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In this talk

● What do we mean by a forecast?
● An information-theory approach to 

quantifying uncertainty
● Application to a simple seasonal prediction 

framework



  

Forecasting: part of our job 
description

Peter von Cornelius (1817), Joseph Interpreting Pharaoh's Dream



  

Good forecasting is an exercise 
in modesty

● A forecast can be as definite as we like – 
the proof is in the outcome

● We should know when we don't know – 
never omit uncertainty

● A good forecaster may not predict “black 
swan” events, but at least hasn't said they 
are impossible



  

What we don't know

● How much would we need to be told so 
that we're no longer ignorant?

● Information theory (Shannon 1948): 
– Suppose one of n outcomes must happen, 

for which we assign probability p
i

– If we learn that this outcome did happen, 
we've learned log(p

i
) bits

– Summed over possible outcomes, our 
expected missing information is  

¿

∑
i=1

n

p ilog  pi



  

How useful is a forecast?
● Suppose that we learn that outcome i took 

place
● Under our baseline ignorance (e.g. 

climatology), the probability of i was p
i

● Suppose a forecaster had charged us to 
give a probability q

i
 instead. Intuitively, the 

forecast proved useful if q
i
 > p

i
. 

● The information gain from the forecast is 
log(q

i
 / p

i
)



  

A forecaster's track record

● Across multiple forecast verifications, the 
average information content of the 
forecasts is given by the average log(q

i
 / p

i
)

● Best case is to assign probability 1 to 
something that does happen: log(1 / p

i
) bits 

gained 
● Assigning zero probability to something 

that does happen is infinitely bad [log(0)] 



  

Generalization to continuous variables

● Information gain is log(q(i)/p(i))
● If the actual outcome was x, the forecast 

was Gaussian with mean m and SD σ, 
and the background had mean m

0
 and 

SD σ
0
, the information gain is (z2 – z

0
2) 

- log(σ/σ
0
), where z = (x – m)/σ



  

Example problem

● Seasonal forecasting of temperature – PDF 
can be used as input to model lake level, 
streamflow, etc.

● Outside of synoptic forecast range, skill of 
existing products usually low

● Hindcast experiment: Data from NOAA 
(GHCN, 5° grid, monthly since 1880)

● Forecast July T from May observations



  

Approach

● Background mean and SD: from July past  
temperature distribution

● Forecast method: 
– Mean from nonlinear regression on 

quantiles of May SOI or PDSI

– SD same as background (modesty)



  

Southern Oscillation Index



  

Palmer Drought Severity Index

Low PDSI (drought) leads to 
hotter summers because 
there's less water to 
evaporate



  

Information gain from SOI

Useful for forecasting land temperatures mainly in the tropics

bits



  

Information gain from PDSI

Useful in semiarid tropics and midlatitudes



  

Combining multiple forecasts

● Weight SOI and PDSI -based predictions 
for mean based on information gain of past 
forecasts (spatially variable)

● Add as predictors average Jul T from last 
few years (brings in temporal trend – single 
best predictor tested) and mean T in last 12 
months (SOI timescale – some additional 
skill in tropics)



  

Information gain: combined forecast



  

Summary

● Thinking of a forecast as having an 
inherent, preferably explicit, uncertainty 
enables its usefulness to be evaluated

● An informative forecast must be modest
● Paying attention to uncertainty can yield 

additional information even for a difficult 
problem like seasonal prediction


