
We can combine measurements of the air-sea pCO2 equilibrium in the mid-
1990s with various relationships of the air-sea gas exchange rate with wind-
speed (Equation 1) to estimate the net uptake rate (Figure 8). The tropical
oceans have high pCO2 and release CO2 into the atmosphere, whereas north-
ern and southern oceans mostly have low pCO2 and take up atmospheric CO2.
Higher values of n imply more exchange at high latitudes and less in the trop-
ics, so that the oceans take up more CO2 in all. Independent evidence for
ocean CO2 uptake is consistent with a value of 1-2 for n.
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Figure 8. Predicted ocean anthropogenic CO2 flux in PgC / year for 1995,
based on the Takahashi et al. (13) pCO2 climatology (corrected by 0.7 PgC
/ year for the assumed steady-state ocean outgassing that balances an inflow
of continental carbon (14)). A dashed contour at −2.2 PgC / year shows
the approximate anthropogenic ocean CO2 uptake estimated using water ages
inferred from ocean CFC measurements (2.0±0.4 PgC / year) (15) and based
on atmospheric oxygen measurements (2.4±0.7 PgC / year) (16).

Conclusion

Measurements of carbon-14 in the ocean and atmosphere can constrain both
the global mean air-sea gas exchange rate and its latitudinal distribution aver-
aged over months to decades. Knowledge of the total air-sea carbon-13 and
CO2 fluxes can also be used to test proposed air-sea gas exchange distribu-
tions. Based on such data, it appears that the power law relationship with
windspeed that best fits the distribution of the gas exchange rate has an ex-
ponent of between 1 and 2. Our approach supplements field measurements
of gas exchange, which measure rates over relatively small areas and short
periods.
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The ocean exchange contribution varies depending on the assumed windspeed
exponent n, and affects primarily the Southern Hemisphere gradient (Figure 5
and 6d). The size of ocean uptake would also be reflected in the contemporary
rate of decline of atmospheric ∆14C (Figure 6c) as well as in the near steady-
state preindustrial ∆14C levels and gradients (Figure 6ab).

Available measurements show relatively little depletion of ∆14C over the
Southern Ocean and a relatively low atmospheric ∆14C decline rate, favor-
ing a linear to quadratic increase of air-sea gas exchange with windspeed, i.e.
n = 1-2 (Figure 6).
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Figure 6. Effect of the air-sea gas exchange parameterization (Equation 1)
on predicted total ocean carbon-14 uptake and on latitudinal gradients in at-
mospheric ∆14C. The dashed lines show the approximate uptake or latitu-
dinal gradients inferred from observations for comparison. (a) Steady-state
ocean carbon-14 uptake (in kg/year) assuming an estimated preindustrial sea-
surface ∆14C distribution (8) and mean atmospheric ∆14C at 0 permil. For
comparison, 5.4 kg/year would be needed to replace the decay of carbon-
14 in ocean dissolved incorganic carbon. (b) Steady-state latitudinal atmo-
spheric ∆14C gradient (Britain – New Zealand, summer) in permil assum-
ing an estimated preindustrial sea-surface ∆14C distribution and mean atmo-
spheric ∆14C at 0 permil, calculated with an atmospheric transport model
(9). For comparison, preindustrial tree-ring measurements reported by Hogg
et al. (10) yield a difference of 4.8±1.6 permil. (c) Decline rate (in per-
mil/year) of atmospheric ∆14C around 1994, based on sea-surface ∆14C in-
terpolated from observations (8) and the estimated contributions of cosmo-
genic, land biosphere and fossil carbon fluxes. Observations yield a decline
rate of 7.0±0.6 permil/year. (d) Latitudinal gradient in mean-annual atmo-
spheric ∆14C (Llano de Hato, Venezuela [9◦N] – Macquarie Island [54◦S])
around 1994, based on sea-surface ∆14C interpolated from observations and
the estimated contributions from other processes (Figure 5). Observations
reported by Levin and Hesshaimer (11) yield a difference of 5.6±2.8 permil.

Air-sea 13C and CO2 exchange

Because the δ13C of atmospheric CO2 is dropping, there is an isotopic flux
of carbon-13 out of the ocean. The δ13C of the tropical oceans is higher than
the equilibrium level, whereas the δ13C of the high-latitude oceans is lower.
Thus, the flux estimated based on observed sea surface δ13C levels would
vary substantially depending on the assumed windspeed power law exponent
n (Figure 7). Independent observations of this flux are again consistent with
n≤2.
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Figure 7. Predicted isoflux of carbon-13 into the ocean in PgC permil / year
for 1994, based on WOCE sea-surface δ13C measurements (8). The dashed
contour shows the value of 62±32 PgC permil / year independently inferred
from ocean interior observations (12).

Results

The modeled ocean bomb carbon-14 inventory is largely independent of the
latitudinal distribution of air-sea gas exchange (as affected by the windspeed
power-law exponent n), and thus is a good way of determining the global
mean gas exchange rate k̄ (Figure 3).
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(a) inventory: GEOSECS (1975.0)
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Figure 3. Modeled ocean bomb carbon-14 inventory in the mid-1970s and
mid-1990s for different values of the air-sea gas exchange parameters k̄ and
n (Equation 1).

The distribution of the modeled bomb carbon-14 inventory is, however, af-
fected by the windspeed exponent n adopted (Figure 4). A linear scaling of
gas exchange with windspeed (n=1) fits the observed ocean bomb carbon-14
distribution better than a quadratic or cubic relationship (n=2 or 3), but part of
this better match may be due to known problems with our ocean circulation
model, such as too much mixing in the Southern Ocean.
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Figure 4. Modeled latitudinal distribution of bomb carbon-14 in the ocean
for 1994 compared with gridded observations (8). The modeled distributions
are for k̄= 20.6 cm/hr and n = 3, 2, or 1 (in Equation 1).

The atmospheric ∆14C gradient

Using regional Green’s functions derived from an atmospheric transport model
(9), we estimate the effect of carbon-14 isofluxes due to various processes on
the latitudinal gradient in ∆14C of atmospheric CO2 (Figure 5a):

• Cosmogenic carbon-14 production – in upper atmosphere; north-south sym-
metric, effect on ∆14C gradients at the surface depends on transport across
the tropopause

• Biosphere respiration – releases old carbon that contains more bomb carbon-
14 than the current atmospheric level

• Fossil fuel burning – releases very old carbon with no carbon-14

• Ocean exchange – large ocean uptake of carbon-14 in the Southern Ocean
where the surface has low ∆14C; exchange in the tropics has little effect
because sea surface ∆14C is close to the atmospheric level.
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Figure 5. Modeled contributions to latitudinal variation in atmospheric ∆14C
by process for the mid-1990s. Ocean fluxes are based on observed sea-surface
carbon-14 levels (8) and assume that air-sea gas exchange follows Equation
1 with k̄ = 20.6 cm/hr and n = 3, 2, or 1.

Introduction

The air-sea gas exchange rate determines the CO2 flux into the ocean for a
given pCO2 disequilibrium at the sea surface. It is hard to measure directly,
and how it varies by region remains unclear. A number of empirical formulas
relating the air-sea exchange rate to windspeed are commonly used, but these
span at least a factor of 2 at typical windspeeds (Fig. 1).
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Figure 1. Some commonly-used published relationships for the increase in
the air-sea gas exchange rate with windspeed (1-4).

Because windspeeds tend to be higher in the north and south than in the trop-
ics (Fig. 2), all these formulas predict that the mean air-sea gas exchange is
faster at high compared with low latitude oceans, although they would differ
as to how much faster.

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

4

5

6

7

8

9

10

11

12

Figure 2. Root-mean-square winds (m/s) over the ocean for 1988-1992,
based on satellite microwave scatter measurements (5).

We look at the effects on carbon-14, carbon-13 and total carbon fluxes of
changing the global mean k̄ and the windspeed dependence exponent n in a
power law relationship of the air-sea gas exchange rate with windspeed:

kw = (
k̄

v̄n)vn(Sc/660)−0.5 (1)

where

kw = air-sea gas exchange rate (cm/hr)

k̄ = global mean air-sea gas exchange rate (cm/hr)

v = windspeed at 10-m height (m/s)

n = exponent relating the gas exchange rate to windspeed

Sc = Schmidt number (water kinematic viscosity ÷ gas diffusivity).

Previous work with carbon-14 suggests 21±4 cm/hr for k̄ (6). We vary the
values of the parameters k̄ and n about those used in the Ocean Carbon-Cycle
Model Intercomparison Project (OCMIP) (5): k̄ = 20.6 cm/hr and n = 2 (a
quadratic dependence on windspeed). These reference values are marked
with dotted lines in Figures 3, 6-8.

Modeling ocean bomb 14C uptake

Model details

• Simulation for 1956-1997

• Transport fields from an ocean general circulation model

– 3.75◦ * 3.75◦ horizontal resolution
– z-coordinate, 29 vertical levels (50-300 m thick)
– Gent-McWilliams parameterization for isopycnal mixing
– KPP scheme for vertical mixing
– Surface fluxes from a coupled atmosphere-ocean model run
– Surface temperatures and salinities restored toward observed values

• Offline tracer advection using matrix exponentials (7)

• Boundary conditions largely follow OCMIP
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