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9 Abstract

10

11 Drought poses significant threats to the Himalayan region, but comprehensive assessments 

12 incorporating meteorological, agricultural, and ecological dimensions are scarce. This work uses 

13 30 years of observational and satellite data (1995-2024) to provide a multidimensional drought 

14 analysis for the Karnali River Basin in western Nepal. We created standardized drought indices 

15 based on ground station precipitation records, ERA5 reanalysis data, and MODIS NDVI products. 

16 Principal component analysis was used to develop composite meteorological and agricultural 

17 drought indices, for a more comprehensive assessment of drought propagation across domains. 

18 Long-term trends show large drops in precipitation (especially SPI12) and soil moisture during 

19 pre-monsoon and winter periods. However, there is a modest greening trend (+12% over 25 years). 

20 Spatial analysis shows mountainous regions as drought hotspots, with frequency surpassing 12%, 

21 whereas the Terai lowlands are more resilient. The temporal study found that vegetation responses 

22 lag soil moisture anomalies by about a month, indicating physiological buffering and crop 

23 phenology. The composite indices revealed that meteorological droughts are very volatile (52% 

24 normal conditions), but agricultural droughts evolve more slowly with greater permanence (64% 

25 normal conditions). The largest seasonal connection between meteorological and agricultural 

26 drought occurred in pre-monsoon (r = 0.67) and winter (r = 0.66) while the weakest was in 

27 monsoon (r = 0.50). These results indicate the growing drought threats in this basin and indicate 

28 how vital the development of integrated drought surveillance frameworks is as a key to the early 

29 warning systems, agricultural planning, and adaptive water resource management of mountain 

30 regions under changing climate.

31

32 Keywords: Drought monitoring, Composite indices, Karnali River Basin, PCA, Climate change 

33 adaptation

34
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3

35 1. Introduction

36

37 One of the most widespread and damaging natural hazards worldwide is drought, which has 

38 extensive impacts on ecosystems, agricultural activities, water resources, and socioeconomic well-

39 being (Vicente-Serrano et al., 2010; Wilhite & Pulwarty, 2017; IPCC, 2023). Unlike sudden 

40 disasters, drought develops gradually, and in most cases, it is hard to identify early and take 

41 appropriate measures to prevent the disaster in time (Wilhite & Glantz, 1985; Mishra & Singh, 

42 2010). These issues are intensified in mountainous areas, where the topography and steep climatic 

43 slopes lead to high localization of drought symptoms (Karki et al., 2017; Ullah et al., 2023). In 

44 essence, drought is a silent hazard that emerges due to chronic water deprivation and has disastrous 

45 consequences on a community, in terms of agriculture, water supply, and the environment in its 

46 vicinity (Potopová et al., 2016; Dahal et al., 2024), leading to severe economic losses (Below et 

47 al., 2007; Wilhite et al., 2007; Sigdel & Ikeda, 2010). It has the potential to impact health, food 

48 security, energy systems, and environmental sustainability.

49

50 Despite growing concern, past studies in Nepal and particularly in the Karnali River Basin (KRB) 

51 region of western Nepal have largely relied on individual indicators, such as precipitation-based 

52 drought indices or vegetation metrics, which capture only one facet of drought (Aryal et al., 2022; 

53 Bagale et al., 2021; Baniya et al., 2019; Bista et al., 2021; Dahal et al., 2016, 2020; Hamal et al., 

54 2020, 2021; Kafle, 2015; Khatiwada & Pandey, 2019). However, drought is a multi-dimensional 

55 phenomenon that unfolds across meteorological, hydrological, ecological, and agricultural 

56 domains (Ahady et al., 2025; Singh et al., 2024; Weaver et al., 2025).

57

58 To address this gap, this study uses a multi-index drought evaluation methodology. Standardized 

59 Precipitation Index (SPI) is used to describe meteorological drought at multiple timescales (3, 6, 

60 and 12 months), the Soil Moisture Index (SMI) is used based on reanalysis volumetric soil 

61 moisture to define hydrological and agricultural drought, and the Normalized Difference 

62 Vegetation Index (NDVI) is used to determine ecological and vegetation stress. Combining these 

63 indices gives a holistic understanding of drought and points to various aspects of water and 

64 vegetation feedback that cannot be described using any one of these individually.

65
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66 The necessity to comprehend the long-term dynamics of droughts in Nepal is especially acute due 

67 to the high climate sensitivity of the Karnali River Basin and the significant role of rain-fed 

68 agriculture in the country Panthi, 2014; Bastakoti et al., 2017; Rimal et al., 2018; Bocchiola et al., 

69 2019; Ghimire et al., 2020; Bista et al., 2021). The period 1995-2024 is an opportunity period that 

70 captures the historic variability of drought and recent aggravation of climate change, such as the 

71 major extended droughts of the 2010s (Bagale et al., 2021). It is necessary to examine the drought 

72 conditions on a monthly, seasonal, and annual basis to differentiate between short-term 

73 fluctuations and long-term, multi-year deficits. A spatially explicit approach allows for the 

74 identification of localized hotspots that may be overlooked in basin-wide averages. The overt 

75 analysis of both temporal and spatial variables at monthly, seasonal, and annual scales, mixed with 

76 frequency and categorical analysis, is what makes this study unique in the area.

77

78 The objectives of the overall study are to compute and standardize the SPI, SMI, and NDVI to gain 

79 a general statement of drought; to determine inter-annual and seasonal variability and location of 

80 spatial drought hotspots; to determine frequency, intensity, and category distributions of drought 

81 using standard thresholds; and to create decision-supportive visual products of drought monitoring 

82 in the Karnali River Basin. This spatially explicit drought assessment is a multi-index that is new 

83 in the KRB context, which offers a greater level of definition of drought properties, and it brings 

84 about actionable data in disaster preparedness, water resource planning, and climate adaptation.

85

86 2. Study area

87

88 Karnali River Basin (KRB) is located between 28.33 ° to 30.45 °N, and 80.55 ° to 83.68 °E (Figure 

89 1) in a wide ecological zone between the high-altitude Himalayan areas and the mid-hills and 

90 plains in western Nepal. The basin covers a total of approximately 42,457 square kilometers in 

91 Nepal and is one of the largest in the country, centered on the Karnali River, which originates on 

92 the Tibetan Plateau. The altitude ranges from 142 m in the southern lowlands to 7,497 m in the 

93 higher mountains to the north in Nepal. Snow/glaciers and grasslands dominate the highlands of 

94 the KRB, and forests and agricultural lands dominate the lowlands.

95
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96 Streamflow in the KRB is mostly rain-fed (Bookhagen & Burbank, 2010). The KRB climate is 

97 affected by the South Asian Summer Monsoon, the physiography of the area, and cold-season 

98 westerlies (Shrestha, 2000; Nayava et al., 2017). The mean annual precipitation in the basin is 

99 about 1479 mm, with high spatial, seasonal, and inter-annual fluctuations (Khatiwada et al., 2016). 

100 Stations in the region receive approximately 55 percent to 80 percent of annual precipitation in the 

101 summer season (June to September) (Shrestha, 2000). The highest part of the basin is the driest 

102 (with less than 300 mm in a year), but some pockets in mountainous regions receive over 2400 

103 mm in a year (Palazzi et al., 2013). Precipitation events in summer dominate the river discharge, 

104 on top of the coupling of the baseflow with snow and glacier melt in spring and summer.

105

106 Figure 1: Karnali River Basin of Nepal with DHM Hydrological and Meteorological Stations

107

108 3. Materials and Methods

109

110 3.1. Data Sources

111  
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112 Daily precipitation data at 28 stations of the Department of Hydrology and Meteorology (DHM) 

113 for the study area were collected. After quality control using linear and spline interpolation, and 

114 the normal ratio method to fill the gaps (Paulhus & Kohler, 1952; Dyer & Dyer, 2001; Junninen 

115 et al., 2004; Silva et al., 2016; Huang, 2021), from the total of 102 stations in the region, only 28 

116 were selected, based on requiring stations to have sufficiently long coverage (30 years) without 

117 large gaps (>20% missing data) or obvious quality problems. The daily data were summed to 

118 monthly totals, and spatial interpolation was done using the Inverse Distance Weighting (IDW) 

119 method to grids of 5km resolution  (Franke & Nielson, 1980; Tung, 1983). The gridded data were 

120 then used to calculate the Standardized Precipitation Index (SPI).

121

122 For soil moisture, ERA5 reanalysis data of volumetric water content (0-7 cm depth) were obtained 

123 (Hersbach et al., 2020). The Normalized Difference Vegetation Index (NDVI) was obtained from 

124 the MODIS satellite instruments (MOD13Q1 product, 250 m resolution, 16-day composites), 

125 available from February 2000 onward (Didan, 2021). This NDVI product uses a "maximum value 

126 composite" approach over 16 days, which significantly reduces cloud contamination compared to 

127 raw daily data. These 16-day composite values were averaged to create simple monthly averages.

128

129 3.2. Drought Indices

130

131 This study employs three complementary drought indices, Normalized Difference Vegetation 

132 Index (NDVI), Standardized Precipitation Index (SPI), and Soil Moisture Index (SMI), to 

133 characterize ecological, meteorological, and agricultural drought conditions across the Karnali 

134 River Basin (KRB). These indices offer different perspectives on drought manifestation and, when 

135 combined, support a robust composite drought assessment framework.

136

137 3.2.1. NDVI (Ecological Drought Index)

138  

139 The NDVI serves as a widely used indicator of vegetation health, derived from the differential 

140 reflectance of near-infrared (NIR) and red light. It is calculated as: 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 ― 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑

141
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142 Where NIR is near-infrared reflectance and Red is red light reflectance. NDVI values range 

143 between -1 and +1, with higher values indicating denser and healthier vegetation (Didan, 2021; 

144 Zhang et al., 2018). Vegetation typically exhibits NDVI values between 0.2 and 0.9 (Alex et al., 

145 2017; Krakauer et al., 2017; Baniya et al., 2018).

146

147 In order to address anomalies relative to the long-term distribution, NDVI was standardized into a 

148 z-score. The z score was calculated as:  𝑍𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼𝑡 ― 𝜇
𝜎

149

150 Where NDVIt is the value at time t, μ is the long-term mean, and σ is the standard deviation of the 

151 NDVI time series. This normalization allows comparison across regions and time by expressing 

152 deviations from the climatological average in units of standard deviation.

153

154 NDVI trends were analyzed across monthly, seasonal, and annual time scales to assess ecological 

155 drought conditions and vegetation response across spatial and temporal dimensions. The drought 

156 category, as defined by NDVI (Berhan et al., 2011; Aziz et al., 2018), is presented in Table 1.

157

158 Table 1: Drought Category based on NDVI z score

159

160  

161

162

163

164

165

166 3.2.2. SPI Calculation (Meteorological Drought Index)

167  

168 The SPI is a statistical drought index that quantifies precipitation anomalies over various temporal 

169 scales. Its self-calibrating and multi-timescale nature is suited for drought monitoring in 

170 climatically variable regions such as the Himalayas (McKee et al., 1993). In this study, SPI was 

171 computed at 3-month, 6-month, and 12-month accumulation periods (SPI3, SPI6, and SPI12), 

172 capturing short-term, mid-term, and long-term drought events, respectively.

NDVI Value Drought Category

> 0 No drought

0 to -0.99 Mild drought

-1.00 to -1.49 Moderate drought

-1.50 to -1.99 Severe drought

≤ -2.00 Extreme drought
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173

174 Monthly precipitation data were used to compute the SPI by fitting a gamma distribution to the 

175 cumulative precipitation values, which were then transformed into standardized z-scores (mean = 

176 0, standard deviation = 1), following the method of McKee et al. (1993). The computations were 

177 performed using the climate-indices package in Python. SPI values were classified into drought 

178 categories (Table 2) using widely accepted thresholds (McKee et al., 1993; Sigdel & Ikeda, 2010; 

179 Aryal et al., 2022).

180

181 Table 2: Drought Category based on SPI

182

183

184

185

186

187

188

189 3.2.3. SMI Calculation (Hydrological Drought Index)

190

191 The SMI offers insight into agricultural and hydrological drought by measuring water availability 

192 in the root zone. It was derived from volumetric soil moisture data and standardized using the 

193 empirical cumulative distribution method to reflect drought severity based on percentiles. The SMI 

194 was calculated as: 𝑆𝑀𝐼 =
𝑆𝑀 ― 𝑃5

𝑃95 ― 𝑃5
.

195

196 Where SM is the observed soil moisture at a given time, 𝑃5  is the 5th percentile (representing dry 

197 conditions), and 𝑃95 is the 95th percentile (wet conditions) of the long-term soil moisture 

198 distribution (Wagner et al., 1999; Esch et al., 2018). SMI values range from near 0 (often 

199 approximating the wilting point) to 1 (often approximating field capacity). Both SMI values and 

200 their standardized anomalies were utilized to assess drought severity and contribute to the 

201 formation of the Agricultural Drought Indicator. Table 3 gives the values of SMI z scores and the 

202 drought category it defines.

SPI Value Drought Category

> 0 No drought

0 to -0.99 Mild drought

-1.00 to -1.49 Moderate drought

-1.50 to -1.99 Severe drought

≤ -2.00 Extreme drought
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203

204 Table 3: Drought Category based on SMI z score

205

206

207

208

209

210

211

212 3.2.4. Composite Agricultural and Meteorological Indices

213

214 A two-stage Principal Component Analysis (PCA) approach was used to develop Composite 

215 drought indices (Abdi & Williams, 2010; Greenacre et al., 2022). For the meteorological part, PCA 

216 was applied to derive a single composite representing precipitation variability from the 

217 standardized precipitation indices at different timescales (SPI3, SPI6, SPI12). For the agricultural 

218 domain, the optimal lag period was first identified by evaluating the temporal lag between soil 

219 moisture anomalies (SMI) and vegetation response (NDVI) through correlation. The lag-adjusted 

220 SMI and NDVI anomalies were then subjected to PCA to generate an agricultural composite. This 

221 process not only minimized the dimensionality but also represented the lagged soil-vegetation 

222 interactions and gave representative indices to be used in future drought analysis (Demšar et al., 

223 2013).

224

225 3.3. Trend Analysis and Visualization

226

227 Trend analysis of SPI, SMI, NDVI, and the composite indices was conducted using the non-

228 parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) with Sen’s slope estimator (Yue & 

229 Wang, 2004), both widely applied for detecting monotonic changes in hydroclimatic quantities 

230 that may not be normally distributed. Seasonal and monthly patterns were analyzed by grouping 

231 data into the four meteorological seasons of Nepal: winter (December-February), pre-monsoon 

232 (March-May), monsoon (June-September), and post-monsoon (October-November). Statistical 

233 significance for all trend analyses was determined at a 95% confidence level.

SMI Value Drought Category

> 0 No drought

0 to -0.99 Mild drought

-1.00 to -1.49 Moderate drought

-1.50 to -1.99 Severe drought

≤ -2.00 Extreme drought
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234

235 To analyze temporal trends, the NDVI was examined on annual, seasonal, and monthly scales. For 

236 the SMI, only the annual trend was displayed, as the seasonal and monthly trends did not show 

237 significant variations. Instead, box plots were created to illustrate the distribution patterns and 

238 variability in SMI values. In the case of the SPI, annual trends were analyzed separately for dry 

239 periods (indicated by negative SPI values), wet periods (indicated by positive SPI values), and the 

240 overall average. This disaggregated approach was adopted because analyzing wet and dry extremes 

241 separately avoids obscuring critical trends in precipitation and drought extremes.

242

243 For the spatial analysis of NDVI, the average difference in values between 2000 and 2024 was 

244 calculated for each grid cell. A difference map was produced to visualize these changes, along 

245 with spatially averaged NDVI plots at annual, seasonal, and monthly timescales across the KRB. 

246 For the SMI, spatial trends were computed for each grid cell over the entire study period, leading 

247 to the creation of an average spatial trend map for the KRB. Additionally, spatial distribution plots 

248 for SMI were developed at annual, seasonal, and monthly intervals to capture variations in time 

249 and space. For SPI, spatial anomaly frequency was calculated to see how often each grid cell 

250 experiences drought or wet anomalies at annual, seasonal, and monthly timescales. This method 

251 gives a clearer picture of extreme weather events by showing how frequently significant dry or 

252 wet conditions occur in each area.

253

254 3.4. Correlation Analysis

255

256 Correlation analysis was carried out among SPI, SMI, NDVI, and the composite indices to evaluate 

257 their degree of consistency and complementarity. Pearson correlation coefficients were computed 

258 at both grid and basin scales, and Fisher’s Z-transformation was applied to estimate 95% 

259 confidence intervals. In addition, correlation was examined with lag adjustment to highlight the 

260 temporal relationships between vegetation stress and soil moisture anomalies.

261

262 4. Results

263
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264 4.1. Long-Term Trends in Drought Indicators

265

266 Ecological drought indicator, NDVI, calculated per year in the KRB over 2000-2024 (Figure 2), 

267 reveals a consistent upward trend in greenness of the vegetation. The average NDVI increased to 

268 a high of 0.435 in 2024, which is about 12 percent higher than the 2000 level of 0.388. This long-

269 term greening signal is reflective of a better ecological situation, which likely could be due to 

270 climate change, carbon dioxide fertilization, land-use change, or expansion of irrigation at the 

271 lower altitudes.

272 Figure 2: Mean annual NDVI from 2000 to 2024 of KRB

273

274 The NDVI shows a significant rise after 2014, with the values above 0.40 consistently high in the 

275 years that follow. In 2024, the mean NDVI was the highest (0.435), followed by 2022 (0.420) and 

276 2023 (0.419). Conversely, the lowest annual averages were recorded in 2002 (0.376) and 2008 

277 (0.376). The greening pattern is confirmed by the fact that Mann-Kendall trend analysis shows a 

278 statistically significant positive trend (p < 0.05) with Sen slope (0.0011/year), which is estimated 

279 annual rate of increase. However, interannual variations can be noted, which reflects ecological 

280 sensitivity to the seasonal droughts, especially in the pre- and post-monsoon seasons.

281
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282 In the case of the hydrological drought indicator, a temporal pattern on the annual average SMI of 

283 1995 to 2024 shows a dynamic pattern within the KRB (Figure 2b). The basin-average SMI shows 

284 an annual mean of 0.52, with high interannual fluctuation (standard deviation = 0.21). The basin 

285 exhibits a slight declining tendency in soil moisture with a Sen slope -0.0024/per year, although 

286 this trend is not statistically significant (p = 0.75). The temporal SMI, in general, indicates that the 

287 KRB has revealed a stable medium-soil moisture condition during the last three decades, with 

288 some drier years.

289
290 Figure 3: Annual SMI trend from 1995 to 2024 of KRB

291

292 Figures 4a-c indicate that the annual trends of the meteorological drought indicator, SPI at 3, 6, 

293 and 12-month time scales from 1995 to 2024 show a minor overall decrease. Mean annual SPI was 

294 found to have negative slopes of all timescales (-0.009 with SPI3, -0.017 with SPI6, and -0.031 

295 with SPI12), though only SPI12 had statistical significance (p < 0.05). Separate wet and dry 

296 analyses showed a significant negative trend in the SPI12 dry series (slope = -0.026, p = 0.017), 

297 which is a strengthening of the severity of drought. In SPI3 and SPI6, the tendencies of dry periods 

298 and wet periods were decreasing and increasing, respectively, but not significantly.

299

300 Examination of the dry and wet series further highlights important structural differences across 

301 timescales. The disaggregated SPI3 remains continuous, confirming that every year contains both 
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302 positive and negative values. Conversely, SPI6 showed gaps in multiple years to either a lack of 

303 dry conditions (1995, 1998, 2000, 2003) or moist conditions (2006, 2012). The SPI12 record 

304 showed even more discontinuities, with years dominated entirely by persistent dryness (1995, 

305 1996, 2000, 2022) or wetness (2005, 2006, 2012, 2018, 2024). As we might expect, shorter 

306 accumulation periods consistently capture dry-wet variability, whereas longer periods, despite 

307 smoothing short-term fluctuations, can mask one regime entirely when persistent anomalies 

308 dominate the annual cycle.

309

310

311

312
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313 Figure 4: Annual trends for dry, wet, and all SPIs over KRB from 1995 to 2024

314

315 4.2. Seasonal Drought Dynamics

316

317 Seasonal analyses were conducted for pre-monsoon (Mar-May), monsoon (Jun-Sep), post-

318 monsoon (Oct-Nov), and winter (Dec-Feb) seasons. The seasonal trends (Figure 5) indicate that 

319 NDVI is increasing in all seasons. Pre-monsoon and post-monsoon period marks a significant 

320 increasing trend (p < 0.05), whereas the trends in other seasons are not significant at 95% CI. It 

321 shows that NDVI peaks during the monsoon season, with gradual declines in post-monsoon and 

322 winter, but the lowest values are in the pre-monsoon period. A steep upward trend in the post-

323 monsoon season suggests extended greening periods, likely due to delayed moisture availability 

324 or agricultural expansion.

325 Figure 5: Seasonal NDVI trends from 2000 to 2024 of KRB

326

327 In the SMI analysis, the seasonal trends did not indicate any significant changes. However, the 

328 seasonal distribution of SMI reveals clear differences in both magnitude and variability across the 
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329 four seasons (Figure 6). The monsoon season exhibits the highest mean SMI value of 0.744 with 

330 the large variation (standard deviation 0.216), reflecting substantial moisture accumulation and 

331 variability during this period. Winter, pre-monsoon, and post-monsoon seasons show relatively 

332 lower mean SMI values of 0.346, 0.356, and 0.366, respectively, and correspondingly lower 

333 variability. A few statistical outliers are observed, particularly during the monsoon and post-

334 monsoon seasons, indicating occasional extreme wet or dry events. Overall, the seasonal boxplot 

335 effectively captures the intra-seasonal variability in SMI, with the monsoon standing out as the 

336 most dynamic and moisture-rich period.

337
338 Figure 6: Seasonal distribution of SMI of KRB from 1995 to 2024

339

340 4.3. Monthly Drought Variability

341

342 The monthly analysis of the indices reveals more in-depth variations in the drought assessment. 

343 These indices are used for the temporal and spatial study of drought in the KRB. The analysis of 

344 NDVI (Figure 7) shows distinct intra-annual variations that align closely with the region’s 

345 monsoonal climate cycle. NDVI values are lowest during the winter and early spring months 

346 (January to April), gradually increase through the pre-monsoon and monsoon periods, and peak 

347 during the late monsoon and early post-monsoon months.

348
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349 The lowest vegetation activity is observed in March (0.312) and February (0.320), reflecting dry 

350 conditions and minimal canopy cover before the onset of pre-monsoon rains, which may also be 

351 influenced by low temperatures and snow cover at higher elevations. A sharp rise begins in May 

352 (0.378) and continues through June (0.400) and July (0.416), culminating in the highest average 

353 NDVI in September (0.526). This peak corresponds to the climax of the monsoon season, when 

354 vegetation is lush and soil moisture availability is at its maximum. After reaching its maximum, 

355 NDVI slowly decreases throughout October (0.469) and November (0.428), reflecting the aging 

356 of crops and vegetation as precipitation decreases. The mean NDVI in December (0.396) remains 

357 moderately high compared to the early dry months due to residual moisture and vegetation cover 

358 in the lowlands.

359 Figure 7: Monthly NDVI trends of KRB from 2000 to 2024

360

361 A heatmap representing the NDVI values across all months and years (Figure 8) further illustrates 
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362 seasonal cycles and interannual drought signals. Years such as 2002, 2004, and 2008 show reduced 

363 greenness during key growing months (Jun-Sep), aligning with reported drought episodes. 

364 Conversely, the post-2011 years tend to have particularly high NDVI.

365

366

367 Figure 8: Heatmap of monthly NDVI values of KRB from 2000 to 2024

368

369 The monthly distribution of SMI (Figure 9) reveals a pronounced seasonal pattern, with peak 

370 values occurring during the core monsoon months of July (0.817) and August (0.909), succeeded 

371 by a gradual decline in the following months. The lowest mean SMI values are observed in 

372 November (0.296) and December (0.292), reflecting the dry conditions typical of the post-

373 monsoon and early winter periods. Additionally, the standard deviation peaks in June (0.219), 
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374 indicating substantial variability in the onset of early monsoon rainfall. While some individual 

375 months display outliers in the boxplots, these variations are consistent with known climatic 

376 variability patterns. This monthly analysis emphasizes the distinct hydrological seasonality of the 

377 region, clearly distinguishing monsoon-driven moisture surpluses from pre- and post-monsoon 

378 deficits.

379
380 Figure 9: Monthly distribution of SMI of KRB from 1995 to 2024

381

382 4.4. Spatial Patterns of Drought

383

384 The spatial analysis of the three indicators is done to highlight gridwise drought variability and 

385 patterns. The spatial distribution of mean NDVI (Figure 10a) shows distinct patterns across 

386 elevation gradients. Higher NDVI values are consistently observed in the southern Terai plains 

387 and mid-hill regions, indicating dense and healthy vegetation cover. In contrast, the northern high-

388 altitude areas exhibit persistently low NDVI values, generally below 0.2, corresponding to sparse 

389 alpine vegetation and snow-covered terrain. The mean NDVI values across the region range from 

390 a minimum of -0.10 to a maximum of 0.82, clearly highlighting the spatial heterogeneity in 

391 vegetation density and greenness.

392

393 The analysis of average annual NDVI change over the KRB for 2000-2024 indicates a slight 

394 overall increase in vegetation greenness, with a mean change of 0.0019 (Figure 10b). Spatially, 

395 the changes range from a minimum decrease of -0.0160 to a maximum increase of 0.0199, 

396 highlighting localized areas of vegetation loss and gain. The standard deviation (0.0022) suggests 
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397 that most of the basin experienced minor changes, with a few areas showing stronger variability 

398 (Figure 10b). Areas of positive NDVI changes dominate much of the basin, represented in red 

399 shades, while pockets of NDVI loss appear in blue tones, likely corresponding to areas facing land 

400 use change, water stress, or ecological degradation. This grid-level perspective enhances the 

401 temporal trend analysis by revealing localized patterns of vegetation recovery or stress that may 

402 not be evident from area-averaged data alone.

403

404 Figure 10: Spatial distribution of average NDVI (a) and its average change (b) from 2000 to 

405 2024 over KRB

406

407 The spatial distribution of NDVI across the KRB shows a distinct seasonal pattern (Figure 11). 

408 During the monsoon season, there is a significant expanse of green coverage, which is then 

409 followed by the post-monsoon period. In contrast, the winter and pre-monsoon seasons exhibit 

410 relatively reduced vegetation due to limited precipitation. The post-monsoon season, in particular, 

411 shows dense vegetation, reflecting the delayed effects of monsoonal rainfall. As expected, high-

412 altitude regions remain sparsely vegetated or non-vegetated throughout all seasons, due to cold 

413 temperatures and lack of moisture.
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414
415 Figure 11: Spatial distribution of NDVI during different seasons of KRB from 2000 to 2024

416

417 The spatial maps for each month (Figure 12) similarly reveal pronounced eco-geographical 

418 gradients, with lower elevation Terai and mid-hills exhibiting strong monthly variation, while the 

419 high Himalayas maintain persistently low NDVI. This also illustrates the temporal coherence of 

420 NDVI patterns, highlighting September as a consistent peak month and February-March as periods 

421 of drought-induced stress.
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422 Figure 12: Spatial distribution of NDVI over KRB for representative months from 2000 to 2024

423

424 The spatial analysis of SMI trends across the grid cells from 1995 to 2024 highlights distinct 

425 regional variations (Figure 13a). The spatial analysis across individual grid cells shows that most 

426 areas exhibit small negative trends, with a mean Sen’s slope of -0.0029 per year, and local slopes 

427 ranging from -0.015 to 0.020 per year. The spatial distribution of trends is showing low spatial 

428 variability (standard deviation = 0.008), highlighting that most of the basin is experiencing 
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429 consistent, minor reductions in soil moisture, reflecting general stability in overall basin hydrology 

430 despite some local variations.

431

432 Figure 13: Spatial trend (a) and mean (b) of SMI over KRB from 1995 to 2024

433

434 Figure 13(b) shows the spatial distribution of the average SMI, which provides a general 

435 understanding of the typical soil moisture conditions across the KRB. The annual average SMI 

436 over the basin for 1995-2024 indicates moderate soil moisture conditions across the region, with a 

437 mean SMI of 0.532 and a median of 0.534. The minimum and maximum values (0.396 - 0.659) 

438 indicate localized variability, but the relatively low standard deviation (0.045) shows that most 

439 grid cells are clustered around the basin average.

440

441 SMI seasonal patterns analyzed spatially show that the monsoon months, spanning from June to 

442 September, exhibit notably higher soil moisture levels, indicating widespread wet conditions 

443 throughout the basin (Figure 14). In contrast, the pre-monsoon months, especially March and 

444 April, show lower SMI values with greater variability, reflecting the dry-season stress that 

445 precedes the arrival of monsoon rains. Unlike the NDVI results, the seasonal SMI data indicate 

446 that the post-monsoon period experiences relatively drier conditions compared to the pre-monsoon 

447 period. However, winter stands out as the driest season, with over half of the basin area registering 

448 values below approximately 0.35.
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449
450 Figure 14: Seasonal distribution of SMI over KRB from 1995 to 2024

451

452 The monthly analysis of the SMI for the period 1995-2024 (Figure 15) shows clear seasonal 

453 fluctuations in moisture conditions across the KRB. The lowest mean SMI values are observed in 

454 December (0.296) and November (0.316), with minimum values reaching as low as 0.124 and 

455 0.118, respectively. In contrast, the highest monthly mean values occur in August (0.933) and July 

456 (0.888), with maximum values reaching up to 0.977 and 0.978. These months also show higher 

457 central values, as indicated by median SMI values of 0.944 (August) and 0.930 (July). Standard 

458 deviations are lowest in August (0.039), indicating consistent high moisture conditions during the 

459 peak monsoon, and highest in May (0.176) and April (0.154), reflecting greater variability in the 

460 pre-monsoon period. Across all months, the data exhibit a gradual increase in SMI from March 

461 through August, followed by a steady decline toward the dry season.
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462
463 Figure 15: Monthly distribution of SMI over KRB from 1995 to 2024

464

465 For the spatial analysis of SPI over the KRB, the frequency of drought and wet anomalies was 

466 calculated on annual, seasonal, and monthly timescales. The resulting spatial maps (Figures 16, 

467 17, 18) offer a more accurate representation of the frequency and distribution of dry and wet events 

468 across the basin.

469
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470 The annual SPI drought and wet anomaly frequency analysis reveals that the frequency of extreme 

471 events remains relatively low on a yearly scale, typically between 5-7% across the SPI3, SPI6, and 

472 SPI12 timescales (Figure 17). For SPI3, the mean drought frequency is 6.43% and wet anomalies 

473 6.87%, with a narrow variability (SD near 1). At longer accumulation periods, variability 

474 increases, particularly for SPI12, where dry and wet frequencies reach maximum values of 12.18% 

475 and 12.97% respectively. This indicates that, while annual drought and wet events are not 

476 widespread on average, prolonged accumulation periods (SPI12) capture stronger and more 

477 spatially extensive anomalies, consistent with the persistence of hydrological drought. The 

478 identified hotspots at SPI12 (with >12% frequency) highlight localized regions where drought and 

479 wet anomalies recur most frequently, underscoring their importance for water management.

480
481 Figure 16: Annual Dry and Wet Anomaly Frequency over KRB from 1995 to 2024

482

483 The seasonal analysis reveals stronger intra-annual contrasts in drought and wet anomaly 

484 frequencies (Figure 17). In SPI3, dry anomalies are most frequent during the post-monsoon season 

485 (mean 7.91%), while wet anomalies peak in winter (mean 8.48%). SPI6 shows elevated drought 

486 frequencies in winter (mean 7.84%), whereas wet anomalies are more common in the pre-monsoon 

487 (mean 7.51%). For SPI12, both drought and wet anomalies display broader variability, with post-

488 monsoon and winter seasons recording mean dry frequencies of around 7% and wet frequencies 

489 occasionally exceeding 6%. Importantly, variability (standard deviation) increases at longer 
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490 timescales, reaching up to 3.36 for wet anomalies in SPI12 post-monsoon. These findings suggest 

491 that drought and wet episodes exhibit clear seasonal dependency, with monsoon and post-monsoon 

492 conditions being particularly prone to extremes, while pre-monsoon and winter tend to capture 

493 more short-lived wet anomalies.

494
495 Figure 17: Seasonal Dry and Wet Anomaly Frequency from 1995 to 2024 of KRB

496
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497 At the monthly scale, detailed statistics highlight peak drought and wet frequencies that are masked 

498 at broader temporal aggregations. In SPI3, November emerges as the driest month (8.35% mean 

499 drought frequency), while December is the wettest (10.66% mean wet frequency). For SPI6, 

500 drought conditions peak in February (8.38%) and wet anomalies in April (8.90%), consistent with 

501 early spring variability. SPI12 shows similar patterns, with February again recording the highest 

502 drought frequency (7.47%) and July emerging as the wettest month (6.97%), aligning with the 

503 monsoon onset. The monthly anomaly frequency spatial maps (Figure 18a-f) are provided in the 

504 supplementary material.

505

506 4.5. Categorical Classification of Drought

507

508 The category-based analysis of the monthly SMI for the KRB, as shown in Figure 19, suggests 

509 that the basin’s soil moisture regime from 1995 to 2024 is predominantly characterized by near-

510 normal to mildly dry conditions. The overall mean (0.003) and slightly negative median (-0.115) 

511 indicate moisture levels fluctuating around normal, with a tendency toward mild dryness. The mild 

512 drought category was the most frequent among others, occurring in 34.2% of months, followed by 

513 near-normal conditions at 26.7%. Wetter-than-normal conditions comprised approximately 19% 

514 of the recorded data. Severe drought was observed in only 0.6% of months, and no instances of 

515 extreme drought were observed, suggesting that while mild deficits are common, prolonged severe 

516 soil moisture stress is rarely encountered. Conversely, extremely wet months (2.2%) and severely 

517 wet months (6.1%) indicate that significant wet anomalies do occur occasionally. This distribution 

518 illustrates that soil moisture variability is primarily influenced by short-term deficits and surpluses, 

519 without persistent extreme drought conditions.

520

521 The monthly SMI z-score heatmap (Figure 20) further explains these trends by highlighting the 

522 temporal progression of dry and wet anomalies. Statistical properties support this distribution, with 

523 values ranging from a minimum of -0.841 to a maximum of 0.990, thereby covering nearly the 

524 entire theoretical range of the percentile-based index. The standard deviation of 0.490 underscores 

525 the considerable fluctuations observed across years, as well as the transitions between strongly 

526 negative (dry) and strongly positive (wet) anomalies. Overall, the heatmap emphasizes the 

527 significant impact of monsoonal rainfall, with distinct wet phases resulting in extremely high SMI 
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528 values, while extended non-monsoon periods typically exhibit mild to moderate droughts, 

529 reflecting the basin’s sensitivity to seasonal hydrological dynamics.

530
531 Figure 19: Monthly SMI Time series (category-based) of KRB from 1995 to 2024

532

533 Figure 20: Heatmap of monthly time series for SMI of KRB from 1995 to 2024

534

535 The SPI heatmap (Figure 21) highlights alternating wet and dry phases, with notable severe 

536 droughts around 2000, 2016, and 2023, consistent across multiple timescales, suggesting periods 

537 of sustained hydroclimatic stress. Overall, these results indicate that both short- and long-term 

538 precipitation anomalies contribute to the occurrence of drought and wet events in the region, with 

539 long-term SPI capturing more extreme but less frequent anomalies.
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540 Figure 21: SPI time series heatmap of KRB from 1995 to 2024

541

542 The temporal analysis of standardized precipitation indices (SPI) at 3, 6, and 12-month timescales 

543 (Figure 22a-c) reveals distinct patterns of drought and wet conditions over the study period. SPI3, 

544 representing short-term precipitation variability, shows a mean near zero with a standard deviation 

545 of 1.0, indicating a generally balanced precipitation regime. Droughts (SPI < -1) occurred in 16.2% 

546 of months, with extreme droughts (SPI < -2) observed in 1.12% of months, while wet conditions 

547 (SPI > 1) were present in 15.6% of months and extreme wet events (SPI > 2) in 3.1%. At 

548 intermediate timescales (SPI6), the proportion of extreme drought months slightly increased to 

549 2.25%, whereas wet events decreased marginally. Long-term precipitation variability (SPI12) 

550 shows fewer moderate drought months (14.6%) but a higher incidence of extreme droughts 

551 (2.87%), reflecting accumulated deficits over the year.

552
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553

554 Figure 22: Categorical time series of drought in KRB from 1995 to 2024 based on SPIs

555

556 4.6. Meteorological and Agricultural Composites

557

558 4.6.1. Principal Component Analysis (PCA)

559

560 For the basin-average SPI, a single dominant principal component (PC1) was identified by the 
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561 PCA. This component accounts for 70.0 percent of the total variance; therefore, this component is 

562 in a position to represent most of the information contained in the three Standardized Precipitation 

563 Index (SPI) variables, as shown in Figure 23(a). In Figure 23(b), the cumulative variance plot, PC1 

564 alone captures 70.0 percent of the variance, and a further addition of PC2 and PC3 captures a 

565 cumulative total of approximately 99.8 percent, meaning that a high level of information is 

566 represented by only three components. Likewise, PCA analysis of the agricultural data also 

567 provided one dominant component. Agricultural PC1 accounts for 61.2 percent of the total 

568 variance (Figure 23(a)). This component, though with a slightly reduced percentage than its 

569 meteorological counterpart, still contributes a large majority of the variance in the NDVI and SMI 

570 data.

571

572 The loadings plot (Figure 23c) further indicates that PC1 has strong positive loadings of all three 

573 variables of the SPI (SPI3, SPI6, and SPI12). This level of collinearity indicates that the three 

574 variables are very correlated among themselves, and they are the primary contributors to the same 

575 component. This positive correlation of strong values demonstrates that the meteorological PC1 

576 could be viewed as a composite index that shows the general wetness or dryness situation at 

577 different time scales. Similarly, both NDVI and SMI showed a strong negative loading (-0.707) 

578 and a strong positive loading (0.707). This result indicates that the agricultural PC1 represents a 

579 contrast between vegetation health (NDVI) and soil moisture (SMI). This is a key finding because 

580 it indicates that low NDVI (poor vegetation health) periods are strongly connected with high SMI 

581 (wet soil), contrary to the intuitive idea, but can be reflected by certain conditions, such as rainy 

582 days that reduce the NDVI score but leave the ground moist. It also demonstrates the need to 

583 conduct further studies according to the elevation zones since the correlation between SMI and 

584 NDVI can be positive in the low-elevation and negative in the high-elevation areas.

585

586 The time series of both meteorological and agricultural PC1s were compared to assess their co-

587 variability. The scatter plot in Figure 23(d) shows a positive correlation between the two composite 

588 indices, with a correlation coefficient (r) of 0.552. This moderate-to-strong positive relationship 

589 indicates that periods of high meteorological wetness (high positive values of meteorological PC1) 

590 are generally associated with conditions that favor the agricultural variables (high positive values 

591 of agricultural PC1), and vice versa.
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592

593 Figure 23: Barchart showing the percentage of variance explained by PCs for both 
594 meteorological and agricultural composites (a), Line plot showing the cumulative variance 
595 explained by increasing numbers of PCs for both composites (b). Horizontal bar chart illustrating 
596 the magnitude of the PC1 loading for each variable in both datasets (c), Scatter plot showing the 
597 correlation between the composite PC1 values for both composites with trendline (d).
598

599 4.6.2. Lag Analysis

600

601 The lag correlation analysis (Figure 24) highlights differences in how soil moisture and vegetation 

602 respond to meteorological drought conditions. The meteorological composite and SMI exhibit the 

603 highest correlation at 0-month lag, confirming an immediate response of soil moisture to 

604 precipitation anomalies. In contrast, the correlation between the meteorological composite and 

605 NDVI peaks at a 1-month lag, demonstrating a delayed vegetation response. This indicates that 

606 while soil moisture tracks rainfall deficits almost instantaneously, vegetation stress emerges after 

607 a short lag, reflecting both physiological delay and possible buffering by soil moisture availability.
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608 Figure 24: Lagged correlation between meteorological composite (SPI) and individual 

609 agricultural composite components (SMI and NDVI)

610

611 4.6.3. The Composite Correlation

612

613 The scatter plots (Figure 25a) show a moderate but significant relationship between the 

614 meteorological composite and the lag-adjusted agricultural composite (r = 0.55, p < 0.05, R² = 

615 0.30). This suggests that about one-third of agricultural drought variability can be explained by 

616 meteorological anomalies after considering lag effects. The seasonal breakdown (Figure 24b) 

617 demonstrates clear differences in coupling strength: pre-monsoon (r = 0.67) and winter (r = 0.66) 

618 show the strongest relationships, while the link weakens during the monsoon (r = 0.50) and post-

619 monsoon (r = 0.34) seasons. These results suggest that agricultural and ecological drought are most 

620 sensitive to meteorological deficits during typically water-stressed seasons (pre-monsoon, winter).

621

622

623

624

625
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626
627 Figure 25: Correlation between composite indices, overall (a) and seasonal (b)

628

629 4.6.4. Time-series & Categorical Comparison

630

631 The time series (Figure 26) shows both composites generally following similar broad patterns from 

632 2000-2024. However, important differences appear in their variability and drought expression. The 

633 meteorological composite (top) exhibits more pronounced fluctuations, featuring frequent and 

634 intense negative anomalies, reflecting the high instability of drought signals influenced by 

635 precipitation. On the other hand, the agricultural composite (bottom) appears more even, 

636 displaying fewer but more prolonged drought occurrences, aligning with the buffering role of soil 

637 moisture and vegetation in mediating short-term rainfall deficits.

638

639 The categorical representation strengthens these contrasts: the meteorological composite classified 

640 only about half the months as normal (52.26%), with relatively high proportions of severe 

641 (15.68%) and moderate (5.92%) droughts. By comparison, the agricultural composite showed a 

642 greater share of normal months (64.46%), fewer severe droughts (8.01%), but slightly more 

643 moderate droughts (10.45%). This divergence highlights that not all meteorological droughts 

644 translate into agricultural droughts, underlining the importance of monitoring both domains to 

645 capture the full drought continuum.

646

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5511965

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



35

647 Figure 26: Categorical timeseries of meteorological and agricultural composite indices

648

649 4.6.5. Seasonal Variability & Drought Frequency

650

651 The seasonal variability analysis (Figure 27a) shows consistently higher standard deviation in the 

652 meteorological composite (1.4-1.5) compared to the agricultural composite (<1.2). This reflects 

653 the more volatile nature of precipitation-driven droughts relative to the smoother, lagged 

654 agricultural responses. Seasonal drought frequency (Figure 27b) shows some differences between 

655 indices. The meteorological composite has the highest drought frequency (>17.5%) during the 

656 monsoon, indicating recurrent meteorological anomalies even in the wettest season. By contrast, 

657 the agricultural composite peaks in winter (~10%), with the lowest drought frequency during the 

658 monsoon (~7.5%). This finding underlines that meteorological droughts are most common in the 

659 monsoon, but agricultural droughts are most critical in winter, when water availability is already 

660 low and vegetation is highly vulnerable.
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661
662 Figure 27: Seasonal variability (a) and drought frequency (b) of composites

663

664 5. Discussion and Conclusion

665

666 This paper presents a comprehensive framework of the Karnali River Basin (KRB) drought 

667 dynamics, as it merges meteorological, hydrological, and ecological views. Standardized 

668 indicators (SPI, SMI, and NDVI) were derived using precipitation records collected at in situ DHM 

669 stations, soil moisture estimates of ERA5, and vegetation indices of MODIS. The principal 

670 component analysis (PCA) was used to effectively correlate multi-scale precipitation variability 

671 with agricultural indicators. Trend analysis, spatial frequency mapping, categorical classification, 

672 and lagged vegetation responses were used to assess drought characteristics.

673

674 It was found that there was a significant decline in precipitation (SPI at longer accumulation 

675 periods), which is in agreement with previous researchers. According to Bagale et al. (2021), Nepal 

676 experienced higher drought frequency after the 1980s due to the weakening of monsoonal 

677 precipitation. Similarly, Aryal et al. (2022) reported the decreasing trends in precipitation in 

678 various basins, with the dry periods in the pre-monsoon and winter seasons intensifying 

679 significantly, which correlates well with these patterns. In the Karnali region, a recent study by 

680 Khatiwada & Pandey (2019) emphasizes the occurrence of recurrent meteorological droughts, 

681 particularly during the winter months. These droughts underscore the susceptibility of the region, 

682 as shown by short-term SPI anomalies. The study also demonstrates differences between seasons 
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683 and seasons, in terms of meteorological droughts being the most common in the monsoon season, 

684 and agricultural droughts being the most severe in winter. Similarly, Bista et al. (2021) found that 

685 winter drought was a major risk to the Sudurpashchim and Karnali provinces. Spatial heterogeneity 

686 shows that locations with mountain features experience more frequent drought events than Terai, 

687 which conforms to the results of Dahal et al. (2016) and Hamal et al. (2021), emphasizing the 

688 synergistic impacts of steep topography, shallow soils, and low irrigation.

689

690 There was no statistically significant long-term trend in the SMI, which indicated basin-scale 

691 hydrological stability in spite of decreasing precipitation. This is consistent with the findings of 

692 Dahal et al. (2020), who estimated water availability in the KRB in the future and highlighted the 

693 moderating impacts of snowmelt and irrigation. Similarly, Ghimire et al. (2020) discovered that 

694 crop productivity in western Nepal was able to endure reduced rainfall because of supplemental 

695 irrigation and traditional management practices. However, localized SMI declines determined in 

696 the spatial analysis coincide with Dahal et al.( 2024) in the Koshi River Basin, where the soil 

697 moisture deficits caused yield losses in rain-fed agriculture. These underscore the fact that 

698 hydrological drought effects can be concealed at the basin level but still extreme in susceptible 

699 sub-regions. Moreover, the SMI is based on reanalysis climate, which requires more local data for 

700 evaluation and verification.

701

702 A modest but significant increasing trend in NDVI since 2000 was detected, with higher peaks 

703 during the monsoon and post-monsoon seasons. This supports findings by Baniya et al. (2018), 

704 who observed increases in vegetation health across Nepal using satellite-derived indices, 

705 particularly in irrigated and lowland areas. Krakauer et al. (2017) documented positive NDVI 

706 trends in mid-hill regions of Nepal, though stability or declines were noted at higher elevations, 

707 while Baniya et al. (2018) linked NDVI increases to rising temperatures and changing carbon 

708 dynamics. Collectively, these findings suggest that the positive NDVI trend in the KRB likely 

709 reflects both climatic variability and agricultural expansion in lowland areas, as previously 

710 proposed by Bocchiola et al. (2019).

711

712 PCA loadings revealed that agricultural drought variability was represented as a contrast between 

713 vegetation health and soil water availability, with NDVI showing a strong negative association 
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714 and SMI a strong positive association. This counterintuitive relationship, where low NDVI 

715 coincided with wet soils, may result from cloudy conditions suppressing vegetation signals despite 

716 sufficient soil moisture, or from the biases in the reanalysis SMI product. As well, the NDVI-SMI 

717 relationship may differ between lowlands and higher elevations.

718

719 A lag of about one month was observed in the response of NDVI to SMI, which is consistent with 

720 the study by Zhang et al. (2018). This reflects delayed vegetation response due to crop phenology 

721 and the buffering effects of soil. The immediate response of SMI to rainfall confirms its 

722 effectiveness as a hydrological drought indicator, while the delayed NDVI highlights the gradual 

723 onset of agricultural droughts. PCA-based composites revealed that meteorological droughts are 

724 highly volatile, whereas agricultural droughts develop more slowly. This difference underscores 

725 the buffering role of soil and vegetation, as observed by Weaver et al. (2025).

726

727 This result builds on earlier Nepal-focused studies by utilizing multiple drought indicators to 

728 provide a comprehensive framework for understanding the propagation of drought across 

729 meteorological, hydrological, and agricultural domains. The integrated approach aligns with recent 

730 recommendations for multi-scalar, integrated drought monitoring (IPCC, 2023; Ahady et al., 

731 2025).

732

733 The findings emphasize the growing risks of drought in the Karnali River Basin (KRB), 

734 particularly during the pre-monsoon and winter seasons, when there is a decline in rainfall coupled 

735 with rising temperatures and increased agricultural water demand. The methodological framework 

736 employed in this study, utilizing multi-source data, anomaly-based indices, Principal Component 

737 Analysis (PCA) integration, and spatial-temporal analyses, establishes a transferable model for 

738 early warning systems, agricultural planning, and water resource management. Overall, these 

739 results underscore the significance of integrated drought monitoring frameworks in climate-

740 vulnerable mountain basins and provide insights to guide adaptation strategies in response to 

741 escalating hydro-climatic variability in Nepal and other mountain regions.
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