

Remote sensing for precipitation estimation in Nepal

Nir Y. Krakauer

Department of Civil Engineering and CUNY Remote Sensing of the Earth Institute, The City College of New York nkrakauer@ccny.cuny.edu

Precipitation monitoring

Applications: disaster relief, river management...

Few station data available near-real-time – role for remote sensing

Satellite products: 0.25°, 3 hours, near-global

TRMM: > 1 month lag

TRMM Real Time (RT): ~12 hour lag

Monthly precipitation with TRMM (Krakauer et al. *Remote Sensing*, 2013)

Daily precipitation with TRMM(RT)?

Station data: APHRODITE, 2000-2007 (26°-31° N, 79°-89° E) Correlations improve with longer averaging period, are slightly worse for TRMMRT

Mean precipitation (2000-2007)

TRMMRT

TRMM

A probabilistic model for daily precipitation

Hyperexponential distribution:

$$p(P|P > 0) = \mathcal{H}(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{N} a_i e^{-P/b_i}$$

Fit to APHRODITE distribution with N = 13:

2-stage mapping of precipitation probabilities

Precipitation occurrence:
$$p(P>0)=\frac{1}{1+e^{c_0+c_1S^*+\sum_i c_i \text{(other predictors)}}}$$

where *S** is the transformed TRMMRT value. Fit using logistic regression (LIBLINEAR).

Precipitation intensity: Fit mean and standard deviation for normal transform of $\mathcal{H}(\mathbf{a}, \mathbf{b})$ using linear regression on S^* and other predictors.

Other predictors: Geographic location, season, regional circulation pattern, ...

Precipitation forecast using TRMMRT

If TRMMRT detects precipitation, this makes higher amounts more likely (but not certain)

A sample probabilistic forecast (July 19 2014)

Probabilistic forecast quality

The probabilistic forecasts are reasonably well calibrated (close to the 1-1 line) over the 2000-2007 period

Conclusions

Probabilistic daily precipitation forecasts can be generated from based on near-real-time remote sensing calibrated with publicly available gridded products

Improvements on existing calibration data (APHRODITE) should improve the usefulness of such forecasts for water resources applications

Questions?

nkrakauer@ccny.cuny.edu