Initial and Diagenetic Behaviour of U Isotopes in Corals: Implications for Useries Dating

Laura F. Robinson¹, Jess F. Adkins¹, Diego P. Fernandez¹, Donald S. Burnett¹, Alexander C. Gagnon¹, Nir Y. Krakauer¹, S-L Wang¹

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 United States

E-mails: <u>laurar@gps.caltech.edu</u>; <u>jess@gps.caltech.edu</u>; <u>diego@gps.caltech.edu</u>; <u>burnett@gps.caltech.edu</u>; <u>gagnon@caltech.edu</u>; <u>niryk@caltech.edu</u>; <u>jslw@gps.caltech.edu</u>

U-series isotopes in corals are one of the most powerful tools for chronometry in Ouaternary Paleoceanography. Modern mass spectrometric techniques routinely reach 1 permil precision for the isotopic ratios of uranium and thorium. However, the corals themselves are often found to be open systems for U-series dating. The most widely used metric for diagenetic alteration of the age is the deviation of the δ^{234} U ratio from the seawater value of 146‰. In this study we use deep-sea corals that live and are preserved in a constant seawater environment to investigate the causes of this diagenetic alteration. Coral thin-sections display complex visible banding patterns based on the crystal morphology. Fission track maps and MC-ICP-MS measurements performed on micromilled sub-samples reveal a primary [U]-variability that has a spatial distribution closely related to the visible banding. Sub-samples from fossil corals, ranging in age from 11 ka to 218 ka, have variable δ^{234} U_{initial} with the highest δ^{234} U_{initial} values in areas of low [U]. A model shows that most of the variability can be explained by two simple processes, direct transfer of alpha recoil ²³⁰Th and ²³⁴Th and, more importantly, preferential movement of alpha-decay mobilised ²³⁴U. Coupling this preferential movement with a high [U] coating such as an organic film provides a source of ²³⁴U to the coral lattice that can account for large δ^{234} U_{initial} elevations, with little change to the final age. As surface corals also have large initial [U] gradients, our results demonstrate that many elevated δ^{234} U_{initial} values are a natural consequence of the coral's initial [U] gradient. These gradients are biologically induced at the time of calcification and are an example of how better understanding the effects of biomineralization can improve our interpretation of paleotracers.