatorial convergence suppressing offshore Ekman transport, (2) altered reflection 

characteristics of equatorial waves at the eastern boundary, and (3) increased downwelling-favorable 
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winds along the northern coastline. These changes have substantially disrupted the basin’s 

waveguide dynamics. Whereas the pre-2015 regime was characterized by coherent propagation of 

eastward Kelvin waves transitioning to coastal trapped waves and reflected Rossby waves, the post-

2015 period shows reduced thermocline tilting, decreased Rossby wave speeds, and diminished 

coherence between equatorial and coastal sea-level anomalies. 

The wind stress anomalies are partly linked to large-scale modes, including a strengthening 

WAM and changes in equatorial easterlies, which further modulate nearshore wind stress curl and 

wave reflection characteristics. These adjustments in wind fields represent key couplings between 

tropical atmospheric variability and regional ocean dynamics. Rainfall–runoff timing has also 

enhanced terrestrial-ocean coupling. The seasonal overlap between peak river discharge and elevated 

nearshore wave energy or stratification reinforces coastal mass accumulation and density-driven 

circulation. This phase alignment strengthens the nonlinear interaction between surface forcing and 

boundary dynamics, amplifying sea-level variability near deltas and estuarine systems. 

Interannual climate variability interacts with these local processes to generate nonlinear sea-

level responses. Strong El Niño events elevate regional sea level through coupled steric and 

manometric mechanisms, atmospheric teleconnections enhance coastal precipitation (increasing 

mass input), while equatorial wind anomalies disrupt wave propagation. The 2022–2023 El Niño, 

coinciding with a warm AMO phase, produced the largest sea-level excursion of the altimetry era via 

this mechanism. On decadal scales, AMO modulates the background state—warm phases (1993–

2003, 2018–present) intensify precipitation responses to ENSO events and strengthen WAM 

circulation, creating sustained mass-loading conditions. 

Current climate models underestimate these regional sea-level responses, especially the 

terrestrial–marine coupling. CMIP6 ensemble members show a 20–45% underestimation of mass 

contributions (Slangen et al., 2017; Meyssignac et al., 2017), due to coarse coastal resolution and 

simplified land hydrology schemes. These biases compromise projections of regional sea-level 

change, particularly as anthropogenic warming intensifies the hydrological cycle and modifies 

tropical wave dynamics. Key uncertainties remain in isolating the relative roles of internal variability 

versus anthropogenic forcing in driving observed circulation shifts, and in assessing whether similar 

steric-to-mass transitions are occurring in other tropical marginal seas. Addressing these gaps 

requires enhanced observing systems to resolve interactions between terrestrial hydrology, coastal 

oceanography, and atmospheric dynamics, alongside regional climate models that explicitly couple 

land, ocean, and atmosphere. The Gulf of Guinea’s unique sea-level regime, shaped by both large-

scale climate variability and regional hydrological processes, offers a critical testbed for improving 

understanding of coastal sea-level budgets under a changing climate. 
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