Where is air-sea gas exchange happening? Carbon isotope evidence

Nir Krakauer California Institute of Technology <u>niryk@caltech.edu</u>

James Randerson, François Primeau (UC Irvine), Nicolas Gruber (UCLA), Dimitris Menemenlis (JPL)

Thesis outline

Tracing Recent Carbon Uptake by Oceans and Land Plants

- The impact of volcanic eruptions on global tree productivity
- Inferring flux patterns from atmosphere CO₂ concentrations: An application of generalized cross validation
- The regional distribution of air-sea gas exchange
 - Seasonality in fossil fuel emissions, respiration, and cross-tropopause transport in $\Delta^{14}C$ of atmospheric CO_2

Pictures: USGS; LTRR; Ruth Brownlee; Photofusion (via the UK Science Museum)

Gas exchange in perspective

Applications of gas exchange rates

- To infer the space and time distribution of ocean CO₂ uptake from extensive sea-surface pCO₂ data
- To infer rates of other sea-surface (e.g. photosynthesis from O₂ and Δ¹⁷O measurements) and atmospheric (e.g. CH₃Cl₃ oxidation) processes
- To infer the ocean source of other gases that affect climate, such as (CH₃)₂S and N₂O.

A conceptual model of air-sea exchange: the stagnant film

Thin Layer/Stagnant Film Model of Gas Exchange

J. Boucher, Maine Maritime Academy

- Gas concentrations are roughly constant in the ocean surface mixed layer, and in the air boundary layer
- Most of the air-sea concentration difference is across a thin (<0.1 mm) water-side surface layer
- Convenient to express the gas flux in terms of the bulk air and sea concentrations

A bulk parameterization of air-sea gas fluxes

- $F = k_w (C_s C_a)$
 - F: gas flux (mass per surface area per time)
 - C_s: gas concentration in bulk water (mass per volume)
 - C_a: gas concentration in bulk air (gas partial pressure x gas solubility)
 - k_w: gas transfer coefficient (length per time a "piston velocity" or "gas transfer velocity")

How would we measure k_w ?

Techniques for measuring the gas transfer velocity

- Lab experiments in stirred tanks or in wind tunnels
- Tracer-release experiments in lakes or in the ocean: measure how fast the tracer gas disappears from the water
- ²²²Rn (3.8 day half-life) deficiency in the surface ocean
- Eddy correlation measurements to directly estimate fluxes

Measured gas transfer velocities range widely...

k_w is usually plotted against windspeed

- Idea: greater turbulence at higher winds
 - makes the stagnant boundary layer thinner
 - increases the effective surface area

enhances gas exchange

- In fact, at the same windspeed, measured values differ by over a factor of 2
- What's a good average to use?

..as do parameterizations of k_w versus windspeed

- Commonly used parameterizations assume k_w to increase with windspeed linearly with phase transitions
 (Liss & Merlivat 1986),
 Quadratically (Wanninkhof
 1992) Or Cubically
 (Wanninkhof & McGillis 1999)
- Large differences in implied k_w, particularly at high windspeeds (where there are few measurements)
 - Are these formulations consistent with ocean tracer distributions?

Because typical windspeed varies by latitude...

... the CO₂ flux inferred from sea-surface pCO₂ measurements depends on how k_w varies with windspeed

Climatological pCO2 in Surface Water for August 1995

 Sea-surface pCO₂ is high in the tropics (→ flux out of ocean) and low in the midlatitudes (→ flux into ocean)

My approach

- Use recent perturbations in atmosphere carbon isotope (¹⁴C and ¹³C) levels to infer from the ocean uptake of the isotopic signal
 - The best-fit dependence of k_w on climatological windspeed globally, and
 - what the mean transfer velocity k_w must be by ocean region
- Directly applicable to ocean CO₂ uptake (no intergas solubility differences to worry about)

CO₂ isotope gradients are excellent tracers of air-sea gas exchange

O ₂	14 d
N ₂ O	17 d
CFC-11	21 d
CO ₂	295 d
C isotopes	2926 d

Sample equilibration times with the atmosphere of a perturbation in tracer concentration for a 50-m mixed layer

Ocean carbonate speciation (Feely et al 2001)

- Because the uncharged CO₂ that exchanges with the atmosphere is only ~1% of ocean carbon at any given time, air-sea gas exchange restores isotopic equilibrium very slowly
- Thus, the size of isotope disequilibria is uniquely sensitive to the gas transfer velocity $k_{\!\scriptscriptstyle W}$

Optimization scheme

• Assume a power law dependence of k_w on windspeed

 $k_w = \langle k \rangle (u^n / \langle u^n \rangle) (Sc/660)^{-1/2},$

(where u is windspeed, <> denotes a global average, and the Schmidt number Sc is included to normalize for differences in gas diffusivity)

and find the values of

<k>, the global mean gas transfer velocity and

n, the windspeed dependence exponent that best fit carbon isotope measurements

using an ocean transport model to relate measured interior concentrations to corresponding surface fluxes

Atmosphere and surface ocean ¹⁴C since 1950

- Cosmogenic production balanced by decay (half-life: 5700 y)
- Massive production in nuclear tests ca. 1960 ("bomb ¹⁴C")
- Through air-sea gas exchange, the ocean took up ~half of the bomb ¹⁴C by the 1980s
- Notation Δ^{14} C: ¹⁴C/¹²C ratio relative to the preindustrial atmosphere

Ocean bomb ¹⁴C uptake: previous work

- In the early 1980s, Broecker and Peng used 1970s measurements of ¹⁴C in the ocean to estimate the global mean transfer velocity, <k>, at 21±3 cm/hr.
- This value of <k> has been used in most subsequent parameterizations of k_w (e.g. Wanninkhof 1992)
- Recent suggestions (Hesshaimer et al 1994; Peacock 2004) are that Broecker and Peng overestimated the ocean bomb ¹⁴C inventory, so that the actual value of <k> might be lower by ~25%

My ¹⁴C goals

data: Key et al 2004

From available bomb ¹⁴C observations, reestimate <k> and also estimate n

The 1970s

 (GEOSECS)
 observations plus
 measurements
 from more recent
 cruises (WOCE)

Methods

- Use ~17,000 archived (GLODAP) 1970s-1990s oceanographic ¹⁴C observations
- Simulate ocean uptake of bomb ¹⁴C (transport fields from ECCO-1°), given the known atmospheric history, for different values of <k> and n
- Compare simulated with observed ¹⁴C levels to find values of <k> and n that give the best fit

Results: simulated vs. observed bomb ¹⁴C by latitude – 1970s

- For a given <k>, high n leads to more simulated uptake in the Southern Ocean, and less uptake near the Equator
- Observation-based inventories seem to favor low n (i.e. k_w increases slowly with windspeed)

Simulations for $\langle k \rangle = 21$ cm/h and n = 3, 2, 1 or 0 Observation-based mapping (solid lines) from Broecker et al 1995; Peacock 2004

Results: simulated vs. observed bomb ¹⁴C by latitude – 1990s

- Similar (weaker) dependence of the simulated latitudinal distribution on n
- The relatively low inventory observed in the Southern Ocean again seems to favor low n

Simulations for $\langle k \rangle = 21$ cm/h and n = 3, 2, 1 or 0 Observation-based mapping (solid lines) from Key et al 2004

Simulated-observed misfit as a function of <k> and n

- The minimum misfit between simulations and (1970s or 1990s) observations is obtained when <k> is close to 21 cm/hr and n is low (1 or below)
- The exact optimum <k> and n change depending on the misfit function formulation used (letters), but a weak dependence on windspeed (low n) is consistently found

Optimum gas transfer velocities by region

- As an alternative to fitting <k> and n globally, we estimated the air-sea gas exchange rate separately for each region, and fit <k> and n based on regional differences in windspeed
- Compared with most parameterizations (solid lines), we found that k_w is relatively higher in lowwindspeed tropical ocean regions and lower in the highwindspeed Southern Ocean (crosses and gray bars)
- Overall, a roughly linear dependence on windspeed (n ≈ 1; dashed line)

¹⁴C conclusions

- The power law relationship with the air-sea gas transfer velocity k_w that best matches observations of ocean bomb ¹⁴C uptake has
 - A global mean <k>=21±2 cm/hr, very similar to that found by Broecker and Peng
 - A windspeed dependence n= 0.9±0.4 (about linear), compared with 2-3 for quadratic or cubic dependences

Simulated mid-1970s ocean bomb ¹⁴C inventory vs. <k> and n

- The total amount taken up depends only weakly on n, so is a good way to estimate <k>
- The simulated amount at the optimal <k> (square and error bars) Supports the inventory estimated by Broecker and Peng (dashed line and gray shading)

The ocean is now releasing ¹³C to the atmosphere...

- Notation δ¹³C: ¹³C/¹²C ratio relative to a carbonate standard
- The atmospheric ¹³C/¹²C is steadily declining because of the addition of fossil-fuel CO₂ with low δ¹³C; this fossil-fuel CO₂ is gradually entering the ocean

...and the amount can be estimated...

- Budget elements
 - the observed δ¹³C atmospheric decline rate
 - biosphere disequilibrium flux (related to the carbon residence time)
 - fossil fuel emissions,
 - biosphere and ocean net carbon uptake
 - We calculated that airsea exchange must have brought 70±17 PgC·‰ of ¹³C to the atmosphere in the mid-1990s, ~half the depletion attributable to fossil fuels

Randerson 2004

...but the air-sea δ^{13} C disequilibrium is of opposite sign at low vs. high latitudes

Simulated 1990s air-sea δ¹³C flux vs. <k> and n

- At high n, the ¹³C flux into the Southern Ocean almost completely offsets the ¹³C flux out of the tropics
- The observed rate of decline of atmospheric δ¹³C, combined with the known fossil fuel emissions, suggests a large ¹³C flux out of the ocean (dashed line and gray shading), which requires n < 2

Implications for ocean CO₂ uptake

- We can apply the new parameterization of gas exchange to pCO₂ maps:
 - uptake by the Southern Ocean is lower than previously calculated (fitting inversion results better)
 - outgassing near the Equator is higher (reducing the required tropical land source)

Conclusions

- Combining ¹⁴C and ¹³C measurements constrains the mean air-sea gas transfer velocity and its windspeed dependence, averaged over large regions and several years
- The new parameterization promises to allow more confident utilization of ocean pCO₂ measurements to answer where carbon uptake is occurring and how it changes with time (e.g. tropical land vs. ocean)

Gas exchange questions to pursue

- Might a polynomial match the relationship of the gas transfer velocity with windspeed better than a power law (e.g. k_w is not expected to be zero in calm seas)?
- Can we identify regions that have anomalously high or low gas transfer velocities relative to their windspeed?
- Are there other easily measured quantities, such as mean square surface slope or fractional whitecap coverage, that predict gas transfer velocities better than windspeed?
- What are the implications for trace gas budgets?

Other agenda items

- Combine process studies and information on large-scale carbon fluxes into a framework for the effect of interannual climate variability and global warming on agricultural and forest productivity
- Understand the role of ocean circulation in Δ¹⁴C variability (e.g. correlation with ENSO)
- Assimilate CO₂ satellite measurements to work out seasonal biosphere dynamics

Acknowledgements

- Betty and Gordon Moore Foundation and NASA for graduate fellowships
- UC Irvine's Earth System Modeling Facility (funded by NSF) for computing support

Zhonghua Yang

Tina Turner